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ABSTRACT Aiming at the practical problems of external unknown disturbance and internal modeling
uncertainty, when space tumbling target flies around in close range, a sliding mode controller (SMC) based
on active disturbance rejection control (ADRC) technology is proposed to realize real-time estimation and
compensation of ‘‘total disturbance.’’ Firstly, according to themotion characteristics of space tumbling target,
the relative motion equation in rotating line of sight (RLOS) coordinate system is established; Secondly, the
compound controller is designed, and the convergence of the nonlinear state expansion observer and the
stability of the closed-loop system are analyzed based on the root locus method and Lyapunov function
method respectively; Finally, the simulation results show that the SMC based on ADRC technology can
effectively suppress the disturbance and overcome the chattering problem of traditional sliding mode
controller. It has a good control quality, and strong robustness is an easy method for engineering practice.

INDEX TERMS RLOS, active disturbance rejection, uncertainty, stability, robustness.

I. INTRODUCTION
In 1957, when the Soviet Union successfully launched the
first man-made satellite, human beings began to explore
the mysteries of space. However, the continuous frequency
and deepening of space activities have also brought a large
amount of space debris such as rocket ejectors, failed
satellites, discards, and collision fragments to the space
environment. As of November 4, 2021, according to the
USA space surveillance network, there are 23522 space tar-
gets, including 7824 spacecraft and 15698 rocket bodies and
debris [1]. Much space debris has become the main pollution
source of the space environment and poses a great threat to the
development and safety of the aerospace industry. Therefore,
the development of on-orbit repair, fuel filling, capture and
recovery, and other on-orbit services is of great significance
for promoting the on-orbit service capability and maintaining
the safety and stability of the space environment [2]–[9].

Space debris often presents rolling motion states, such
as spin and nutation, without cooperative identification, and
some uncertain factors, such as orbital maneuvers, exist. It is
difficult to accurately model the relative motion of such space
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tumbling targets [10], [11]. The space environment is com-
plex, and spacecraft will be disturbed by the outside world,
such as gravity gradient and solar light pressure, especially
in short-range relative motion, which puts forward higher
requirements for the accuracy, robustness, and stability of the
control technology.

When studying relative motion control with non-
cooperative targets, most of them follow the existing relative
motion modeling methods of rendezvous, docking, and
formation flights, which are mainly based on the local-
vertical local-horizontal (LVLH) coordinate system and the
line-of-sight (LOS) coordinate system. In addition, for non-
cooperative targets, a few scholars have proposed a relative
motion modeling method to improve the LOS coordinate sys-
tem, such as the RLOS coordinate system and an integrated
modeling method based on the dual quaternion [12]–[16].

A. RELATIVE MOTION CONTROL BASED ON THE LVLH
COORDINATE SYSTEM
This method mainly includes the CW equation for a circular
orbit proposed by Clohessy and Wiltshire [17] and the TH
equation for an elliptical orbit further derived by Tschauner
andHempel [18]. The CW equation is a linearized equation to
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solve the relative motion of a spacecraft over a short distance;
its precondition is that the target moves in a circular orbit, and
the relative distance between two spacecraft is far less than the
target’s center distance. The TH equation is further derived
to obtain analytical solutions related to the eccentricity and
true near-point angle. The origin of the base coordinate sys-
tem for the above two methods is established on the target
spacecraft.

In [19], considering the motion characteristics of the space
tumbling target, it is possible that the centroid and sensor do
not coincide, the CW equation was modified, and a nonlinear
suboptimal tracking controller was designed. In [20], an atti-
tude orbit coupling equationwas established based on the CW
equation. The θ -D optimal control method was proposed to
realize attitude orbit synchronization control of a large-angle
maneuver. In [21], the TH equation was used to describe the
autonomous rendezvous and approach mission of noncoop-
erative targets in an elliptical orbit. The guidance error of
tracking spacecraft caused by the dynamic characteristics of
noncooperative targets was analyzed, and a guidance scheme
based on a convex optimization algorithm was proposed.
In [22], while studying the problem of short-range relative
motion control, a robust adaptive controller was designed
based on the CWequation. In [23], based on the CWequation,
a terminal sliding mode adaptive controller considering dis-
turbance was designed for the short-range rendezvous section
of the space tumbling target. In [24] and [25], according to
the analytical solution of the CW equation, a variety of fly
around forms were proposed, and a sliding mode variable
structure controller was designed to realize the six-degrees-
of-freedom attitude orbit coupling control of spacecraft fly-
around quickly. In [26], fast fly-around control was realized
for noncooperative targets based on the CW equation. In [27],
the fly-around and acquisition of a runaway rolling satellite
were studied, with emphasis on the collision avoidance prob-
lem when the tracker flies over the target. In [28] and [29],
the attitude orbit couplingmodel was established based on the
TH equation and the error quaternion, and an adaptivemethod
was designed to realize uncontrolled tumbling target tracking
and approximation control to overcome external interference
and system uncertainty.

