
Received 7 May 2022, accepted 19 June 2022, date of publication 29 June 2022, date of current version 11 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3187033

Spiking Neural Networks Trained via Proxy
SAEED REZA KHERADPISHEH1, MARYAM MIRSADEGHI2, AND TIMOTHÉE MASQUELIER 3
1Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran 19839 69411, Iran
2Department of Electrical Engineering, Amirkabir University of Technology, Tehran 15875-4413, Iran
3CerCo UMR 5549, Centre national de la recherche scientifique, Université Toulouse 3, 31062 Toulouse, France

Corresponding author: Saeed Reza Kheradpisheh (s_kheradpisheh@sbu.ac.ir)

ABSTRACT We propose a new learning algorithm to train spiking neural networks (SNN) using
conventional artificial neural networks (ANN) as proxy. We couple two SNN and ANN networks,
respectively, made of integrate-and-fire (IF) and ReLU neurons with the same network architectures and
shared synaptic weights. The forward passes of the two networks are totally independent. By assuming
IF neuron with rate-coding as an approximation of ReLU, we backpropagate the error of the SNN in the
proxy ANN to update the shared weights, simply by replacing the ANN final output with that of the SNN.
We applied the proposed proxy learning to deep convolutional SNNs and evaluated it on two benchmarked
datasets of Fashion-MNIST and Cifar10 with 94.56% and 93.11% classification accuracy, respectively. The
proposed networks could outperform other deep SNNs trained with tandem learning, surrogate gradient
learning, or converted from deep ANNs. Converted SNNs require long simulation times to reach reasonable
accuracies while our proxy learning leads to efficient SNNs with much smaller simulation times. The source
codes of the proposed method are publicly available at https://github.com/SRKH/ProxyLearning.

INDEX TERMS Spiking neural networks, supervised learning, proxy learning, rate coding.

I. INTRODUCTION
Artificial intelligence has been revolutionized by the suc-
cesses of deep learning during the past decade. However,
the top performing deep learning models consume a huge
amount of power and computation to run and be trained [1].
For instance, training of the GPT3 language model requires
190,000 kWh, while our whole brain consumes around 12-20
W of power to work [2]. Spiking neural networks (SNNs),
as the 3rd generation of neural networks, are largely inspired
by the neural computations in the brain. SNNs are known
to be suitable for hardware implementation specially on
neuromorphic devices [3], [4], which are quite fast and
require much less amount of power. However, the temporal
dynamics of SNNs both in neuron and network levels along
with the non-differentiabilty of spike functions have made it
difficult to train efficient SNNs [5]. Different studies with
different approaches have tried to adapt backpropagation
based supervised learning algorithms to SNNs [6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Junxiu Liu .

The first approach is to train an artificial neural net-
work (ANN) and then convert it to an equivalent SNN
[7]–[11]. Although converted SNNs could be applied to deep
architectures and reached reasonable accuracies, they totally
neglect the temporal nature of SNNs and usually are ineffi-
cient in terms of the number of spikes/time-steps. The second
approach is to directly apply backpropagation on SNNs. Their
main challenge is to overcome the non-differentiablity of
spike functions required in error-backpropagation algorithm.
To solve this problem, some studies propose to use smoothed
spike functions with true gradients [12] and others use
surrogate gradients for non-differentiable discrete spike
functions [13]–[20]. The main issue with this approach is
the use of backpropagation through time which makes it
too costly and faces it with vanishing/exploding gradient
problem, especially for longer simulation times.

In the third approach, known as latency learning, the idea
is to define the neuron activity as a function of its firing
time [21]–[27]. In other words, neurons fire at most once
and stronger outputs correspond to shorter spike delays.
To apply backpropagation to such SNNs, one should define
the neuron firing time as a differentiable function of its

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 70769

https://orcid.org/0000-0001-8629-9506
https://orcid.org/0000-0002-9790-1571


S. R. Kheradpisheh et al.: Spiking Neural Networks Trained via Proxy

membrane potential or the firing times of its afferents
[21], [28]. As an advantage, latency learning does not need
backpropagation through time, however, it is more difficult
to train outperforming SNNs with latency learning.

The forth approach is the tandem learning which is consists
of an SNN and an ANN coupled layer-wise through weight
sharing [29], [30]. The auxiliary ANN is used to facilitate
the error backpropagation for the training of the SNN at the
spike-train level, while the SNN is used to derive the exact
spiking neural representation. Literally, in the forward pass,
each ANN layer receives its input as the spike counts of
the previous SNN layer, and consequently, in the backward
pass, each ANN layer computes the gradient of its output
with respect to the shared weights based on these input spike
counts. Regarding this layer-wised coupling, the learning can
be also done in a progressive layer by layer manner.

In this paper, we propose a new learning method to train an
SNN via a proxy ANN. To do so, we make an ANN (consists
of ReLU neurons) structurally equivalent to the SNN (made
of integrate-and-fire (IF) neurons). The two network share
their synaptic weights, however, IF neurons in the SNN work
with temporally distributed spikes, while, neurons in ANN
work with floating points and process their input instantly.
By considering IF with rate coding as an approximation of
ReLU, we replace the final output of the SNN into that of
the ANN, and therefore, we update the shared weights by
backpropagating the SNN error in the ANN model. In other
words, we assume that greater output values in ReLU neurons
is approximated with higher firing rates in the equivalent
IF neurons. Hence, the SNN error is an approximation of
ANN error and by backpropagating the SNN error in the
proxy ANN, the shared weights are updated according to
the SNN error but based on the differentiable activations of
the ANN.

One of the main challenges in conversion and tan-
dem learning methods is the approximation of the ANN
max-pooling layers in the corresponding SNN, hence, they
exclude pooling layers and use convolutional layers with
stride of 2. Here, we used spike-pooling layers to mimic the
behavior of max-pooling layers in the corresponding ANN.
We evaluated the proposed proxy learning on Cifar10 and
Fashion-MNIST dataset with different deep convolutional
architectures and outperformed the currently existing conver-
sion and tandem learning methods.

