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ABSTRACT Recently, network intrusion attacks, particularly new unknown attacks referred to as zero-
day attacks, have become a global phenomenon. Zero-day network intrusion attacks constitute a frequent
cybersecurity threat, as they seek to exploit the vulnerabilities of a network system. Previous studies have
demonstrated that zero-day attacks can compromise a network for prolonged periods if network traffic
analysis (NTA) is not performed thoroughly and efficiently. NTA plays a crucial role in supporting machine
learning (ML) based network intrusion detection systems (NIDS) by monitoring and extracting meaningful
information from network traffic data. Network traffic data constitute large volumes of data described by
features such as destination-to-source packet count. It is important to use only those features that have a
significant impact on the performance of an NIDS. The problem is that most existing ML models for NIDS
employ features such as Internet protocol (IP) addresses that are redundant for detecting zero-day attacks
and therefore negatively impact the performance of these ML models. The solution proposed in this study
demonstrates that the law of anomalous numbers, famously known as Benford’s law, is a viable technique
that can effectively identify significant network features that are indicative of anomalous behaviour and can
be used for detecting zero-day attacks. Finally, our study illustrates that semi-supervised ML approaches
are effective for detecting zero-day attacks if significant features are optimally chosen. The experimental
results demonstrate that one-class support vector machines achieved the best results (Matthews correlation
coefficient of 74% and F1 score of 85%) for detecting zero-day network attacks.

INDEX TERMS Benford’s law, cybersecurity, significant features, network intrusion detection system,
network traffic analysis, machine learning, zero-day attack.

I. INTRODUCTION
Wireless networks have become increasingly important given
the rise of technologies such as the Internet of Everything
(IoE) [1], [2]. Although wireless networks propel comput-
ers and humans to interact, such interactions result in high
cybersecurity risk [1]–[3]. Recent reports on cybersecurity
incidents indicate a continuous increase in cyberattacks, most
notably zero-day network intrusion, data breaches, malware,
and social engineering attacks [1]. Cybersecurity refers to
the protection of computers, interconnected systems, elec-
tronic data, and wireless networks (among others) from
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threats to the confidentiality, integrity, and availability of
systems [3], [4]. Wireless networks are vulnerable to cyber-
attacks, also known as intrusions such as distributed denial-
of-service (DDoS) attacks, as they do not have physical
boundaries that may provide security and privacy [5]. For
example, around October 2018multiple web services, includ-
ing Twitter, Spotify and GitHub, fell victim to a series of
DDoS attacks [4]–[6]. This incident was one of the largest
cyberattacks in history and resulted in devastating losses
for web service companies. The vulnerabilities of wireless
networks are often mitigated by solutions such as firewalls
and network intrusion detection systems (NIDS), which are
software located at a specific point within a wireless network
to monitor network traffic and detect malicious activities [7].
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An NIDS forms part of cybersecurity and plays a vital role in
detecting and proactively neutralising attacks, such as denial-
of-service (DoS) and web attacks [3], [5], [7].

NIDS are generally based on deep learning (DL) or
machine learning (ML) techniques [8], [9]; in this study,
we focus on the latter. ML-based NIDS, referred to as
ML-NIDS, can further be categorised as supervised, unsu-
pervised, or semi-supervised, depending on the availability
of a labelled dataset to train the model [8]–[10]. Irrespective
of an ML model type, the foremost steps in designing effec-
tive NIDS are data cleaning and feature selection [11], [12].
Feature selection is the process of identifying significant fea-
tures and simultaneously removing redundant features from a
dataset [11]–[13]. In this study, we used feature and attribute
terms interchangeablywithout any impact, although the terms
have slightly different meanings. Network traffic data com-
prise various attributes or features that describe network flows
and host information [13]. However, some attributes, such
as destination IP address, are redundant and can spoil the
efficiency and accuracy of an ML model [13]. The selected
features were used as input variables in theML-NIDS design.
Significant features can be defined as the subset of features
that can affect the performance or computational cost of an
ML model [11]–[13]. Feature selection is particularly impor-
tant for network intrusion datasets, as they are typified by
the high dimensions and disproportional sizes of benign and
malicious network traffic [5]–[14]. Identifying significant
features in high-dimensional and disproportional datasets can
be computationally expensive [11]–[13].

A network traffic dataset is high-dimensional (having
many features) and imbalanced (having disproportional
sizes) [1]–[5]. Moreover, the volume and velocity aspects of
a network traffic dataset cause conventional feature selec-
tion methods such as principal component analysis (PCA)
to be computationally expensive [15]. A plethora of feature
selection methods [14], [16], [17] for NIDS have been pro-
posed thus far, with reference to network intrusion datasets.
The challenge is that network traffic data are generated at
high volumes and velocities, which inevitably increases the
computational cost of these methods when analysing every
network feature in real time to determine whether it is benign
or malicious[14]–[17]. Therefore, there is a need for effective
and efficient feature selection methods, particularly to detect
zero-day attacks [17]–[19]. A zero-day network attack is
defined as any new attack that seeks to exploit unknown
or known vulnerabilities in a network system [17], [18].
Zero-day attacks are difficult to prevent because they can be
executed in numerous ways, including brute force and botnet
attacks [4]–[6].