In addition, many scholars have studied relative motion
equations involving perturbations. In [30], a geometric
method was proposed to study the relative motion using
orbital element differences. This method can be easily used to
study perturbation effects. In [31], the state transition matrix
of relative motion was obtained using a geometric method
that includes the influences caused by the eccentricity of
the reference orbit, differential gravitational perturbations,
and the equatorial bulge term J2. In [32] and [33], the CW
equation was modified by Carter and Humi to include pertur-
bations, and the dynamic equation of the relative motion in a
central force field with linear drag was studied. In [34], a gen-
eralized analytical solution of relative motion dynamics with
arbitrary perturbations was developed using orbital element
difference.

B. RELATIVE MOTION CONTROL BASED ON THE LOS
COORDINATE SYSTEM
In the relative motion control of noncooperative targets,
a method based on the LOS coordinate system is widely used
and has the most application prospects.

In [35], under the conditions of parameter uncertainty
and external interference, a six-degrees-of-freedom relative
motion equationwas established based on the LOS coordinate
system, and an adaptive finite-time tracking controller was
designed to realize a noncooperative target fly-around control
task. In [36], for a noncooperative target with maneuver-
ing, a relative orbit dynamics equation based on the LOS
coordinate system was established, and the θ -D method was
designed for target tracking and approach control. In [37],
aiming at the problem of forced fly-around noncoopera-
tive targets, a six-degrees-of-freedom attitude orbit coupling
model considering control input and dynamic coupling fac-
tors was established based on the LOS coordinate system,
and an adaptive control satisfying closed-loop stability under
multiple constraints was designed. In [38], in the case of
external interference, unmodeled dynamics, and thrust satura-
tion, an adaptive control law was proposed to realize relative
position tracking control of noncooperative targets in the
LOS coordinate system. In [39], the Lyapunov method was
designed to realize noncooperative target-tracking control
based on the LOS coordinate system. In [40], the surveillance
fly-around of noncooperative targets was realized based on
the LOS coordinate system. In [41], the problem of obstacle
avoidance guidance for autonomous rendezvous and docking
with noncooperative spacecraft was studied based on the LOS
coordinate system.

C. RELATIVE MOTION CONTROL BASED ON THE RLOS
COORDINATE SYSTEM
The above relative motion modeling methods have the prob-
lem of insufficient representation of the motion state for
space tumbling targets. Differential geometry is an effective
method for studying the motion law of space curves. The
curvature and torsion were used to describe the rotation of
the space curve. It was initially used to deduce the space
pure proportional guidance law (PPN) in the guidance field.
Based on the differential geometry theory, Chiou et al. [42]
first constructed the relative motion equation of projectiles
under ideal conditions in the arc-length domain. Meng et al.
[43] further derived the relative motion equation when the
approaching velocity changed against the background of the
rendezvous task. However, these methods are still based on
an inertial coordinate system. Li et al. [44], [45] further
studied the time-domain method, proposing the concepts
of the RLOS coordinate system and instantaneous rotation
plane of LOS (IRPL), and reduced the relative motion of
curves in three-dimensional space to that in two-dimensional
space based on the Frenet-Serret active frame theory. On this
basis, in [46]–[50], a new relative motion modeling method
was proposed to solve the practical problems of the relative
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motion control of space-tumbling targets in the RLOS coor-
dinate system. Augmented proportional navigation (APN),
SMC, and so on were designed for this model.

At present, research on the control of the relative motion
equation of space tumbling targets based on the RLOS coor-
dinate system is still in its infancy, and there are few research
results, especially on the control accuracy and robustness
under multiple constraints, such as external interference,
parameter uncertainty, unmodeled dynamic characteristics,
and control input saturation.

In this study, the space tumbling target is considered as
the research object, and the constraints of external distur-
bance and internal modeling uncertainty are considered to
study the control problem of its close fly-around. In the
closed fly-around stage, the tracker continuously measures
the relative motion parameters with the space tumbling target
by installing a microwave or optical sensor and guides the
tracker to complete the fly-around mission. The thruster used
in this study mainly adopts the PRISMA layout. There are
six main thrusters, two in each group, which are placed in
three directions, passing through the centroid of the tracker
and perpendicular to each other. Among them, two groups
are placed on the plane parallel to the solar panel to provide
thrust in the Los direction, and the other group is placed
in the direction perpendicular to the solar panel to provide
thrust perpendicular to the LOS [48]. First, the relativemotion
equation in the RLOS coordinate system is derived and trans-
formed into a form that is convenient for the controller design.
Second, under the constraints of external disturbance and
internal modeling uncertainty, the compound controller is
designed based on two control methods: ADRC [51]–[56]
and SMC [57]–[62]. The simulation results show that the
controller designed in this study can effectively suppress
the disturbance, overcome the chattering problem of the
traditional SMC, and have good control quality and strong
robustness.