The main advantages of the proposed proxy learning
method with respect to the previous learning methods are:
• Contrary to conversion methods, we make the back-
propagation in ANN aware of the error of the SNN by
replacing the ANN output with that of the SNN.

• Contrary to tandem learning, during the learning, the
forward pass of the two networks are totally independent
with no interference.

• Contrary to the surrogate gradient learning, we do not
need to backpropagate the SNN error in time which
is computationally expensive, memory consuming, and
suffering from gradient vanishing/exploding problem.

II. SPIKING NEURAL NETWORKS
Inspired by the brain, spiking neural networks (SNNs)
use spikes to compute, transmit, and learn information.
Therefore, running SNNs on hardware or neuromorphic
devices would require much less amount of power and
computation with respect to traditional ANNs [2]. Because of
that, SNNs has recently been widely attended and extended
by scientific researchers and industrial companies. Also
SNNs work in temporal domain, which makes them a
better solution for learning and processing of spatiotemporal
patterns [5]. Despite the aforementioned advantages of SNNs,
they are yet behind ANNs in terms of accuracy. One of
the main challenges for developing powerful SNNs with
low computational and energy cost is the lack of efficient
supervised learning methods. Applying backpropagation
to SNNs is not straightforward, as the spiking activation
functions are not differentiable. Also, SNNs works in time,
and the error should be backpropagated in time which
requires a lot of memory and time and also it suffers from
vanishing/exploding gradient problem.

Different solutions are proposed to tackle these issues
including the use of soft and differentiable spike func-
tions [13], using surrogate gradients for impulse spike
functions [13], [31], converting trained ANNs to equivalent
SNNs [8], [32], and training SNN layers using ANN layers in
tandem [29], [30]. However none of these solutions can solve
all the aforementioned issues with applying backpropagation
to SNNs. Here, we propose the proxy learning method which
simply backpropagates the SNN error in an equivalent proxy
ANN (with sharedweights) with no need for backpropagation
in time or the use of surrogate gradients. Contrary to
conversion methods, in proxy learning, the ANN is aware
of the SNN error, and contrary to tandem learning methods,
the forward passes of the two ANN and SNN models are
completely independent. In the proposed model, we use the
non-leaky integrate-and-fire (IF) neuron model which has
the simplest neural dynamics amongst all the spiking neuron
models.

In the following subsections, we explain different aspect
of the proposed SNN model including the IF neuron
model (Subsection II-A), the direct input encoding scheme
(Subsection II-B), and convolutional SNN architecture (Sub-
section II-C). Then, in Section III, we illustrate how the ReLU
neuron model can be approximated with IF neuron model
and rate coding, and finally, in Section IV, we explain the
inference (forward pass) and the learning (backward pass) of
the proposed model.

A. SPIKING NEURON
Artificial neurons are simply implemented by a linear
combination of inputs followed by a non-linear activation
function. Different activation functions have different math-
ematical properties and choosing the right function can
largely impact the learning speed and efficiency of the whole
network. The revolution of deep learning was accompanied

70770 VOLUME 10, 2022



S. R. Kheradpisheh et al.: Spiking Neural Networks Trained via Proxy

by the use of Rectified Linear Unit (ReLU) instead of prior
activation functions such as sigmoid and hyperbolic tangent.
An artificial neuron jwith ReLU activation can be formulated
as follows,

zj =
∑
i

wjixi, (1)

yj = ReLU (z) = max(0, z), (2)

where x and w are respectively the input and weight vectors,
and yj is the neuron output.
Contrary to the artificial neuron models which work with

synchronous instant inputs, spiking neurons have a temporal
dynamics through which the neuron’s internal membrane
potential changes in time by receiving asynchronous incom-
ing spikes. The complexity of this neural dynamics can
largely impact the computational cost and learning efficiency
of SNNs. Integrate-and-fire (IF) is the simplest spiking
neuron model in which the membrane potential only changes
when receiving an input spike from a presynaptic neuron by
an amount proportional to the synaptic weight.

The membrane potential uj of an IF neuron j is updated at
each time step t by the input current Ij(t) caused by the spike
train si(t) received from each presynaptice neuron i through
a synapse with the weight wji,

uj(t) = uj(t − 1)+ RIj(t), (3)

Ij(t) =
∑
i

wjisi(t), (4)

where si(t) = 1 if presynaptic neuron i has fired at time t
and it is zero elsewhere. We set the membrane resistance R to
unitary (i. e., R = 1).

The IF neuron emits an output spike whenever its
membrane potential crosses a certain threshold θ ,

sj(t) =

{
1 if Vj(t) ≥ θ,
0 otherwise,

(5)

and then resets its membrane potential to zero as uj = 0 to be
ready for the forthcoming input spikes.

B. INFORMATION ENCODING
ANNs work with decimal values, therefore, their inputs are
represented by vectors, matrices, and tensors of floating-point
numbers. However, in SNNs, neurons talk through spikes,
hence, information needs to be somehow encoded in the
spike trains. In other words, the analog input signal should
be converted into an equivalent spike train in the entry layer
of the network. Different coding schemes are suggested to be
used in SNNs ranging from heavy rate codes to economical
temporal codes with single spikes.

Another spike-free input coding approach is to use constant
input currents (aka direct input coding) applied to input
neurons. This way, input neurons with higher input currents
will fire with higher rates than others. In other words, contrary
to the neurons in the middle and output layers, the input
current to the IF neurons in the first layer is proportional to

the input signal. Consider an input image x, the constant input
current to an input IF neuron j is computed as

Ij(t) =
∑
i

wjixi, (6)

where xi is the ith input pixels inside the receptive field of
neuron j and wjixi is the constant input current from xi to j.