State-of-the-art research on ML-NIDS can be grouped
into signature-based, anomaly based, and hybrid-based detec-
tion [3], [5], [8]. Signature-based methods, also known as
pattern-matching methods, are primarily used to detect spe-
cific network attacks [20]. For example, SNORT, an open-
source network intrusion prevention system, is a well-known
signature-based system [1]. Under signature-based methods,

each network traffic is compared to a database of known
attacks to determine whether network traffic is malicious
or not [5]. Therefore, signature-based NIDS are effective in
detecting specific attacks or known malicious activities, but
are not as effective in detecting zero-day attacks or variants
of known attacks [8], [20], [21]. In general, signature-based
methods adopt supervised ML approaches that require large
amounts of labelled data (i.e. normal and abnormal net-
work traffic) to train the model [5]. Because obtaining large
amounts of labelled data is difficult and time-consuming, this
approach is usually not preferred in practice for detecting
zero-day attacks [22]. An anomaly based NIDS tries to model
normal (benign) network traffic and then deems any network
activities that deviate from this expected behaviour, such as
zero-day attacks, as anomalies [23]–[26]. Anomaly based
NIDS are generally based on unsupervised ML approaches,
and since they do not require labelled datasets to train a
model, they can detect zero-day attacks [5]. However, large
amounts of data are still required to train a mode [9]. A third
option is to use a hybrid-basedNIDS that combines signature-
based and anomaly-based detection to detect known and
unknown attacks, and they are based on semi-supervised ML
approaches [5]. Semi-supervised learning approaches are par-
ticularly appealing to NIDS given their ability to learn from
small sets of labelled data and large amounts of unlabelled
data [27]. Obtaining unlabelled data is easier than obtaining
labelled data.

In this study, we adopted semi-supervised ML approaches
to detect zero-day network intrusion attacks because of
the challenge of obtaining large amounts of labelled data.
In Figure 1, we highlight our overall approach to detecting
zero-day network intrusion attacks.

FIGURE 1. Our approach in detecting Zero-day network intrusion attacks.

Figure 1 shows that we first sourced network intrusion
datasets and then performed data cleaning and feature selec-
tion. We obtained a subset of network intrusion datasets that
were further split into training and testing datasets. Finally,
we implemented various semi-supervised ML approaches to
detect zero-day attacks and evaluated the performance of each
ML model.

A. RESEARCH GOALS
• Review and discuss current methods used to detect or

prevent zero-day attacks.
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• Determine the network traffic features that should be
monitored to proactively detect zero-day attacks.
• To investigate whether semi-supervised ML models can

effectively detect zero-day attacks.
The rest of the paper is organised as follows: Section II dis-

cusses related previous studies. Section III contains descrip-
tions of Benford’s law and semi-supervised ML used in
this study. Section IV contains descriptions of all datasets
used in this study. Section V contains feature selection and
semi-supervised ML results for detecting zero-day attacks,
as well as discussions. Section VI concludes the study and
suggests plans for future research.

II. RELATED STUDIES
In Section II, we sample key state-of-the-art studies related
to zero-day attacks, feature selection on network intrusion
datasets, and ML approaches for detecting zero-day network
intrusion attacks.

A. NETWORK INTRUSION DETECTION SYTEMS
Pu et al. [28] proposed a hybrid unsupervised anomaly based
NIDS to detect zero-day network intrusion attacks. Their
approach was based on the combination of a subspace cluster-
ing (SSC) and one-class support vector machine (OCSVM)
models, and they evaluated this hybrid model using the
NSL-KDD network intrusion dataset. The SSC model was
used to group unlabelled data, and the OCSVM was used
to train the model using only one class (i.e. benign network
traffic). Pu et al. [28] applied the F-test feature selection
method to identify significant features in the NSL-KDD
dataset. Although their hybrid model achieved a detection
rate of 99% for zero-day attacks, the authors did not specify
which significant features were used to achieve these results.
Anomaly based approaches detect zero-day attacks by mod-
elling normal (benign) network traffic such that traffic that
deviates from this expected behaviour is deemed an anomaly
(including zero-day attacks) [9]– [28]. As much as anomaly
based NIDS are appealing for detecting zero-day attacks, they
generally suffer from a high false-positive1 or false-negative2

rate (compared to signature-based methods), owing to a lack
of definitive training datasets and the imbalanced nature of
network traffic data [20], [22], [24].

Vahdani et al. [18] implemented a two-phase unsuper-
vised ML approach to detect zero-day attacks. The first
phase detects zero-day attacks by monitoring network flows
using a self-adaptable technique. The second phase uses
the DBSCAN clustering technique to detect similar attacks
(e.g. botmaster). The authors evaluated their methodology
using the DAPRA and ISCX datasets and achieved an accu-
racy of 98%. Chiba et al. [29] implemented an anomaly
based NIDS based on a backpropagation neural network
(BPNN), to detect zero-day network attacks. The BPNN was

1False positive rate is the number of benign network traffic instances that
are incorrectly classified as malicious.

2False negative rate is the number of malicious network traffic instances
that are incorrectly classified as benign.

evaluated using the KDDCUP’99 dataset. The authors imple-
mented two feature selection methods – one of which was the
Kolmogorov-Smirnov correlation-based filter method, and
identified 12 significant features from a total of 41 features.
The information gain method identified 17 significant fea-
tures, while 34 numeric features of the KDD CUP’99 data
sets were considered. In all three sets of significant fea-
tures, numeric features such as destination_host_count were
observed to be significant, in contrast to non-numeric features
such as the protocol type. Because protocol-type features can
be either an Internet control message protocol (ICMP), user
datagram protocol (UDP), or transmission control protocol
(TCP), they display indistinguishable patterns for both benign
and malicious network traffic, thus rendering this type of
feature redundant for the classification of benign and zero-
day attacks.

Zavrak et al. [22] implemented autoencoder DL meth-
ods based on semi-supervised learning to detect zero-
day intrusion attacks. They used the CICIDS2017 dataset,
that contains benign and 11 malicious attacks. The varia-
tional autoencoder (VAE), autoencoder (AE), and OCSVM
achieved area under the curve (AUC) results of 76%, 74%,
and 66%, respectively, for zero-day attacks. Interestingly,
these models achieve better results in detecting specific
attacks. For example, OCSVM achieved 98.5% AUC for
heartbleed attacks, 90% for infiltration using VAE, and 83%
for DoS hulk using AE. These results demonstrate that both
ML and DL approaches can perform well in the detection of
specific known malicious network traffic; however, their per-
formancemay decrease for zero-day attacks. Hindy et al. [24]
likewise adopted the AE approach to detect zero-day attacks
using the CICIDS2017 and NSL-KDD datasets, where they
achieved an accuracy of 99% and 98% on the NSL-KDD and
CICIDS2017 datasets, respectively.