II. RELATIVE MOTION MODEL
In this paper, the relative motion dynamic equation will be
derived based on the RLOS coordinate system. First, the
J2000 geocentric inertial coordinate system Oe-XeYeZe is
defined, as shown in Fig. 1. Geocentric Oe is the coordinate
origin, the epoch equatorial plane is taken as the datum plane,
OeZe is the normal vector direction of the datum plane, the
direction ofOeXe axis points from geocentric to J2000 spring
equinox, and OeYe is determined by the right-hand rule. The
second is the LOS coordinate system Os-XsYsZs, the coor-
dinate origin Os is located at the centroid of the tracker, the
OsYs axis is the LOS direction pointing to the target centroid,
the OsZs axis is perpendicular to the OsYs axis in the vertical
plane, the OsXs axis forms a right-hand system with the OsYs
axis and OsZs axis. The third is the RLOS coordinate system
Os-ereθeω, the coordinate origin Os is located at the centroid
of the tracking spacecraft, er is the unit vector in the LOS
direction, eω is the unit vector in the LOS angular velocity
direction, and eθ meets the right-hand coordinate system. r is

FIGURE 1. Relative motion coordinate system.

the relative position vector between the tracker and the target,
ε is the altitude angle, β is the azimuth, rc is the position
vector of the tracker in J2000, and rt is the position vector
of the target in J2000.

The three-dimensional motion equation [44] established in
the RLOS coordinate system is

ėr = ωseθ
ėθ = −ωser +�seω
ėω = −�seθ

(1)

where er and eθ constitute the IRPL; eω is the normal vector
of IRPL; �s ∈ R is the angular velocity of rotation of eω
(IRPL around er), �s = �ser; ωs ∈ R is the LOS rotation
rate, ωs = ωseω.

The relative position vector between the tracker and the
target is as follows:

r = rt − rc (2)

The LOS direction unit vector er is as follows:

er =
r
r

(3)

where r ∈ R is the relative distance between the tracker and
the target.

After deriving Eq. (2) and Eq. (3), the relative velocity
vector between the tracker and the target is as follows:

v = vt − vc = ṙer + r ėr (4)

The relative acceleration between the tracker and the target
is derived from Eq. (4), and is expressed as follows:

a = v̇ = r̈er + 2ṙ ėr + r ër (5)

Substituting Eq. (1) into Eq. (5), the expression for relative
acceleration is converted into Eq. (6).

a = r̈er + 2ṙωseθ + r(ω̇seθ + ωsėθ )
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FIGURE 2. The LOS angle q and the IRPL angle η.

= r̈er + 2ṙωseθ + rω̇seθ + rωs(−ωser +�seω)

= (r̈ − rω2
s )er + (rω̇s + 2ṙωs)eθ + rωs�seω (6)

Eq. (6) can be rewritten into the following three
sub- equations.

r̈ − rω2
s = atr − acr

rω̇s + 2ṙωs = atθ − acθ
rωs�s = atω − acω

(7)

Among them, at and ac are the control acceleration of the
target and the tracker respectively, and the subscripts ‘‘r, θ ,
and ω’’ are the components of the control acceleration in the
three directions of the RLOS coordinate system er, eθ , and
eω respectively; The first two sub-equations determine the
change law of r , ṙ , andωs in IRPL, and the third sub- equation
determines the change law of�s, when r and ωs are constant.

As shown in Fig. 2, in the IRPL, the rotation angle of the
LOS is defined as the LOS angle q, and the rotation angle of
the normal vector of the IRPL is defined as the IRPL angle η.
Two abstract variables in the equation of relative motion, the
LOS rotation rate ωs and IRPL rotation angular velocity �s,
are equivalently transformed and can be written as follows:

ωs = q̇ �s = η̇ (8)

Considering the noncooperative characteristics of the
space tumbling target, problems such as whether there is a
maneuver in the motion state are attributed to the uncertainty
of internal modeling, which are recorded as Fr(t), Fθ (t), and
Fω(t) in the direction of each coordinate axis, and the gravity
gradient and solar light pressure are attributed to external
disturbances, which are recorded as wr(t), wθ (t), and wω(t)
in the direction of each coordinate axis. The uncertainty of
the internal modeling and external disturbance is collectively
referred to as the ‘‘total disturbance’’ of the system. There-
fore, the relative motion equation can be rewritten as

r̈ − rq̇2 = Fr(t)+ wr(t)− acr
rq̈+ 2ṙ q̇ = Fθ (t)+ wθ (t)− acθ
rq̇η̇ = Fω(t)+ wω(t)− acω

(9)

This study considers that in the actual fly-around process,
the target orbit maneuvers (�s is a constant value finally) or

does not maneuver (�s = 0), and the flying around in the
above two cases can be realized in the IRPL without applying
the control of the eω direction [47]–[49]. To facilitate the
design of the controller in the next step, the system object
model should be transformed into a form of direct feedback,
and new variables, x1 = [r, q]T ∈ R2 and x2 = [ṙ, q̇]T ∈ R2,
are defined. According to the new variables, x1 and x2, the
relative motion equation can be rewritten as follows:

ẋ1 = x2
ẋ2 = f (x1, x2)+ B(F(t)+ w(t)+ u)
y = x1

(10)

where

f (x1, x2) =

[
rq̇2

−
2ṙ q̇
r

]
∈ R2, B =

[
1 0

0
1
r

]
∈ R2×2,

F(t) = [Fr(t),Fθ (t)]T ∈ R2,

w(t) = [wr(t),wθ (t)]T ∈ R2,

u = [−acr,−acθ ]T ∈ R2.