C. CONVOLUTIONAL SNN
Convolutional ANNs (CANNs), largely inspired by the
hierarchical object recognition process in visual cortex,
are comprised of a cascade of interlaying convolution and
pooling layers to extract descriptive visual features followed
by a stack of fully connected layers to make the final
decision. Neural processing in CANNs are performed in a
layer by layer fashion, neurons in each layer receive their
whole input from the previous layer at once, and instantly
send their output to the next layer. The neural processing in
convolutional SNNs (CSNNs) is different as neurons work in
temporal domain and information is encoded in asynchronous
spike trains.

Each convolutional layer of a CSNN is made of IF neurons
organized in numerous feature maps. At every time step,
each neuron receives the total input current from the afferents
inside its receptive window (Eq. 6 for input layer and Eq. 4
for other layers), updates its membrane potential (Eq. 3) and
fires whenever reaches to the threshold (Eq. 5). Neurons in
the same feature map share their synaptic weights, and hence,
look for the same feature but in different locations.

At each time step, neurons in spike-pooling layers of the
CSNN simply emit an spike if there is at least one spike in
their input window. Hence, if different neurons inside the
receptive window of a spike-pooling neuron fire at several
different times, the spike-pooling neuron will also fire at
each of those time steps. Spike-pooling neurons can simply
be implemented by IF neurons with synaptic weights and
threshold of one.

Fully-connected layers of the CSNN, including the readout
layer, are all made of IF neurons. The last convolution or
spike-pooling layer is flattened and its spikes are fed to the
first fully-connected layer. The readout layer includes one
neuron for each class, and the neuron with the maximum
number of spikes determines the winner class.

III. IF APPROXIMATING ReLU
Although the input encoding, internal mechanism, and output
decoding of IF are different from those of ReLU neuron
model, several studies from different perspectives have
shown that an equivalent IF (or Leaky-IF) neuron can fairly
approximate the activation of the ReLU neuron. For time-to-
first-spike coding, the firing time of IF neuron is inversely
proportional to the output of ReLU [7], [21]. In short, the IF
neuron remains silent if the output of ReLU is zero, and it
will fire with shorter delay for larger ReLU outputs. For rate
coding, the higher ReLU outputs correspond to higher firing
rates in IF neuron [29], [30], [33].

VOLUME 10, 2022 70771



S. R. Kheradpisheh et al.: Spiking Neural Networks Trained via Proxy

Here, we consider that neural information is encoded in the
spike rate of neurons. Let ri be the input spike rate received
from the ith afferent to neuron j,

ri =

∑
t si(t)
T

, (7)

where T is the maximum simulation time. For simplicity,
we assume that these input spikes are uniformly distributed
in time and the sudden current caused by each spike is evenly
and continuously delivered during the inter-spike intervals,
then according to Eq. 4, the input current to neuron j is
constant in time and is calculated as,

Ij =
∑
i

wjiri. (8)

If we apply this constant input current to IF neuron in Eq. 3
with the thresholding function in Eq. 5, the firing rate of IF
neuron j can be calculated as,

rj = ReLU (
RIj
θ
) =

R
θ
ReLU (

∑
i

wjiri). (9)

The use of ReLU is necessary here, since the IF neuron will
not fire at all for negative input currents. As shown in Eq. 9,
the firing rate of the IF neuron j can be expressed by applying
ReLU on the weighted summation of the input firing rates
from its afferents.

IV. TRAINING VIA PROXY
The general idea of the proposed learning method is
illustrated in Fig. 1. Here we have a proxy CANN coupled
with an equivalent CSNN having same architectures with L
layers. The weights in all layers are shared between the two
networks. However, the CANN model is made of artificial
neurons with ReLU activation and the CSNN model is made
of IF neurons and works in the temporal domain. The input
image is fed to both model and their outputs are obtained
at their softmax layer. Since the thresholding function of IF
neurons is not differentiable, it can not be directly trained.
We discard the output of CANN (the proxy network) and
replace it with the CSNN output, then, we backpropagate the
CSNN error in CANN to update the the weights.

A. FORWARD PASS
During the forward pass the input image is fed to both
networks. The first layer of CANN simply convolves its
filter kernels over the input image and sends it output, y1 to
the next layer by applying the ReLU activation function.
The following pooling and convolutional layers apply the
max-pooling and convolution operations on their inputs from
the previous layer and send their output to the next layer.
The fully-connected layers on top receive inputs from all
neurons in their previous layer through synaptic weights and
send their output to the next layer. Note that we use ReLU
activation function in all convolutional and fully-connected
layers. At the end, CANN applies softmax activation function

FIGURE 1. The proposed proxy learning that is comprised of a CSNN
coupled with a CANN through the shared weights. The sl and y l are
respectively the spike train and the output of the l th CSNN and CANN
layers during the forward pass. The final output of the CANN is replaced
with the output of the CSNN model. During the Backward pass, the error
of the CSNN is backpropagated through the CANN network to update the
shared weights.

over the output of the last layer, yL , to obtain the final
output, OA,

OAk =
ey

L
k∑

j e
yLj
. (10)

The first layer of the CSNN model obeys the input
encoding scheme explained in Section II-B. The CSNN
process each input image in T simulation time step. At every
time step, the constant input current to IF neurons in the
first layer of the CSNN model is computed by convolving
the input image with the corresponding filter kernel (see
Eq. 6). These IF neurons will emit spikes whenever their
membrane potential crosses the threshold and send spike
train s1 to the next layer. As explained in Section II-C,
in any time step, spike-pooling neurons will fire a spike if
there is at least one spike in their receptive window. Spiking
convolutional IF neurons integrate incoming spikes inside
their receptive window through weighted synapses and fire
when the threshold is reached. It is the same for IF neurons
in fully-connected layers but they do not have restricted
receptive window and receive spikes from all neurons in the
previous layer. To compute the output of CSNN, we count the
number of spikes for each neuron in the output layer, CL

k , and

70772 VOLUME 10, 2022



S. R. Kheradpisheh et al.: Spiking Neural Networks Trained via Proxy

TABLE 1. Network architecture and parameter setting for Fashion-MNIST and Cifar10 datasets.