Abdalgawad et al. [30] demonstrated that DL methods
including adversarial autoencoders (AAE) and bidirectional
adversarial networks (BiGAN) are effective for detecting
zero-day network attacks. These methods were evaluated on
the IoT-23 dataset, which comprises of 15 network attacks
and 19 network traffic features. Out of the 19 features, the
authors deemed only eight to be significant, which included
the transaction protocol (ICMP, UDP, and TCP). This con-
tradicts the findings of Chiba et al. [29] and Zoppi et al. [9]
for different datasets. Zoppi et al. [9] implemented various
unsupervised ML models to detect zero-day intrusion attacks
using an SDN20 dataset. This dataset contains benign and
five types of malicious network traffic that are described by
85 features. The authors identified 12 significant features
using the rapid evaluation of anomaly detection algorithms,
all of which were numeric, such as average packet size. The
bagging ensemble classifier produced the best results, with
an F1 score of 96% and a Matthews correlation coefficient
(MCC) of 68%. Blaise et al. [25] proposed an unsupervised
anomaly based approach called split-and-merge for detecting
zero-day network intrusion attacks. They first used the F-test
feature selection method on the MAWI and UCSD datasets;
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TABLE 1. Summary of well-known methods for detecting network Zero-day attacks.

their methodology achieved 79% and 86% true positive rates
on the MAWI and UCSD datasets, respectively.

Taher et al. [12] implemented artificial neural networks
(ANN) based on supervised anomaly based ML to detect
zero-day attacks. Furthermore, they used the wrapper feature
selection method on the NSL-KDD dataset (one benign and
four malicious attacks) to identify the significant features.
The wrapper method identified 17 significant features from
a total of 41. Taher et al. [12] did not specify the signif-
icant features; however, in a supervised setting, they used
20% of the NSL-KDD dataset, which has 25 191 labelled
instances. The remaining 80% were used to test the model.
Although the ANN model produced a high (94%) detection
rate, the limitation of this study stems from the relatively
small dataset used for supervised learning. Duong et al. [27]
used the NSL-KDD dataset to propose a semi-supervised
ML approach to detect zero-day attacks. Their approach was
based on a modified Mohanalobis distance principal compo-
nent analysis (M-PCA) and K-means clustering model. The
k-means clustering model was used in the training phase to
remove outliers from the training dataset. Ideally, the training
dataset for the semi-supervised approach should consist of
only one class (i.e. benign) of network traffic. M-PCA was
used in the testing phase to evaluate the model. Duong et al.
[27] identified six significant features, including the protocol
type, using an unspecified feature selection method. We note
a discrepancy in the number of significant features identified
by Duong et al. [27] and Taher et al. [12] on the same dataset
(NSL-KDD). The M-PCA method achieved an accuracy of
91% for the detection rate. Zhu et al. [31] proposed the use
of an ensemble semi-supervised machine-learning approach

to detect zero-day network attacks. Their ensemble approach
is based on a decision tree and k-nearest neighbour (kNN)
algorithm. The authors achieved an accuracy of 80% by using
the NSL-KDD dataset to detect zero-day attacks. However,
Zhu et al. [31] did not specify the significant features used to
obtain these results.

Pallaprolu et al. [32] proposed that a combination of
semantic link networks (SLN) and dynamic semantic graph
generation can be used to detect zero-day network intru-
sion attacks. They used the KDD CUP’99 dataset to eval-
uate their methodology, and implemented the minimum
redundancy maximum relevance (MRMR) feature selection
method. The MRMR feature selection method identified
25 significant features consistent with those identified by
Chiba et al. [29], as discussed above. The approach adopted
by Pallaprolu et al. [32] achieved an accuracy of 98% for
detecting zero-day intrusion attacks. Abri et al. [8] eval-
uated various types of ML and DL classifiers to detect
zero-day attacks and used the Meraz’18 data set to evaluate
their models. This dataset contains benign and malicious
network traffic described by 55 features. The authors did
not apply feature selection; instead, they manually removed
three features. Having many features in the training dataset
can increase the computational cost of a model and cause
overfitting problems [11]–[13]. The Gaussian naïve bayes
ML model performed poorly, with an accuracy of 46.31%,
whereas the random forest model achieved the best results
with an accuracy of 99.51%. DL approaches, such as the
multilayer perceptron, also achieved an accuracy of 99.25%.
In Table 1, we summarise the existing approaches, datasets,
performances, and methods used to detect zero-day attacks.
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TABLE 2. Benford’s results using the total length of backward packets feature from the CICDDoS2019 data set.

TABLE 3. Summary of the UNSW-NB15 data set and description of cyberattacks [13].

We benchmarked the proposed approach against these
results.

B. FEATURE SELECTION METHODS
The ML-NIDS used for detecting zero-day attacks relies
on input data, referred to as features [14]–[21]. The perfor-
mance of ML-NIDS methods can be improved using sig-
nificant features that are indicative of anomalous behaviour
between benign and zero-day network traffic [16], [17]. NIDS
utilises network traffic analysis (NTA) methods to capture
and analyse network traffic data to detect threats, such as
zero-day attacks. The main challenge that currently faces
an NIDS is to extract significant features effortlessly in real
time. A network traffic feature is deemed significant if it can
distinguish between benign andmalicious (zero-day) network
traffic [33], [34]. Our study aimed to address the challenge
of seamlessly extracting significant features in an attempt to
detect unknown malicious attacks. In our approach toward

identifying significant features to detect zero-day attacks,
we used well-known publicly available datasets and opted to
use the original features found in these datasets. We did not
derive new features.