III. CONTROL PROBLEM DESCRIPTION
During the actual on-orbit operation and fly-around, there are
the following practical problems: space debris often presents
spin, nutation, and other motion states, without a cooperative
logo, and some uncertain factors such as orbital maneuvers
exist that make it difficult to accurately model the relative
motion of such space tumbling targets, which are disturbed by
gravity gradient, solar light pressure, and other external dis-
turbances during on-orbit operation, which are also difficult
to determine. To further design the controller and facilitate
simulation verification, the following reasonable assumptions
are made:
Assumption 1: The tumbling target is a regular precession

target whose precession angle (ψ) rate and spin angle (ϕ) rate
are constant; the nutation angle (θ ) rate is 0.
Assumption 2: External disturbances wr (t) and wθ (t) are

unknown and bounded, and the boundary is an unknown
constant.
Assumption 3: The internal unmodelled dynamics of Fr (t)

and Fθ (t) are unknown and bounded, and the boundary is an
unknown constant.
Control Purpose: Considering the constraints of unknown

external disturbances and internal modeling uncertainty,
a robust controller is designed to realize the fly-around con-
trol of the space tumbling target. The relative distance of the
LOS direction flies around the radius, and the LOS rotation
rate is consistent with the target precession rate.

IV. UNITS DESIGN AND STABILITY ANALYSIS OF THE
COMPOUND CONTROLLER
A. TRACKING DIFFERENTIATOR (TD)
TD [63], [64] is used to arrange the transition process for
the desired signal, effectively solve the contradiction between
overshoot and rapidity while realizing the purpose of tracking
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the desired signal as soon as possible, and accurately extract-
ing the differential signal of the desired signal. A TD has
many forms, and its structure is usually divided into linear
and nonlinear forms. For the relative motion equation in the
RLOS coordinate system, the second-order TD is designed as
follows: 

e0 = v1 − xd
v̇1 = v2
v̇2 = fhan(e0, v2,m0, h0)

(11)

where xd = [rd, qd]T ∈ R2 is the expected tracking signal
of the system, rd is the expected flying radius, qd is the
expected LOS angle, and v1 is the tracking signal of the
expected signal. ẋd = [ṙd, q̇d]T ∈ R2 is the differential
signal of the expected tracking signal of the system, ṙd is the
expected relative speed, q̇d is the expected LOS rotation rate,
and v2 is the tracking signal of the expected differential signal.
fhan (c1, c2,m0, h0) is the fastest control synthesis function
[65] that can avoid high-frequency oscillations, where m0 is
the velocity factor, which determines the bandwidth of the
tracking differentiator, and h0 is the filtering factor, which
corresponds to the integration step in the numerical simula-
tion. The expression is as follows:

d = m0h20
a0 = h0c2
k = c1 + a0
a1 =

√
d (d + 8 |k|)

a2 = a0 + sign (k) (a1 − d)/2
a = (a0 + k) fsg (k, d)+ a2 (1− fsg (k, d))
fhan (c1, c2,m0, h0) = −m0 (a/d) fsg (a, d)−
m0sign (a) (1− fsg (a, d))
fsg (x, d) = (sign (x + d)− sign (x − d)) /2

(12)

where the function of fsg (x, d) [65] is an equivalent formula
derived using the characteristics of symbolic function and
parameter reduction when two conditional statements appear
at the same time.

B. NONLINEAR EXTENDED STATE OBSERVER (NLESO)
ESO [66]–[68] is the key link in the entire system. In this
study, the external disturbance and uncertainty inside the
system are reduced to ‘‘total disturbance,’’ and expanded into
new state variables x3 for real-time estimation and compen-
sation. x3 is expressed as follows:

x3 = B(F(t)+ w(t)) ∈ R2 (13)

The third-order NLESO is designed as follows:
e1 = z1 − y
ż1 = z2 − β01e1
ż2 = f (z1, z2)+ z3 − β02g1(e1)+ Bu
ż3 = −β03g2(e1)

(14)

where β0i ∈ R(i = 1, 2, 3) are the parameters of the
observer; z1, z2, and z3 are the estimated values of x1, x2,
and x3, respectively; f (z1, z2) is an estimate of f (x1, x2); and
the nonlinear function gi(e1)(i = 1, 2) select the functions
of fal (e1, αi, δ) [69], [70] which can effectively avoid the
occurrence of high-frequency flutter as follows:

fal (e1, αi, δ) =

{
|e1|αi sign (e1) , |e1| > δ

e1
/
δ1−αi , |e1| ≤ δ

(i = 1, 2)

(15)

The nonlinear function fal (e1, αi, δ) has characteristics of
‘‘small error, large gain; large error, small gain’’ when the
degree of nonlinearity of the function 0 < αi < 1. When
αi = 1, the nonlinear function fal (e1, αi, δ) turns into a linear
one, Eq.(14) is called LESO [71], [72]. The parameter δ >
0 represents the interval length of the linear segment.