TABLE 2. Classification accuracies of different CSNNs with different learning rules on Fashion-MNIST. T is the simulation time. The STDBP and STiDi-BP
terms stand for spike-time-dependent error backpropagation and spike-time-displacement-based error backpropagation, respectively.

send it to a softmax layer to obtain final output, OS ,

cLk =
∑
t

sLk (t), (11)

OSk =
ec

L
k∑

j e
cLj
. (12)

B. BACKWARD PASS
As mentioned earlier, to update the weights of the CSNN
model we use the corresponding shared weights in CANN.
To do so, the softmax output of the CANN model is replaced
by the softmax output of the CSNN model. By comparing
it to the target values in the loss function of the CANN
model, we are literally computing the error and the loss of
the CSNN model. This loss is then backpropagated through
the CANN model to update the shared weights. As explained
in Section III, we assume that the input and output of the
ReLU neuron in the CANN model is approximated by the
input and output firing rates of the corresponding IF neuron
in the CSNN model

Let assume that Yk is the target of the k th output in the
CANNmodel. The cross-entropy loss function for the CANN
model is defined as

L = −
∑
k

Yk ln(OAk ) ' −
∑
k

Yk ln(OSk ). (13)

To update an arbitrary shared weight wlji in the l th layer
through the CANN model, we have

1wlji = wlji − η
∂L

∂wlji
(14)

where η is the learning rate. Instead of using the true gradient
of the CANN model which is computed as

∂L

∂wlji
=

∑
k

∂L

∂OAk

∑
d

∂OAk
∂yLd

∂yLd
∂wlij

, (15)

we use the following approximated gradient which is
obtained by replacing the output of the CSNN into the output
of the CANN model,

∂L

∂wlji
'

∑
k

∂L

∂OSk

∑
d

∂OSk
∂yLd

∂yLd
∂wlij

. (16)

Indeed, we are backpropagating the error of the CSNN
model in the CANN model to update the shared weights.
Literally, in Eq. 15, ∂L/∂OAk is the derivation of the loss
function, L, with respect to the output of the CANN model,
OA, which according to Eq. 13, it can be approximated
by ∂L/∂OSk . Also, ∂OAk /∂y

L
d in Eq. 15 is replaced by

∂OSk /∂y
L
d in Eq. 16. Note that OS is not a function of yL ,

hence, to approximate this derivation, with the assumption
of equivalence between the firing rate of IF neurons in
CSNN and activation of ReLU neurons in CANN, we simply
replace the output values of OA by OS in the computations of
∂OAk /∂y

L
d .

V. RESULTS
To evaluate the proposed proxy learning method, we per-
formed experiments on two benchmark datasets of
Fashion-MNIST and Cifar10. For both datasets, we used
deep convolutional networks with architectural details
and parameter settings provided in Table 1. We use
Adam optimizer with parameters β1, β2, and ε and
L2-norm regularization with parameter λ. Our proxy learning
outperforms conversion and tandem learning methods by
reaching 94.5% and 92.50% on Fashion-MNIST and Cifar10
datasets, respectively. In the following subsections, results on
both datasets are provided in more details.

A. FASHION-MNIST
Fashion-MNIST [34] is a fashion product image dataset
with 10 classes (T-shirt, Trouser, Pullover, Dress, Coat,

VOLUME 10, 2022 70773



S. R. Kheradpisheh et al.: Spiking Neural Networks Trained via Proxy

Sandal, Shirt, Sneaker, Bag, and Ankle boot). Images are
gathered from the thumbnails of the clothing products on
an online shopping website. The Fashion-MNIST dataset
contains 60,000 images of size 28× 28 pixels as the train set.
The test set contains 10,000 images (1000 images per class).
As presented in Table 1, the proposed network is comprised
of three convolutional, two pooling, and three fully connected
layer.

Table 2 provides the categorization accuracy of the
proposed network with proxy learning along with the
accuracy of other recent spiking neural networks on Fashion-
MNIST dataset. Using a 6-layer CSNN architecture our
proxy learning method could reach 94.56% with T =

50 accuracy and outperform other CSNNs with different
learning methods. Interestingly, our network with proxy
learning could surpass other networks trained with surrogate
gradient learning (SGL). To do a fair comparison, we trained
the same CSNN as ours using surrogate gradient learning
method (with arc-tangent surrogate function [31]) that
reached to the best accuracy of 94.41%with T = 50. We also
trained a CANN with the same architecture to our CSNN
using backpropagation that reached to 94.60% accuracy best
(it is 0.04% better than proxy learning). We also converted
this ANN to an SNN with IF neurons (using the conversion
method in [39]) and evaluated it on Fashion-MNIST with
different simulation times. As mentioned before, conversion
methods require long simulation times to reach acceptable
accuracies. With 50 time steps the converted CSNN could
only reach to 84.63% accuracy and it required more 200 time
steps for 94.50% accuracy.

The categorization accuracy and the mean sum of squared
error (MSSE) of the proposed CSNNwith the simulation time
of T = 50 over the test set of Fashion-MNIST dataset is
provided in Fig. 2. Only 30 epochs are enough to reach an
accuracy above 94.0% and a MSSE lower than 1.5.

As explained in section III, we assume that IF neurons
in CSNN approximate ReLU neurons in the proxy CANN.
However, it is expected that this approximation should get
more accurate by increasing the maximum simulation time,
T . To verify this expectation, we evaluated the recognition
accuracy of the CSNN model (see Fig. 3) trained with proxy
learning on Fashion-MNIST dataset with the simulation
time varying from T = 10 to T = 60. As seen in
Fig. 3, the recognition accuracy increases as T is increased.
The model reached to the reasonable accuracy of 94.26%
from T = 15 and then ascends up to 94.56% with
T = 50.
In Fig. 4 we plotted the output feature maps of five

randomly selected convolutional filters in different layers
of the CANN model and their corresponding in the CSNN
model. Subfigures 4A, 4B, and 4C respectively show
the selected feature maps in the first, second, and third
convolutional layers. In each subfigure, the top (bottom) row
belongs to the featuremaps of the CANN (CSNN)model. The
feature maps of the CSNN model are obtained by computing
the spike count (i.e., firing rate) of each IF neuron. As seen,

FIGURE 2. The categorization accuracy and MSSE of the proposed CSNN
with proxy learning and simulation time of T = 50 over testing set of
Fashion-MNIST.