Moustafa et al. [13] worked at the Cyber Range Lab of
UNSW Canberra and created the UNSW-NB15 (see Table 3)
and KDD99 datasets, which consisted of nine cyberattacks
and benign network traffic. Although the UNSW-NB15
dataset contains a total of 47 features, in Table 4 we highlight
only numeric features, as previous studies [9], [29], [32]
demonstrate the importance of numeric features to better
describe network traffic behaviour. The 47 features in this
dataset were grouped into six distinct groups: flow features,
basic features, content features, time features, additional fea-
tures, and labelled features. Each group of features contains
certain information about the network; for example, time
features contain information about interpacket arrival times.
Moustafa et al. [13] applied the association rule mining
(ARM) method to identify 27 significant numerical features.
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TABLE 4. Highlights numerical features of the UNSW-NB15 data set.

TABLE 5. Summary of instances of various DDoS attacks from the CICDDoS2019 data set [35].

The ARM method identifies significant features based on an
iterative process for generating rules of support and confi-
dence [13]. This iterative process can be time-consuming,
and in Section V, we demonstrate that a straightforward Ben-
ford’s law method identifies similar significant features.

Sharafaldin et al. [35] proposed a new taxonomy for dif-
ferent types of DDoS attacks and generated a dataset named

CICDDoS2019 (see Table 5). This dataset covers 11 different
types of DDoS attacks, including DNS-DDoS and SYN-
DDoS attacks, and 80 network features (see Table 6). When
we investigated these features in more detail, we observed
that most were based on distinct features but different sta-
tistical measures. For example, the forward packet length
attribute has various features, such as forward packet length
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TABLE 6. Highlights numerical features of the CICDDoS2019 data set.

mean/minimum/maximum (etc.). This makes this dataset
more complete because it uses different statistical measures
to describe attributes. Sharafaldin et al. [35] applied random
forest regressor (RFR) feature selection method to identify
significant features for each DDoS type. A well-documented
limitation of the RFR method is that correlated features will
have similar importance; however, their importance would
differ if the tree was designed without the correlated coun-
terparty feature [36], [37]. In this study, we demonstrate
that a simple Benford’s law method can effectively identify
significant features to distinguish between benign and zero-
day DDoS-type attacks.

Ullah et al. [38] examined seven cyberattacks, inter alia
spoofing and host port, in the Internet of Things (IoT) net-
works and proposed a data set named IoTID20 (Table 7).
This dataset contained 79 features (see Table 8), and

significant features were identified using the recursive feature
elimination (RFE) method. The RFE method is computa-
tionally expensive if a dataset contains a large number of
features [38]. The features used by Ullah et al. [38] on their
dataset were similar to those used by Sharafaldin et al. [35],
although the attacks considered on these datasets were com-
pletely different. Montazerishatoori et al. [39] proposed a
new taxonomy for DNS over HTTPS (DoH) tunnel traffic
and proposed a dataset named CIRA-CIC-DoHBrw20 (see
Table 9). This dataset contains 31 numerical features (see
Table 10) that are categorised as either time series, payload
inspection, or statistical features. The authors also used the
RFR feature selection method, as discussed earlier. This
study aims to demonstrate that Benford’s law can effec-
tively differentiate between benign andmalicious DoH tunnel
traffic.
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TABLE 7. Summary of instances of various cyberattacks from the IoTID20 data set [38].

TABLE 8. Numerical features of the IoTID20 data set.

Other notable previous studies on feature selection
for network intrusion datasets are highlighted below.
Yulianto et al [7] applied PCA, the synthetic minority over-
sampling technique (SMOTE), and ensemble feature selec-
tion (EFS) to the CIC-IDS-2017 dataset. In their experiments,
PCA was the best performing method, although it is known

to be computationally expensive. Kurniabudi et al [16] iden-
tified significant features of the CIC-IDS-2017 dataset
using the information gain (IG) method and applied vari-
ous ML methods to detect malicious attacks. The features
of the CIC-IDS-2017 datasets are very similar to those
detected by Ullah et al. [38] and Sharafaldin et al. [35].
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TABLE 9. Summary of instances of DoH, non-DoH, benign and malicious
network traffic from [39].

Abdulhammed et al. [14] also applied PCA to the CIC-IDS-
2017 dataset to identify significant features.

Our previous study [40] addressed the limitations of exist-
ing feature selection methods by proposing a novel method
called Benford’s law. Benford’s law has been shown to
detect network attacks such as DoS attacks [41] and portscan
attacks [42]. Therefore, we propose using it as a feature selec-
tion method to overcome challenges that include class imbal-
ance, high dimensions, and computational cost. We used the
CIC-IDS2017 and CSE-CIC-IDS2018 data sets to demon-
strate the effectiveness of the Benford’s law method. Fur-
thermore, significant features identified by Benford’s law
with respect to each attack were benchmarked against various
feature selection methods, such as information gain, PCA,
SMOTE, ensemble feature selection, chi-squared, XGBoost,
CatBoost, lightGBM, and random forest. In this study, we fur-
ther investigated whether Benford’s law can identify signif-
icant features to distinguish between benign and zero-day
attacks.

III. BACKGROUND
In this section, we provide the details of Benford’s law and
the semi-supervised ML models used in this study.