C. IMPROVED NONLINEAR STATE ERROR FEEDBACK
LAW (NLSEF)
Based on the idea of ‘‘error elimination error,’’ considering
the form of the classical ADRC error feedback control law
and the characteristics that the traditional SMC is prone to
chattering and steady-state error, the integral sliding mode
surface function is selected in NLSEF in Eq. (16), and its
derivative is given by Eq. (17).

s =
[
s1
s2

]
=

 ė1 + λ21e1 + λ11
∫
e1dt

ė2 + λ22e2 + λ12

∫
e2dt

 ∈ R2 (16)

ṡ = ë+ λ2ė+ λ1e (17)

where s1 and s2 are the sliding mode surface functions for
LOS direction and vertical LOS direction selection, respec-
tively. λi = diag {λi1, λi2} ∈ R2×2, λi1 > 0, and λi2 > 0,
i = 1 and i = 2 are the proportional gain and differential
gain, respectively. ė = v2 − z2 =

[
ė1 ė2

]T
∈ R2 and

e = v1 − z1 =
[
e1 e2

]T
∈ R2 are system state errors.

Combined with the relative motion in Eq. (10) and Eq. (17)
can be rewritten as follows:

ṡ = f (x1, x2)+ B(F(t)+ w(t)+ u)+ λ2ė+ λ1e (18)

The exponential approach law with finite-time conver-
gence term is selected as follows:

ṡ = s− ε
[
sgn s1
sgn s2

]
− β

[
|s1|η1 sgn s1
|s2|η2 sgn s2

]
(19)

where ε = diag {ε1, ε2} ∈ R2×2, εi > 0(i = 1, 2), β =
diag {β1, β2} ∈ R2×2, βmin = min {β1, β2}, βi > 0(i = 1, 2),
and η0 = [η1, η2]T ∈ R2, ηmin = min {η1, η2}, −1 < ηi < 1
(i = 1, 2) are undetermined coefficients.
Combining Eq. (18) and Eq. (19) is expressed as follows:

u′ = −B−1(ε
[
sgn s1
sgn s2

]
+ β

[
|s1|η1 sgn s1
|s2|η2 sgn s2

]
+ λ1ė+ λ0e+ f (x1, x2)+ F(t)+ w(t)) (20)
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FIGURE 3. The block diagram of the compound controller.

The NLSEF is as follows:

u0 = −B−1(ε
[
sgn s1
sgn s2

]
+ β

[
|s1|η1 sgn s1
|s2|η2 sgn s2

]
+λ2ė+ λ1e) (21)

The NLSEF after compensation is as follows:

u = −B−1(ε
[
sgn s1
sgn s2

]
+ β

[
|s1|η1 sgn s1
|s2|η2 sgn s2

]
+λ2ė+ λ1e+ f (z1, z2)+ z3) (22)

The structural diagram of the controller is shown in Fig. 3.

D. CONVERGENCE AND STABILITY ANALYSIS
First, the convergence of the ESO in the controller is ana-
lyzed. The initial values of the error term and f (x1, x2, t)
assumed to be zero. The equivalent gain method is adopted
The g1(e1) and g2(e1) in Eq. (14) can be expressed as follows:

gi(e1) = fal(e1, αi, δ)

=
fal(e1, αi, δ)

e1
e1

= ζ0i(e1)e1, i = 1, 2 (23)

Thus, gi(e1) can be seen as a linear function e1 with varying
gain ζ0i(e1) [72].
Assuming:

λ0i = ζ0i(e1), i = 1, 2 (24)

Eq. (14) of NLESO can be rewritten as follows:
e1 = z1 − y
ż1 = z2 − β01e1
ż2 = z3 − β02λ01e1 + B0u
ż3 = −β03λ02e1

(25)

The transfer function from input to output is as follows:

z1 =
β01s2 + β02λ01s+ β03λ02

s3 + β01s2 + β02λ01s+ β03λ02
y

z2 =
β02λ01s2 + β03λ02s

s3 + β01s2 + β02λ01s+ β03λ02
y

z3 =
β03λ02s2

s3 + β01s2 + β02λ01s+ β03λ02
y (26)

The characteristic equation is as follows:

s3 + s2β01 + sβ02λ01 + β03λ02 (27)

According to the root locus method, if the characteristic
roots of characteristic Eq. (27) are located on the left side
of the [S] plane and the system is stable. However, because
of the gains λ01 and λ02 change with the size of the error
e1, the root-finding process becomes complex. According to
the specific physical process, the trajectory of the system
closed-loop characteristic root moving with e1 on the [S]
plane must be determined, and the stability is judged accord-
ing to the distribution of characteristic roots. Therefore,
if the appropriate observer gains β01, β02, and β03 should
be selected such that the eigenvalues of the characteristic
Eq. (27) are located on the left side of the [S] plane, the
ESO is convergent and can estimate and compensate the state
variables and ‘‘total disturbance’’ in realtime.