FIGURE 3. Classification accuracy of the proposed CSNN trained via proxy
learning on Fashion-MNIST with maximum simulation time varying from
T = 10 to T = 60. The accuracy increases by T and reaches to 94.56 at
T = 50.

the activation of ReLU neurons in CANN layers is well
approximated by the firing rates of corresponding IF neurons
in the CSNN model.

B. Cifar10
Cifar10 is a widely-used benchmark dataset in deep learning
and suitable for evaluating spiking neural network on natural
image classification tasks. Cifar10 consists color images from
10 different classes, with a standard split of 50,000 and
10,000 for training and testing, respectively. To solve Cifiar10
classification task, we developed a 10-layer CSNN trained
via proxy. Architectural details of the proposed network are
provided in Table 1.

The classification accuracy of the proposed network along
with those of other CSNNs trained by different learning
strategies including surrogate gradient learning, ANN-to-
SNN conversion, and tandem learning are presented in
Table 3. Our proposed network could reach 93.11% catego-
rization accuracy on Cifar10 with T = 60 and outperform
any other CSNN trained listed in Table 3, except Fang et al.
(2021) [31] that use surrogate gradient in CSNNs with

70774 VOLUME 10, 2022



S. R. Kheradpisheh et al.: Spiking Neural Networks Trained via Proxy

TABLE 3. Classification accuracies of different CSNNs with different learning rules on Cifar10. T is the simulation time. The STDB and SGL terms stand for
spike-time-dependent backpropagation and surrogate gradient learning, respectively.

FIGURE 4. The output feature maps of five randomly selected filters in
different convolutional layers of both CSNN and CANN networks over a
randomly selected image from Fashion-MNIST. The feature maps of the
CSNN network are obtained by computing the spike counts of IF neurons
in each map. The firing rates of IF neurons can well approximate the
activations of corresponding ReLU neurons.

Leaky-IF neurons with trainable membrane time constants
(i.e., each spiking neuron layer has an independent and
trainable membrane time constant). Although, they reached
0.04% better accuracy than us, implementing large CSNNs
with Leaky-IF neurons having different time constants,
independent of the implementation platform, is highly

FIGURE 5. Classification accuracy of the proposed CSNN trained via proxy
learning on Cifar10 with maximum simulation time varying from T = 10 to
T = 70. The accuracy increases by T and reaches to 93.11% at T = 60.

expensive in terms of memory and computation. However,
we use simple IF neurons with no leak and no need for extra
parameters, that is easy to implement and has low memory
and computational costs.

Interestingly, our proposed CSNN with proxy learning
could significantly outperform CSNNs with tandem learning
rule [29], [30]. This might be due to inconsistency between
the forward and backward passes of tandem learning. In our
proxy learning method, only the final output of the CANN
is replaced with that of the CSNN, and hence, the forward
pass of the two networks are totally independent. However,
in the forward pass of tandem learning, CANN layers are
disconnected from each other and receive the spike counts of
the previous CSNN layer as their input, while in the backward
pass, the CSNN error backpropagates through the CANN
layers and based on their true outputs, without the intervene
of CSNN layers.

VOLUME 10, 2022 70775



S. R. Kheradpisheh et al.: Spiking Neural Networks Trained via Proxy

Our proposed CSNN has also outperformed CSNNs
converted from CANNs with even deeper architectures.
In proxy learning, the final error is computed based on the
spike counts of the output layer of the CSNN, while in
conversion methods, the training phase is totally independent
of the CSNN. This shows that being aware of the quantized
CSNN activations (the spike counts) in our proxy learning,
which are ignored by conversionmethods, can lead to CSNNs
with higher classification accuracy.

Also, we developed a CANNwith ReLU neurons and same
architecture to our CSNN and trained it using backpropa-
gation with ADAM optimizer (the learning parameters and
conditions were the same as the CSNN model in Table 1).
The CANN reached the best accuracy of 93.20% that is only
0.09% better than our CSNN with proxy learning. We then
converted this ANN to an SNN with IF neurons using the
conversion method in [39]. With 60 time steps, that our
proposed CSNN had its best accuracy, the converted CSNN
could only reach to 89.15% accuracy and it required 240 time
steps to reach 93.16% accuracy. Again, conversion methods
require long simulation times to reach reasonable accuracies.

In the last comparison, we trained a CSNN with same
architecture and learning parameters to ours using surrogate
gradient learning. As presented in Table 3, it reached the
classification accuracy of 92.85% at its best. Note that
contrary to other CSNNs in Table 3 that are trained with
surrogate gradient learning, ours is consists of pure IF
neurons without leakage.

In another experiment, we varied the maximum simulation
time from T = 10 to T = 70 and evaluated the classification
accuracy of the proposed CSNN. As depicted in Fig. 5,
there is a trade-off between the simulation time and the
classification accuracy. The classification accuracy starts
from 88.35% with T = 10, steadily increases with T , and
culminates at 93.11% with T = 60.

VI. DISCUSSION
In recent years, deep learning in ANNs has been a revo-
lution in the field of machine learning [46], [47] however
researchers are still struggling to develop efficient learning
algorithms for SNNs with deep architectures [5]. In this paper
we proposed a proxy learning method for deep convolutional
spiking neural networks. The main idea is that IF neurons
with rate coding can approximate the activation of ReLU
neurons. To do so, first, we build a proxy CANN with ReLU
neurons and the same architecture as the CSNN with IF
neurons. Then, we feed the input image to both networks
and the forward pass is done in both networks independently.
Decision in CSNN network is made by applying a softmax
on the spike counts of the output neurons. Finally, the error
of the CSNN model is backpropagated in the CANN model
by replacing its output with that of the CSNN.