A. BENFORD’s LAW (BL)
Benford’s law (BL), as a feature selection method for detect-
ing network traffic features, has recently received increased
attention and has been applied to various application domain
areas such as forensic auditing [33], fraud detection [43],
and network intrusion [33]–[41]. Benford’s law states that
in naturally occurring systems, such as network systems, the
distribution of the leading digits is non-uniform [44], [45].
Network systems are perceived as natural because the data
collected from a network (such as packet sizes) represent real
user behaviour [13]–[38]. NTA data mainly consist of two
feature types: functional and data feature types. An example
of the former is the protocol type, whereas an example of
the latter is the flow duration. In many studies [1]–[46],
numerical network aspects, such as packet sizes (packet-
based), have been shown to be more effective than functional
features, such as protocol type, in analysing benign and mali-
cious network traffic. Therefore, our study aims to investigate
data type features and, in particular, numerical data subtype
features of network traffic that are indicative of anoma-
lous behaviour between benign and zero-day network traffic.
The BL distributions are formulated based on the following
properties:

TABLE 10. Numerical features of the CIRA-CIC-DoHBrw-2020 data set. The features in Table 10 are mainly based on flow, packet, and time attributes.
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Property 1
Let D be a positive real number on (�, f , P). The logarith-

mic density function for the first leading digit is given by:

P (D = d) = logb (1+
1
d
) (1)

where b = 10 and d ∈ {1,2,..9}.
Property 2
The logarithmic joint density of the first leading digits

D1,D2, ..,Dk on (�, f , P) for every k ∈ N;

P (D1 = d1, ..,Dk = dk)

= log10 (1+(
k∑

i=1

10k−idi)−1) (2)

where d1 ∈ {1, 2, . . . 9} and all other dj∈ {0, 1, . . . 9}.
There are five main Benford’s law distribution tests: the

first digit test (FDT), second digit test (SDT), first two-digit
test (F2DT), third digit test (TDT), and last two-digit test
(L2DT). The FDT, F2DT, and L2DT distributions are com-
puted using Equation (1), and the remaining distributions are
computed using Equation (2). The examples below demon-
strate the computation of Benford’s law of probabilities for
the five distributions.

For each network feature in the datasets used in
this study, we compared the Benford’s law distribu-
tion with the actual distribution (benign and zero-day).
We used various goodness-of-fit measures that included
the Kolmogorov-Smirnov and Pearson chi-squared tests
(see [33]–[44] for more details) and formulated the goodness-
of-fit test as follows:

Null hypothesis (H0) = a distribution that obeys Benford’s
law.

The alternative hypothesis (H1) = a distribution that vio-
lates Benford’s law.

If p-value < 0.05, we reject H0, else we cannot reject H0.
A network traffic feature is deemed significant if it obeys

Benford’s law on benign network traffic while simultane-
ously violating Benford’s law on zero-day network traffic.
We considered five key Benford’s law tests, namely FDT,
SDT, F2DT, TDT and L2DT. For example, let us consider
the total length of the backward packet features from the
CICDDoS2019 dataset.

Table 2 shows the application and results of BL using
the total length of backward packet feature from the CICD-
DoS2019 dataset. In this case, this feature obeys Benford’s
law on benign network traffic on the SDT but simultaneously
violates BL on the remaining Benford’s law tests. Therefore,
this was deemed to be a significant feature. Further results are
presented in Appendix A.

B. GAUSSIAN MIXTURE MODEL
The multivariate Gaussian mixture model (GMM) is based
on the Gaussian distribution which was established in the
80’s by German mathematician Carl Friedrich Gauss. Over
the years, GMM has been widely used to detect anomalies

in continuous data systems, such as computer networks [49].
The GMM assumes that ‘‘normal’’ data points are grouped
together, while anomalies such as zero-day network traf-
fic deviate from the normal points. Given the training set
{x1j , x

2
j , . . . , x

n
j }, we modelled the mean (µ), variance (

∑
),

and probability (P) as follows:
(i) Fit model parameters

µ =
1
n

∑n

i=1
x ij and

∑
=

1
n

∑n

i=1
(x ij − µ)(x

i
j − µ)

T

(ii) Given a new unlabelled data point xunlabelled , compute

P (xunlabeled ) =
1

(2)
n
2 |
∑
|
1
2

exp (−
1
2

(
x i − µ

)T
−1(x i − µ))

(iii) Predict;

Predict =

{
attack if P (xunlabelled ) < ε

normal otherwise

where n is the number of samples and
∑

is n-dimensional
covariance matrix, the threshold ε is determined automati-
cally on the training dataset [49].

C. ONE CLASS SUPPORT VECTOR MACHINE
One-class support vector machines (OCSVM) were extended
from standard SVMs originally introduced by Vapnik et al.
[50], [51]. The objective of the OCSVM is to train a classifier
using only one class (e.g. benign network traffic) such that
anomalies (e.g. zero-day network traffic) can be detected. The
OCSVM is formulated as follows:

(i) Given a training dataset, Z = {z1, z2, .., zN } of one class
and letφ : Z −→ G be a kernel mapwhichmaps training data
points to another spaceG. Then, to separate datasets from the
origin, one must solve the following quadratic programming
equation:

min
∈G,ξi,b∈R

w ∈
{
1
2
| |w| |2 +

1
νN

∑N

i=1
(ξi − b)

}
(3)

Subject to

ν ∈ (0, 1] , ξi ≥0,

∀i=1, 2, . . . ,N and (w.φ (zi)) ≥ b− ξi,∀i = 1, 2, . . . ,N

(4)

where ξi is a non-zero slack and ν is the ratio of anoma-
lies in the training dataset, which we set to ν = 0.1
for our case. Finally, the decision boundary function f (z)
becomes

f (z) = sign {(w.φ (z))− b} .