Secondly, the stability of the closed-loop system is proved.
Lemma 1 [73]: Consider the system ẋ = f (x), x ∈ Rn,
∀x(0), if there exists a continuous Lyapunov function V (x) ≥
0 in Rn, and scalars c1 > 0, χ > 0, 0 < p < 1, such that

V̇ (x) ≤ −c1V p(x)+ χ (28)

Then, the system ẋ = f (x) is the global practical finite-time
bounded (GPFB), and the trajectory of the closed-loop system
converges to a compact set containing the origin in a finite
time T , limt→T x ∈

{
x : V p(x) ≤ χ

(1−q)c1

}
. The settling time

T is given as Eq. (29), 0 < q < 1 is a scalar, and V (x(0)) is
the initial value of V (x).

T =
1

(1− p)qc1

[
V 1−p(x(0))−

(
χ

(1− q)c1

)(1−p)/p
]
(29)

Lemma 2 [74]: For any variables xi ∈ R, i = 1, · · ·, n, and
a real number p ∈ (0, 1], there is inequalitie

(|x1| + · · · + |xn|)p ≤ |x1|p + · · · + |xn|p

≤ n1−p(|x1| + · · · + |xn|)p (30)

Lemma 3 [75]: For variables x, y ∈ R, there exists α > 0,
and scalars p > 1, q > 1, (q − 1)(p − 1) = 1, there is
inequalitie

xy ≤
αp

p
|x|p +

1
qαq
|y|q (31)

Theorem 1: For the system Eq.(10) satisfying
Assumption 2-3, the NLSEF in Eq.(22) will guarantee the
the system is GPFB property of the closed-loop system if the
design parameters are selected appropriately.
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Proof: The positive-definite candidate of the Lyapunov
function is selected as follows:

V = 1/
2s

Ts (32)

We take the derivative of Eq. (32), and substitute Eq. (17)
and Eq. (22) into it as follows:

V̇ = sTṡ

= sT (ë+ λ2ė+ λ1e)

= sT (ẋ2 + λ2ė+ λ1e)

= sT [f (x1, x2)+ B (F(t)+ w(t)+ u)+ λ2ė+ λ1e]

= sT [f (x1, x2)+ B(F(t)+ w(t))+ λ2ė+ λ1e

− ε

[
sgn s1
sgn s2

]
− β

[
|s1|η1 sgn s1
|s2|η2 sgn s2

]
− f (z1, z2)− z3 − λ2ė− λ1e] (33)

In the case of bounded total interference, the observation
error is bounded, and the value depends on the parameters of
ESO [65]. It is assumed that ζ1 and ζ2 are observation errors
in the LOS direction and vertical LOS direction, respectively.
Let, ζ = [ζ1, ζ2]T ∈ R2, the observation error is as follows:

B(F(t)+ w(t))+ f (x1, x2)− z3 − f (z1, z2) = ζ (34)

Then

V̇ = sT[−ε
[
sgn s1
sgn s2

]
− β

[
|s1|η1 0
0 |s2|η2

] [
sgn s1
sgn s2

]
+ ζ ]

≤ sT[−β
[
|s1|η1 0
0 |s2|η2

] [
sgn s1
sgn s2

]
+ ζ ]

= −2
η1+1
2 β1

∣∣∣∣12 s21
∣∣∣∣
η1+1
2

− 2
η2+1
2 β2

∣∣∣∣12 s22
∣∣∣∣
η2+1
2

+ sTζ

≤ −2
ηmin+1

2 βmin(

∣∣∣∣12 s21
∣∣∣∣
η+1
2

+

∣∣∣∣12 s22
∣∣∣∣
η+1
2

)+ sTζ (35)

When the values of s1 and s2 change, the value of η is η1 or
η2, which satisfies the inequality as follows:∣∣∣∣12 s21

∣∣∣∣
η1+1
2

+

∣∣∣∣12 s22
∣∣∣∣
η2+1
2

≥

∣∣∣∣12 s21
∣∣∣∣
η+1
2

+

∣∣∣∣12 s22
∣∣∣∣
η+1
2

(36)

According to Lemma 2, there is inequalitie

−2
ηmin+1

2 βmin(

∣∣∣∣12 s21
∣∣∣∣
η+1
2

+

∣∣∣∣12 s22
∣∣∣∣
η+1
2

)

≤ −2
ηmin+1

2 βmin(

∣∣∣∣12 s21
∣∣∣∣+ ∣∣∣∣12 s22

∣∣∣∣) η+12 (37)

According to Lemma 3, there is inequalitie

sTζ ≤
εη+1

η + 1
‖s‖η+1 +

η

(η + 1)ε
η+1
η

‖ζ‖
η+1
η (38)

where ε > 0.
Substituting Eq. (37) and Eq. (38) into Eq. (35) is expressed

as follows:

V̇ ≤ −2
ηmin+1

2 βmin(

∣∣∣∣12 s21
∣∣∣∣+ ∣∣∣∣12 s22

∣∣∣∣) η+12 + εη+1

η + 1
‖s‖η+1

+
η

(η + 1)ε
η+1
η

‖ζ‖
η+1
η

= −2
ηmin+1

2 βminV
η+1
2 + 2

η+1
2
εη+1

η + 1
V

η+1
2

+
η

(η + 1)ε
η+1
η

‖ζ‖
η+1
η

= −(2
ηmin+1

2 βmin − 2
η+1
2
εη+1

η + 1
)V

η+1
2

+
η

(η + 1)ε
η+1
η

‖ζ‖
η+1
η (39)

Take βmin satisfying βmin ≥ 2
η−ηmin

2 εη+1

η+1 +
1

2
ηmin+1

2

φ,

where, φ is a positive constant, Eq. (39) can be rewritten as

V̇ ≤ −φV
η+1
2 +

η

(η + 1)ε
η+1
η

‖ζ‖
η+1
η (40)

According to the definition of V and Lemma 1, the trajec-
tories of the closed-loop system would converge into a small
set containing the origin point in finite time. The integral
sliding mode surface s fall into and remain in the attractive
set � :=

{
s : ‖s‖η+1 ≤ 2

η+1
2 B0

}
, B0 is a positive constant

as Eq.(41), where 0 < q < 1. B0 could be small enough by
adjusting parameters appropriately. The settling time can be
obtained as follows as Eq.(42).

B0 =
η

(1− q)φ(η + 1)ε
η+1
η

‖ζ‖
η+1
η (41)

T =
2

(1− η)qφ

[
V

1−η
2 (x(0))− B

1−η
1+η
0

]
(42)

V. SIMULATION VERIFICATION
The initial parameters of the tumbling target and tracking
spacecraft are presented in Table 1.

The initial relative distance, initial relative speed, initial
LOS angle, and initial LOS rotation rate are as follows:
r0 = 60 m, v0 = 5.2 × 10−4 m/s, q0 = 1 rad, and q̇ =
1.8×10−3 rad/s, respectively. The expected relative distance,
relative speed, LOS angle, and LOS rotation rate are: rd =
50 m, vd = 0 m/s, qd = q0+ q̇dt , and q̇d = 3.92×10−2 rad/s,
respectively. It is assumed that the maximum control force
provided by the actuator of the tracking spacecraft in the LOS
direction and vertical LOS direction are: Ur max = 0.4 N and
Uqmax = 2 N, respectively. The parameters of the controller
are set as follows: the integral step size h is 0.0001; m0
and h0 involved in TD are 0.08 and 0.001 respectively; β01,
β02, and β03 in ESO are 100, 1000, and 10000 respectively,
and nonlinear functions are g1(e1) = fal(e1, 0.5, h) and
g2(e1) = fal(e1, 0.25, h); In NLSEF, the proportional gain
and differential gain λ0 and λ1 are set to 5, ε, β, and η are set
to 0.0001, 0.01, and 0.5 respectively.

To verify that the controller designed in this study has
strong robustness to external unknown disturbances and inter-
nal modeling uncertainty, a simulation comparison is carried
out under the four conditions of ‘‘total disturbance:’’ step
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TABLE 1. Initial parameters.

disturbance, sinusoidal disturbance, uniformly distributed
random disturbance, and no disturbance. It should be noted
that according to the relative motion equation and the char-
acteristics of the ESO, the disturbance in the vertical LOS
direction is set as the ratio of ‘‘total disturbance’’ to the
relative distance in the LOS direction. Among them, step
disturbance: the disturbance in the value of wr = 0.05 m/s2

and wθ/r = 0.01 m/s2 occurs at 25 s; sinusoidal distur-
bance: wr = 0.05 sin(π t) m/s2 and wθ/r = 0.01 sin(π t +
π/2) m/s2; the uniformly distributed random disturbance
is a uniform random distribution function whose amplitude
satisfies 0.05 m/s2 and 0.01 m/s2 respectively.

A. ESO CONVERGENCE AND OBSERVATION EFFECT
SIMULATION VERIFICATION
Before studying the control problem with multiple con-
straints, the convergence of the ESO is verified by simulation
when the ‘‘total disturbance’’ is sinusoidal. Fig. 4 shows
the error root locus in the LOS direction and vertical LOS
direction. It can be seen that when the error system changes
with e1, the closed-loop pole is always located on the left half-
plane of [S]; that is, any e1 value system gradually tends to
equilibrium, and the ESO has good convergence.

Fig. 5 shows the estimation of sinusoidal disturbance by
ESO. It can be seen that the estimation error is small and there
is only a small phase lag.