Our proxy learning method reached 94.56% on
Fashion-MNIST and 93.11% on Cifar10 datasets and
outperformed other ANN-to-SNN conversion and tandem
learning methods (see Tables 2 and 3). The main issue

with the conversion methods is neglecting the temporal
nature of spiking neural networks [21]. Another limitation
of conversion methods is a trade-off between the inference
speed and classification accuracy [40]. To reach the
optimal classification accuracy, they usually require at least
several hundred of inference time steps. Tandem learning
methods [29], [30] could resolve these issues in conversion
methods. Same as our proxy learning, they assume that IF
neurons with rate-code approximate artificial neurons with
ReLU activation. Hence, they connect the CANN and CSNN
layers in tandem and feed the spike counts of CSNN layers
(not the output of the previous CANN layer) as the input of
the next CANN layer. This breaking of the forward pass in
the CANN, with approximated inputs from the CSNN layers,
can attenuate the cohesion of its backward pass. This problem
is solved in proxy learning by separating the forward pass of
the two networks.

Although, surrogate gradient learning is one of the best
direct learning algorithms for spiking neural networks [13],
but it suffers from the challenges of backpropagation through
time, especially for longer simulation times, including
vanishing/exploding gradients and high computational cost
andmemory demand. However, in our proxy learningmethod
we do not confront with such issues, as the backpropagation
is done with the proxy CANN that is a time-free network.

An important aspect of the proposed CSNN is the use of IF
neuron model with no leak. IF neurons are pure integrators
and have the simplest neuronal dynamics compared to any
other spiking neuronmodel. For instance in leaky-IF neurons,
in case of no other input spikes, at every time step, the
neuron membrane potential exponentially decays with a time
constant, while in pure IF neuron model, the membrane
potential is updated simply by increasing or decreasing it
just at the arrival of input spikes and according to the input
synaptic weights. Hence, IF neurons are much simpler to
be implemented on different hardware and neuromorphic
platforms [48], [49], especially, in large and deep networks.

The proposed proxy learning is based on the approximation
of ReLU with rate-coded IF neurons. Rate-coding is the
mostly used coding scheme in SNNs, however, other coding
schemes such as temporal coding and rank-order coding
are more efficient in terms of the number of spikes [28],
[37], [50]–[53]. Extending the proxy learning to CSNNs with
temporal coding in future studies would lead to accurate and
low-cost CSNNs.

ACKNOWLEDGMENT
The authors would like to thankWei Fangwho helped them in
the implementation of our idea with his Spikingjelly package
designed for developing deep spiking neural networks avail-
able at (https://github.com/fangwei123456/spikingjelly).

REFERENCES
[1] N. C. Thompson, K. Greenewald, K. Lee, and G. F. Manso, ‘‘The

computational limits of deep learning,’’ 2020, arXiv:2007.05558.
[2] J. K. Eshraghian, M. Ward, E. Neftci, X. Wang, G. Lenz, G. Dwivedi,

M. Bennamoun, D. Seok Jeong, and W. D. Lu, ‘‘Training spiking neural
networks using lessons from deep learning,’’ 2021, arXiv:2109.12894.

70776 VOLUME 10, 2022



S. R. Kheradpisheh et al.: Spiking Neural Networks Trained via Proxy

[3] F. Zenke, S. M. Bohté, C. Clopath, I. M. Comşa, J. Göltz, W. Maass,
T. Masquelier, R. Naud, E. O. Neftci, M. A. Petrovici, F. Scherr,
and D. F. M. Goodman, ‘‘Visualizing a joint future of neuroscience
and neuromorphic engineering,’’ Neuron, vol. 109, no. 4, pp. 571–575,
Feb. 2021.

[4] M. Bouvier, A. Valentian, T. Mesquida, F. Rummens, M. Reyboz,
E. Vianello, and E. Beigne, ‘‘Spiking neural networks hardware implemen-
tations and challenges: A survey,’’ ACM J. Emerg. Technol. Comput. Syst.,
vol. 15, no. 2, pp. 1–35, 2019.

[5] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and
A. Maida, ‘‘Deep learning in spiking neural networks,’’ Neural Netw.,
vol. 111, pp. 47–63, Mar. 2019.

[6] M. Pfeiffer and T. Pfeil, ‘‘Deep learning with spiking neurons: Opportuni-
ties and challenges,’’ Frontiers Neurosci., vol. 12, p. 774, Oct. 2018.

[7] B. Rueckauer and S.-C. Liu, ‘‘Conversion of analog to spiking neural
networks using sparse temporal coding,’’ in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), May 2018, pp. 1–5.

[8] N. Rathi, G. Srinivasan, P. Panda, and K. Roy, ‘‘Enabling deep spiking
neural networks with hybrid conversion and spike timing dependent
backpropagation,’’ 2020, arXiv:2005.01807.

[9] A. Sengupta, Y. Ye, R.Wang, C. Liu, and K. Roy, ‘‘Going deeper in spiking
neural networks: VGG and residual architectures,’’ Frontiers Neurosci.,
vol. 13, p. 95, Mar. 2019.

[10] C. Lee, S. S. Sarwar, P. Panda, G. Srinivasan, and K. Roy, ‘‘Enabling spike-
based backpropagation for training deep neural network architectures,’’
Frontiers Neurosci., vol. 14, p. 119, Feb. 2020.

[11] S. Deng and S. Gu, ‘‘Optimal conversion of conventional artificial
neural networks to spiking neural networks,’’ in Proc. Int. Conf. Learn.
Represent., 2021, pp. 1–11.

[12] D. Huh and T. J. Sejnowski, ‘‘Gradient descent for spiking neural
networks,’’ in Proc. 32nd Int. Conf. Neural Inf. Process. Syst., 2018,
pp. 1440–1450.