D. LABEL PROPAGATION
The label propagation (LP) algorithm was introduced by
Zhou et al. [51]. The intuition behind the LP algorithm is
that in the training dataset, points that are close to each other
will have the same class label, and data points further to this
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point will have their own similar label, that is, anomalies.
Given N labelled data points and Munlabeled data points,
denoted by y= 0. Let G = {V ,E} represent a graph with
every vertex (E) comprising labels V= {+1,−1, 0}, where
the edge is based on the affinity matrixW . The input features
are denoted as X . The LP algorithm assumes that two nodes
are connected if they are ‘‘similar’’; therefore, unlabelled
data points can be labelled by propagating the labelled data
points until convergence is achieved. The LP algorithm is
formulated as follows:

Given a dataset with N labeled and M unlabeled data
points, i.e.,{

X = (XL ,XU ) where XεR
Y = (YL ,YU ) where Y∈ {−1,+1, 0}

1) Using the k-nearest neighbors (kNN), compute the
affinity matriW .

2) Compute the degree matri

D = diag(
∣∣∣∑

j
Wij

∣∣∣∀i= 1, 2, ..,N +M )

3) Le Y (0)
= Y

4) Define YL= {y0, y1, . . . ,yN }
5) Iterate until convergence is achieve{

Y (t+1)
=D−1WY (t)

Y (t+1)
L = YL

E. LABEL SPREADING
The label spreading (LS) algorithm is similar to LP, except
that the labels ofG = {V ,E}may change during the iteration
process [51]. Specifically, the clamping factor α ∈ (0, 1]
determines whether the labelled data point will change or not.
If α= 0, the LS method will not change the original labels,
and it will behave as an LP algorithm. The LS algorithm is
formulated as follows:

1) Using the kNNmethod, compute the affinity matrixW .
2) Compute the degree matrixW .

D = diag(
∣∣∣∑

j
Wij

∣∣∣∀i = 1, 2, ..,N +M )

3) Compute the normalized graph Laplacian:

L = D−
1
2WD−

1
2

4) Choose α ε(0, 1]
5) Iterate until convergence is achieve

Y (t+1)
= αLY (t)

+ (1− α)Y (0)

IV. DATA SETS DESCRIPTION
In this study, we considered four publicly available network
intrusion datasets to investigate zero-day network intrusion
attacks. Each network intrusion dataset contained both benign
and malicious network traffic coupled with their respective
network traffic features. We used these datasets because they
simulated real-world network attacks and clearly labelled
features. Furthermore, because the datasets had been used in

previous studies, we could leverage the information gained
to benchmark our study. Unfortunately, the datasets did not
contain zero-day attacks, but we were able to mimic zero-day
attacks by splitting a dataset into training (only benign) and
testing (only malicious) network traffic [8]–[25]. A dataset
may contain various sub-types of data-type features that are
either numerical, textual, or binary. Numerical data subtype
features have been shown in previous studies to be more
effective in differentiating between benign and malicious
network traffic, such as zero-day attacks [9]–[29]. Textual
and binary data subtypes are static features; therefore, for the
datasets used in this study, we only considered the data type
of NTA features and, more specifically, numerical subtype
features. The UNSW-NB15 network intrusion dataset was
generated by the Cyber Range Lab of UNSW Canberra in
2015, using the IXIA PerfectStorm tool [13]. This dataset
consists of benign network traffic and nine cyberattacks,
which include DoS, generic, worms, shellcode, reconnais-
sance, fuzzing, analysis, backdoor, and exploit attacks. The
network traffic types are described in Table 3 together with
the number of instances. In addition, 39 numeric network
traffic features ( Table 4) were used to describe benign and
malicious network traffic. This dataset is publicly available
in the CSV format [13].

In Table 4, we considered the numeric features provided
by the original authors in [13], and a full description of
these features was also provided by the authors. Because
some of the features may be redundant, we aimed to identify
significant features that could assist in the better detection of
zero-day attacks by using Benford’s law.

A. CICDDOS2019 DATA SET
The CICDDoS2019 network intrusion dataset was gen-
erated by the Canadian Institute for Cybersecurity in
2019 [35]. This dataset contained different types of
DDoS and benign networks based on SSH, FTP, HTTP,
HTTPS, and email protocols. Each DDoS attack had sev-
eral benign instances (Table 5). Furthermore, 80 network
traffic features (Table 6) were extracted using the CIC
flowmeter to describe the benign and DDoS network
traffic.

In Table 6, we highlight the original numeric features
provided by the authors [35]. Features 5 to 16 are based
on packet attributes, features 17 to 22 are based on flow
attributes, and so on. We applied Benford’s law to identify
significant features for differentiating between benign and
zero-day network traffic.

B. IOTINTRUSION2020 DATA SET
The IoT network intrusion dataset was developed in [38] in
2020. This dataset contains eight IoT cyberattacks, includ-
ing flooding, brute force, spoofing, and scanning (Table 7),
as well as 79 network traffic features (Table 8) that describe
benign and malicious network traffic [38]. Network features
were extracted using a CIC flowmeter.
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TABLE 11. Summary of significant features identified on the UNSW-NB15 data set by Moustafa et al. [13] and Benford’s law method.

TABLE 12. Summary of significant features identified on the CICDDoS2019 data set by Sharafaldin et al. [35] and Benford’s law method.

TABLE 13. Summary of significant features identified on the IoT Intrusion2020 data set by Ullah et al. [38] and Benford’s law method.

C. CIRA-CIC-DOHBRW-2020 DATA SET
The CIRA-CIC-DoHBrw-2020 dataset was generated by
the Canadian Institute for Cybersecurity in 2020 [39]. This
dataset contains DoH, non-DoH, benign, and malicious net-
work traffic of the domain name system (DNS) over HTTPS.
Benign DoH network traffic instances were generated using
Google Chrome and Mozilla Firefox, whereas malicious
DoH network traffic instances were generated using iodine,
dns2tcp, and DNSCat2 (Table 9). This dataset contains
31 network traffic features (see Table 10).

V. EXPERIMENTAL RESULTS
In this section, we present our feature selection and machine
learning model results for all datasets used in this study.