B. COMPARATIVE SIMULATION VERIFICATION
To further prove the superiority of the controller designed in
this study, a compound controller is simulated and compared
with traditional SMC. As shown in Fig. 6, within the accept-
able overshoot range, the controller designed in this study
can converge to the expected value faster by adjusting the
TD parameters. As shown in Fig. 7, the compound controller
designed in this study overcomes the chattering problem of
the traditional SMC in both LOS and vertical LOS directions.
For quantitative purposes, six popular performance specifi-
cations are employed to evaluate the control performance:
the rise time, overshoot, settling time, mean absolute error

FIGURE 4. Root locus of error. (a) Root locus of the LOS direction error.
(b) Root locus of the vertical LOS direction error.

FIGURE 5. Sinusoidal disturbance tracking effect.

(MAE), mean absolute control input (MAI) and mean total
variation (MTV) of the control [76]. The expressions for the
last three performance specifications are as follows:

MAE =
1

t∞ − t0

∫ t∞

t0
|e(t)|dt
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TABLE 2. Performance comparison of the compound controller and the traditional SMC.

FIGURE 6. Comparison curves between the compound controller and the
traditional controller. (a) Variation curves in the LOS direction.
(b) Variation curves in the vertical LOS direction.

MAI =
1

t∞ − t0

∫ t∞

t0
|u(t)|dt

MTV =
1

t∞ − t0

∫ t∞

t0
|u(t + 1)− u(t)|dt (43)

A quantitative comparison of the control performances is
presented in Table 2. Note that the overshoot, settling time
for the LOS rotation rate, and MAI for the LOS rotation
rate (underlined in Table 2) are observed to be larger under
the compound controller than under the traditional SMC.
Even so, the compound controller is more reasonable when
evaluating the performance indices from the overall point of
view. System response is preferred in practice, considering

FIGURE 7. The acceleration comparison between the compound
controller and the traditional SMC.

the convergence response, disturbance rejection, energy con-
sumption, and control curve smoothness.

C. SIMULATION VERIFICATION UNDER
MULTIPLE CONSTRAINTS
Considering the existence of unknown external disturbances,
internal unmodeled dynamics, and limited saturation of the
control input, the variation curves of the spacecraft fly-around
radius, relative speed in the LOS direction, LOS angle, and
LOS rotation rate with time under the action of the compound
controller designed in this study are shown in Fig. 8. Under
the four disturbance conditions, the tracking spacecraft can
track the desired radius within 25 s and remain stable; the
relative velocity in the LOS direction first increases and then
decreases, and converges to 0 when the relative distance in
the LOS direction reaches the expected value; the LOS angle
reaches the desired curvewithin 5 s and tracks stably; the LOS
rotation rate first increases and then decreases, and converges
to near 0.039 m/s after the LOS angle reaches the desired
curve. From the locally enlarged view of the relative speed
in the LOS direction and the LOS rotation rate, it can be
observed that the control effect is slightly affected by the dis-
turbance, and the control quality under different disturbances
remains unchanged, which shows that the controller designed
in this study has strong robustness.

Considering the existence of unknown external distur-
bances, internal unmodelled dynamics, and limited saturation
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FIGURE 8. Comparison curves under four ‘‘total disturbances.’’
(a) Variation curves in the LOS direction. (b) Variation curves in the
vertical LOS direction.

of the control input, the change curves of the control accel-
eration in the LOS and vertical LOS directions are shown
in Fig. 9. At the initial stage, they are limited by actu-
ator saturation, but with a reduction in the control error,
the saturation phenomenon gradually disappears, and finally
achieves the purpose of control. It should be noted that when
the ‘‘total disturbance’’ is a random disturbance, because
of the phase lag in the estimation of the random distur-
bance, the random disturbance cannot be directly used to
compensate for the control acceleration. In this study, the
upper bound of the random disturbance estimation is used to
compensate for the control acceleration, and the compensated

FIGURE 9. Control curves under four ‘‘total disturbance.’’ (a) Control
acceleration in the LOS direction. (b) Control acceleration in the vertical
LOS direction.

control acceleration oscillates within an acceptably small
range.
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VI. CONCLUSION
Considering the on-orbit service task of a space tumbling
target as the research background, this study investigates the
short-range relative motion control of a space tumbling target
under multiple constraints. The relative orbit dynamics model
in the RLOS coordinate system is derived to solve the control
problem of space tumbling target fly-around under the con-
straints of external unknown disturbances and internal model-
ing uncertainty. In this study, ADRC and SMC are combined
to design a compound controller, which realizes the real-
time estimation and compensation of ‘‘total disturbance,’’
reduces the steady-state error of the system, overcomes the
chattering problem of the traditional SMC, and effectively
improves the robustness of the system. The simulation results
show that, under the four conditions of no disturbance, step
disturbance, sinusoidal disturbance, and random disturbance,
the controller designed in this study can track and compensate
for the disturbance in real time, ensure good control qual-
ity, and have strong robustness to external disturbances and
internal modeling uncertainty. After reasonably arranging
the transition process, the sensitivity of the control law to
parameters decreases, and the adjustable range of parameters
is large, which is a control method that is easy for engineering
practice.
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