[13] E. O. Neftci, H. Mostafa, and F. Zenke, ‘‘Surrogate gradient learning
in spiking neural networks: Bringing the power of gradient-based
optimization to spiking neural networks,’’ IEEE Signal Process. Mag.,
vol. 36, no. 6, pp. 51–63, Nov. 2019.

[14] S.M. Bohte, ‘‘Error-backpropagation in networks of fractionally predictive
spiking neurons,’’ in Proc. Int. Conf. Artif. Neural Netw. Cham, Switzer-
land: Springer, 2011, pp. 60–68.

[15] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy,
A. Andreopoulos, D. J. Berg, J. L. McKinstry, T. Melano, D. R. Barch,
C. di Nolfo, P. Datta, A. Amir, B. Taba, M. D. Flickner, and D. S. Modha,
‘‘Convolutional networks for fast, energy-efficient neuromorphic comput-
ing,’’ Proc. Nat. Acad. Sci. USA, vol. 113, pp. 11441–11446, Aug. 2016.

[16] S. B. Shrestha and G. Orchard, ‘‘Slayer: Spike layer error reassignment
in time,’’ in Proc. 32nd Int. Conf. Neural Inf. Process. Syst., 2018,
pp. 1419–1428.

[17] G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and W. Maass, ‘‘Long
short-term memory and learning-to-learn in networks of spiking neurons,’’
in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 787–797.

[18] R. Zimmer, T. Pellegrini, S. F. Singh, and T. Masquelier, ‘‘Technical
report: Supervised training of convolutional spiking neural networks with
PyTorch,’’ 2019, arXiv:1911.10124.

[19] T. Pellegrini, R. Zimmer, and T. Masquelier, ‘‘Low-activity supervised
convolutional spiking neural networks applied to speech commands
recognition,’’ in Proc. IEEE Spoken Lang. Technol. Workshop (SLT),
Jan. 2021, pp. 97–103.

[20] T. Pellegrini and T. Masquelier, ‘‘Fast threshold optimization for multi-
label audio tagging using surrogate gradient learning,’’ in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process. (ICASSP), Jun. 2021, pp. 651–655.

[21] S. R. Kheradpisheh and T. Masquelier, ‘‘Temporal backpropagation for
spiking neural networks with one spike per neuron,’’ Int. J. Neural Syst.,
vol. 30, no. 6, Jun. 2020, Art. no. 2050027.

[22] M. Zhang, J. Wang, B. Amornpaisannon, Z. Zhang, V. Miriyala,
A. Belatreche, H. Qu, J. Wu, Y. Chua, T. E. Carlson, and H. Li, ‘‘Rectified
linear postsynaptic potential function for backpropagation in deep spiking
neural networks,’’ 2020, arXiv:2003.11837.

[23] Y. Sakemi, K. Morino, T. Morie, and K. Aihara, ‘‘A supervised
learning algorithm for multilayer spiking neural networks based on
temporal coding toward energy-efficient VLSI processor design,’’ IEEE
Trans. Neural Netw. Learn. Syst., early access, Jul. 19, 2021, doi:
10.1109/TNNLS.2021.3095068.

[24] W. Zhang and P. Li, ‘‘Temporal spike sequence learning via backpropaga-
tion for deep spiking neural networks,’’ in Proc. Adv. Neural Inf. Process.
Syst., vol. 33, 2020, pp. 12022–12033.

[25] S. M. Bohte, J. N. Kok, and H. L. Poutré, ‘‘Error-backpropagation
in temporally encoded networks of spiking neurons,’’ Neurocomputing,
vol. 48, nos. 1–4, pp. 17–37, 2000.

[26] S. Zhou, X. Li, Y. Chen, S. T. Chandrasekaran, and A. Sanyal, ‘‘Temporal-
coded deep spiking neural network with easy training and robust
performance,’’ 2019, arXiv:1909.10837.

[27] T. C. Wunderlich and C. Pehle, ‘‘Event-based backpropagation can
compute exact gradients for spiking neural networks,’’ Sci. Rep., vol. 11,
no. 1, pp. 1–17, Dec. 2021.

[28] H. Mostafa, ‘‘Supervised learning based on temporal coding in spiking
neural networks,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 7,
pp. 3227–3235, Jul. 2018.

[29] J. Wu, Y. Chua, M. Zhang, G. Li, H. Li, and K. C. Tan, ‘‘A tandem
learning rule for effective training and rapid inference of deep spiking
neural networks,’’ IEEE Trans. Neural Netw. Learn. Syst., early access,
Jul. 21, 2021, doi: 10.1109/TNNLS.2021.3095724.

[30] J. Wu, C. Xu, D. Zhou, H. Li, and K. C. Tan, ‘‘Progressive tandem
learning for pattern recognition with deep spiking neural networks,’’ 2020,
arXiv:2007.01204.

[31] W. Fang, Z. Yu, Y. Chen, T. Masquelier, T. Huang, and Y. Tian,
‘‘Incorporating learnable membrane time constant to enhance learning of
spiking neural networks,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis.
(ICCV), Oct. 2021, pp. 2661–2671.

[32] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, ‘‘Conversion
of continuous-valued deep networks to efficient event-driven networks for
image classification,’’ Frontiers Neurosci., vol. 11, p. 682, Dec. 2017.

[33] A. Tavanaei and A. Maida, ‘‘BP-STDP: Approximating backpropagation
using spike timing dependent plasticity,’’ Neurocomputing, vol. 330,
pp. 39–47, Feb. 2019.

[34] H. Xiao, K. Rasul, and R. Vollgraf, ‘‘Fashion-MNIST: A novel
image dataset for benchmarking machine learning algorithms,’’ 2017,
arXiv:1708.07747.

[35] X. Cheng, Y. Hao, J. Xu, and B. Xu, ‘‘LISNN: Improving spiking neural
networks with lateral interactions for robust object recognition,’’ in Proc.
29th Int. Joint Conf. Artif. Intell., Jul. 2020, pp. 1519–1525.