A. FEATURE SELECTION RESULTS
As part of the data cleaning process, we removed negative
values (if any) from all the above datasets to apply Ben-
ford’s law to real positive numbers. By definition, a zero-day
attack is an unknown attack; in other words, it is not a part
of the training dataset. The common practice of mimicking
zero-day attacks is to split a dataset into two groups of known
and ‘‘unknown’’ (although these may be known) malicious
network traffic [8]–[25]. For example, in our experiments,
we treated all benign network traffic as known, and all mali-
cious network attacks (i.e. zero-day attacks) as unknown.
The aim was then to show that features of benign network
traffic closely obeyed Benford’s law, while the same features
were violated in malicious network traffic. Consequently,

such features were considered significant for detecting zero-
day attacks. Specifically, we found that a feature is deemed
significant if it simultaneously obeys one of Benford’s law
distributions on benign network traffic and violates Benford’s
law distributions onmalicious network traffic [33], [47], [48].
Network features that did not satisfy this condition were
not deemed to be significant, as they failed to differentiate
between benign and zero-day network traffic [33], [34] and
considered benign and zero-day network traffic to display
similar behaviour. Finally, we compared the significant fea-
tures identified by Benford’s law with those identified by
the authors for these datasets. In our previous study [40],
we benchmarked Benford’s law against various feature selec-
tion methods to demonstrate its effectiveness, whereas in
the current study, we benchmarked only significant features
identified by Benford’s law against those identified by the
authors of each data set.

1) UNSW-NB15 BL REULTS
See Table 11.

2) CICDDOS2019 BL RESULTS
See Table 12.

3) IOTINTRUSION2020 BL RESULTS
See Table 13.

4) CIRA-CIC-DOHBRW-2020 BL RESULTS
See Table 14.
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TABLE 14. Summary of significant features identified on the CIRA-CIC-DoHBrw-2020 data set by Montazerishatoori et al. [39] and Benford’s law method.

Overall, the significant features identified by Benford’s
lawwere fairly consistent with those identified by the authors,
as indicated in Table 11, Table 12, Table 13 and Table 14.
Moustafa et al. [13] identified 27 significant features from
a total of 39, whereas Benford’s law identified 16 signif-
icant features. Of the 27 significant features identified by
Moustafa et al. [13], 13 overlapped with those identified by
Benford’s law. Sharafaldin et al. [35] identified 24 significant
features from 80 features, andBenford’s law identified 24 sig-
nificant features. Of the 24 significant features identified by
Sharafaldin et al. [35], 14 overlapped with those identified
using Benford’s law. Ullah et al. [38] identified 29 significant
features from a total of 79, and Benford’s law identified
26 significant features. Of the 29 significant features identi-
fied by Ullah et al. [38], 11 overlapped with those identified
using Benford’s law. Lastly, Montazerishatoori et al. [39]
identified 28 significant features from a total of 31, while
Benford’s law identified 18 significant features. Of the 31 sig-
nificant features identified by Montazerishatoori et al. [39],
17 overlapped with those identified by Benford’s law. Ben-
ford’s law does not deem the source port, destination port,
and protocol features significant for any of the above sets for
detecting zero-day attacks. Consequently, we argue that these
features are useful for the signature type of NIDS but not
for anomaly type ML-NIDS, which are used to detect zero-
day attacks. This is because it is practically impossible for
an ML-NIDS to know in advance which ports or protocols
cybercriminals will use to launch zero-day attacks. A similar
finding was discussed in [9]–[29], namely, that features such
as protocol type are only useful for detecting specific known
attacks and not new zero-day attacks. In addition, Benford’s
law does not perform well on binary-type features, as Ben-
ford’s law distributions expect all digits from one to nine to
be observable. This explains the difference in the number
of significant features identified by Benford’s law versus
those identified by the respective authors. Examining sig-
nificant features identified by Benford’s law throughout the
datasets, features related to network flows, packets, source,
and destination features are significant for detecting zero-day
attacks. The effectiveness of the selected features is deter-
mined by how well an NIDS performs using measures such
as precision, recall, F1 score, and the Matthews correlation
coefficient (MCC) [9]. In the next section, we discuss the
implementation of various semi-supervised ML models for
detecting zero-day attacks and our use of significant features
identified by Benford’s law method versus the author’s sig-
nificant features for each dataset.

B. MACHINE LEARNING RESULTS
In this section, we describe the implementation of four
semi-supervised ML models for detecting zero-day network
intrusion attacks. The semi-supervised learning strategy we
adopted splits the network dataset into two parts: training
and testing datasets [22]–[24]. The training dataset consisted
of labelled benign network traffic data, whereas the testing
dataset consisted of unlabelled data for both benign and
malicious network traffic. We mimicked a zero-day attack by
ensuring that the dataset used in the training phase differed
from that used in the testing phase [22]–[24]. To summarise,
the significant features identified by Benford’s law were
used as inputs into an ML model, which was subsequently
trained using a training dataset to build its knowledge. Sub-
sequently, this learned knowledge was tested on an unseen
testing dataset to evaluate its knowledge.We implemented the
following semi-supervised ML models: the GMM, OCSVM,
and label spreading and propagation. We used a 20–80%
train-test split throughout the datasets and used well-known
evaluation measures, namely precision, recall, F1 score, and
MCC (derived from Table 15) [52]. The accuracy measure
can suffer bias in cases where the dataset is imbalanced [52],
as in this study; hence, it was omitted.

Precision =
TP

TP+ FP

Recall =
TP

TP+ FN

F1score =
2× Precision× Recall
Precision+ Recall

MCC score

=
TP× TN − FP× FN

√
(TP+ FP) (TP+ FN )(TN + FP)(TN + FN )

In our experimental setup, we evaluated four semi-supervised
ML models to detect network zero-day attacks. For each
network intrusion dataset, we evaluated the performance of
an ML model using features identified by Benford’s law

TABLE 15. Confusion matrix.
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TABLE 16. Detecting Zero-day attacks using the UNSW-NB15 data set based on features in Table 11.

TABLE 17. Detecting Zero attacks using the CICDDoS2019 data set based on features in Table 12.

TABLE 18. Detecting Zero-day attacks using the IoT Intrusion 2020 data set based on features in Table 13.

TABLE 19. Detecting Zero-day attacks using the CIRA-CIC-DoHBrw-2020 data set based on features in Table 14.

method versus features identified by the respective authors.
The results for the UNSW-NB15 dataset are presented in
Table 16, those for the CICDDoS2019 dataset in Table 17, for
the IoT Intrusion2020 dataset in Table 18 and for the CIRA-
CIC-DoHBrw-2020 dataset in Table 19. Overall, the network
features identified by Benford’s law resulted in better perfor-
mance than the features identified by the respective authors.
This is because features such as the source port, destination
port, and protocol are not useful for zero-day detection, and
thus negatively impact the performance of an ML model.

Moreover, the OCSVM achieved the best results through-
out all our experiments, and the Gaussian mixture model
performed poorly in terms of precision, recall, F1 score,
and MCC score. Finally, by benchmarking our approach
against existing approaches for detecting zero-day attacks
(see Table 1), we observed that OCSVM achieved the best
MCC of 74%, precision of 84%, recall of 95%, and F1 score
of 85% using the semi-supervised approach. A comparison
of our results with those obtained by [27] in Table 1 reveals
that our approach yields a slightly better performance. Our

VOLUME 10, 2022 69835



I. Mbona, J. H. P. Eloff: Detecting Zero-Day Intrusion Attacks Using Semi-Supervised Machine Learning Approaches

TABLE 20. Benford’s law test results of benign and malicious (Zero-day) network attacks.

approach can also be compared to DL approaches, such as
those adopted in [30], which achieved an F1 score of 85%.
In conclusion, these results demonstrate that semi-supervised
approaches are effective in detecting zero-day attacks when
features indicative of anomalous behaviour are used. More
specifically, the data type features of the numerical subtype
are significant for detecting zero-day attacks. Examples of
these features include the destination-to-source packet count,
source-to-destination bytes, flow duration, packet length, and
flow inter-arrival time (IAT).

VI. CONCLUSION
One of the ultimate goals of cybersecurity is to accu-
rately detect zero-day network intrusion attacks in real-time.
We first explained how zero-day (unknown) attacks differ
from known malicious network traffic and referred to differ-
ent types of ML approaches that can be employed to detect
zero-day attacks. We then focus on the problem of identi-
fying significant features that can differentiate meaningfully
between benign and zero-day network traffic. In our study,
we propose that the law of anomalous numbers, known as
Benford’s law, can be used to identify such features. Specif-
ically, this study demonstrated that by analysing the first,
second, third, first two, and last two-digit tests of Benford’s
law, significant features that can discriminate between benign
and zero-day network traffic can be identified.We considered

four well-known network intrusion datasets covering vari-
ous types of malicious network traffic. In these datasets,
we treated normal network traffic as benign, and malicious
network traffic as zero-day attacks. In our experiments, Ben-
ford’s law was able to identify significant features that dis-
tinguished benign and zero-day network traffic. Overall, the
significant features identified by Benford’s law for detecting
zero-day attacks overlapped with the features used to detect
known malicious network traffic. However, we observed
cases where features such as source ports are important
for the detection of known malicious network traffic, but
are not deemed significant for the detection of zero-day
attacks. This information is not available upfront. In sum-
mary, features based on network flow, packets, source, and
destination attributes proved to be significant for detecting
zero-day attacks. Benford’s law distributions are straightfor-
ward to implement; therefore, this method is expected to
reduce the computational time required to pre-process a high-
dimensional imbalanced network traffic dataset. The main
limitation of Benford’s law is that it is only applicable to
positive real numbers, where all digits from zero to nine are
observable.

Furthermore, we implemented various semi-supervised
ML approaches to detect zero-day network intrusion attacks
based on features identified by Benford’s law. The exper-
imental results demonstrated that one-class support vector
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machines achieved the best results for detecting zero-day
attacks with an MCC of 74% and an F1 score of 85%.
It became clear from our research that different feature selec-
tion methods and ML classifiers can yield different outcomes
even on the same network intrusion dataset. The proposed
system is applicable to an NIDS. Further research should
be conducted to develop a system that combines multiple
feature selection methods and ML classifiers. In this way, the
best-performing methods are aggregated rather than relying
on a single method.

A. APPENDIX – BENFORD’s LAW
Examples of FDT, SDT, TDT, F2DT and L2DT.

FDT
Using Equation (1), we can directly compute the probabil-

ities for d ∈ {1,2,..9}.

P (D = 1) = log10

(
1+

1
1

)
= 0.3010

SDT
From equation (2), we derive the following equation:∑9

k=1
log10 (1+

1
10k+ d

) where d = 0, 1, 2, . . . , 9

9∑
k=1

log10 (1+
1

10k+ 0
)= 0.1197

TDT
From equation (2), we also derive the following equation:∑99

k=10
log10 (1+

1
10k+ d

) where d = 0, 1, 2, . . . , 9

99∑
k=10

log10 (1+
1

10k+ 0
)= 0.1018

F2DT
We can extend Equation (1) to compute the probability of

the first two digits:

P (D = 10) = log10

(
1+

1
10

)
= 0.04139

P (D = 99) = log10

(
1+

1
99

)
= 0.00436

L2DT
Equation (2) shows that the probability of the last two digits

is evenly distributed at approximately 1% [44].
Note that the orange bar lines in Table 20 are Benford’s

law distributions, and the blue bar lines are the actual distri-
butions. Benign network features closely obey Benford’s law,
whereas malicious (zero-day) network traffic significantly
deviates from Benford’s law.
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