[36] Q. Yu, C. Ma, S. Song, G. Zhang, J. Dang, and K. C. Tan, ‘‘Constructing
accurate and efficient deep spiking neural networks with double-threshold
and augmented schemes,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 33,
no. 4, pp. 1714–1726, Apr. 2022.

[37] M. Zhang, J. Wang, B. Amornpaisannon, Z. Zhang, V. Miriyala,
A. Belatreche, H. Qu, J. Wu, Y. Chua, T. E. Carlson, and H. Li, ‘‘Rectified
linear postsynaptic potential function for backpropagation in deep spiking
neural networks,’’ 2020, arXiv:2003.11837.

[38] M. Mirsadeghi, M. Shalchian, S. R. Kheradpisheh, and T. Masquelier,
‘‘Spike time displacement based error backpropagation in convolutional
spiking neural networks,’’ 2021, arXiv:2108.13621.

[39] J. Ding, Z. Yu, Y. Tian, and T. Huang, ‘‘Optimal ANN-SNN conversion
for fast and accurate inference in deep spiking neural networks,’’ 2021,
arXiv:2105.11654.

[40] Y. Wu, L. Deng, G. Li, J. Zhu, Y. Xie, and L. Shi, ‘‘Direct training for
spiking neural networks: Faster, larger, better,’’ in Proc. AAAI Conf. Artif.
Intell., vol. 33, 2019, pp. 1311–1318.

[41] T. Syed, V. Kakani, X. Cui, and H. Kim, ‘‘Exploring optimized
spiking neural network architectures for classification tasks on embedded
platforms,’’ Sensors, vol. 21, no. 9, p. 3240, May 2021.

[42] H. Zheng, Y. Wu, L. Deng, Y. Hu, and G. Li, ‘‘Going deeper with directly-
trained larger spiking neural networks,’’ in Proc. AAAI Conf. Artif. Intell.,
2021, pp. 11062–11070.

[43] C. Lee, S. S. Sarwar, P. Panda, G. Srinivasan, and K. Roy, ‘‘Enabling spike-
based backpropagation for training deep neural network architectures,’’
Frontiers Neurosci., vol. 14, p. 119, Feb. 2020.

[44] F. Liu, W. Zhao, Y. Chen, Z. Wang, and L. Jiang, ‘‘Spikeconverter: An
efficient conversion framework zipping the gap between artificial neural
networks and spiking neural networks,’’ in Proc. AAAI Conf. Artif. Intell.,
2022, pp. 1–9.

[45] N. Rathi and K. Roy, ‘‘DIET-SNN: Direct input encoding with leakage
and threshold optimization in deep spiking neural networks,’’ 2020,
arXiv:2008.03658.

[46] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
pp. 436–444, Feb. 2015.

VOLUME 10, 2022 70777

http://dx.doi.org/10.1109/TNNLS.2021.3095068
http://dx.doi.org/10.1109/TNNLS.2021.3095724


S. R. Kheradpisheh et al.: Spiking Neural Networks Trained via Proxy

[47] M. R. H. Mondal, S. Bharati, and P. Podder, ‘‘CO-IRv2: Optimized
InceptionResNetV2 for COVID-19 detection from chest CT images,’’
PLoS ONE, vol. 16, no. 10, Oct. 2021, Art. no. e0259179.

[48] S. Oh, D. Kwon, G. Yeom, W.-M. Kang, S. Lee, S. Y. Woo, J. S. Kim,
M. K. Park, and J.-H. Lee, ‘‘Hardware implementation of spiking neural
networks using time-to-first-spike encoding,’’ 2020, arXiv:2006.05033.

[49] M. Liang, J. Zhang, and H. Chen, ‘‘A 1.13µJ/classification spiking neural
network accelerator with a single-spike neuronmodel and sparse weights,’’
in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2021, pp. 1–5.

[50] S. R. Kheradpisheha, M. Ganjtabesh, S. J. Thorpe, and T. Masquelier,
‘‘STDP-based spiking deep convolutional neural networks for object
recognition,’’ Neural Netw., vol. 99, pp. 56–67, Mar. 2018.

[51] M. Mozafari, S. R. Kheradpisheh, T. Masquelier, A. Nowzari-Dalini, and
M. Ganjtabesh, ‘‘First-spike-based visual categorization using reward-
modulated STDP,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 12,
pp. 6178–6190, Dec. 2018.

[52] M. Mirsadeghi, M. Shalchian, S. R. Kheradpisheh, and T. Masquelier,
‘‘STiDi-BP: Spike time displacement based error backpropagation in mul-
tilayer spiking neural networks,’’ Neurocomputing, vol. 427, pp. 131–140,
Feb. 2021.

[53] S. R. Kheradpisheh, M. Mirsadeghi, and T. Masquelier, ‘‘BS4NN:
Binarized spiking neural networks with temporal coding and learning,’’
2020, arXiv:2007.04039.

SAEED REZA KHERADPISHEH received the
Ph.D. degree in computer science from the
University of Tehran, in 2017. He has been
an Assistant Professor in computer science with
Shahid Beheshti University, since 2018. His
research interests include computational neu-
roscience, spiking neural networks, and deep
learning.

MARYAM MIRSADEGHI is currently pursuing
the Ph.D. degree in electrical engineering with the
Amirkabir University of Technology, Tehran, Iran.
Her current research interests include neuromor-
phic computation and spiking neural networks.

TIMOTHÉE MASQUELIER is currently a
Researcher in computational neuroscience. His
research is highly interdisciplinary—at the inter-
face between biology, computer science, and
physics. He uses numerical simulations and
analytical calculations to gain understanding on
how the brain works, and more specifically on
how neurons process, encode and transmit infor-
mation through action potentials (a.k.a spikes),
in particular in the visual and auditory modalities.

He is also interested in bio-inspired computer vision and neuromorphic
engineering.

70778 VOLUME 10, 2022


