
Received 5 June 2022, accepted 25 June 2022, date of publication 29 June 2022, date of current version 8 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3187102

RL_QOptimizer: A Reinforcement Learning
Based Query Optimizer
MOHAMED RAMADAN 1, AYMAN EL-KILANY1, HODA M. O. MOKHTAR 1,2,
AND IBRAHIM SOBH 3
1Information Systems Department, Faculty of Computers and Artificial Intelligence, Cairo University, Cairo 12613, Egypt
2Faculty of Computing and Information Sciences, Egypt University of Informatics, Cairo 11865, Egypt
3Valeo, Cairo 12577, Egypt

Corresponding author: Mohamed Ramadan (m.ramadan@fci-cu.edu.eg)

ABSTRACT With the current availability of massive datasets and scalability requirements, different systems
are required to provide their users with the best performance possible in terms of speed. On the physical
level, performance can be translated into queries’ execution time in database management systems. Queries
have to execute efficiently (i.e. in minimum time) to meet users’ needs, which puts an excessive burden
on the database management system (DBMS). In this paper, we mainly focus on enhancing the query
optimizer, which is one of the main components in DBMS that is responsible for choosing the optimal
query execution plan and consequently determines the query execution time. Inspired by recent research in
reinforcement learning in different domains, this paper proposes A Deep Reinforcement Learning Based
Query Optimizer (RL_QOptimizer), a new approach to find the best policy for join order in the query plan
which depends solely on the reward system of reinforcement learning. The experimental results show that a
notable advantage of the proposed approach against the existing query optimization model of PostgreSQL
DBMS.

INDEX TERMS Join ordering problem, query execution plan and query optimization.

I. INTRODUCTION
In DBMS, a single query can be executed through different
execution plans. The query optimizer attempts to choose the
most efficient way to execute a given query from the space
of execution plans. Most DBMSs use the cost-based model
for query optimization where the optimizer estimates the cost
of the execution plan and then selects the optimal plan that
minimizes the cost among the set of candidate plans [1].
As the number of intermediate rows (results) is unknown at
run time, the Optimizer uses pre-calculated statistics such as
information about the distribution of data values and cardi-
nality estimation to estimate the cost of a plan rather than
calculating the real cost of querying the data during the query
plan. One of the main challenges in query optimization and
query plan generations is the selection of the order to perform
the join operation between tables (i.e. relations). Even if the
final results of the query could be the same regardless of

The associate editor coordinating the review of this manuscript and

approving it for publication was R. K. Tripathy .

the join order, the order in which the tables of a query are
joined can have a dramatic effect on the query execution
time. In addition, the number of possible join orders increases
exponentially with the number of tables [2]. Hence, the query
optimizer can’t compute the different costs for all combina-
tions to select the best join order during query execution.
Consequently, most optimizers use heuristics such as consid-
ering the shape of the query tree [3] - to prune the search
space. In this paper, we propose two versions of A Reinforce-
ment Learning Based Query Optimizer (RL_QOptimizer) to
identify the best execution plan based on the reward system
of reinforcement learning. The first model uses Reinforce-
ment Learning and the second one uses Deep Reinforcement
Learning [4], [5].

The main contributions of this work are:
1) Proposing a new query optimizer model

(RL_QOptimizer) for optimizing tables’ join orders
that is based on the Deep Reinforcement Learning
technique. Deep Reinforcement Learning is used to
find the optimal query execution plan.

70502 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-7107-4339
https://orcid.org/0000-0002-7877-4108
https://orcid.org/0000-0002-9414-6267
https://orcid.org/0000-0003-2517-3103


M. Ramadan et al.: RL_QOptimizer: A Reinforcement Learning Based Query Optimizer

2) Using a real environment to train the proposed model
so that real feedback from the DBMS is obtained and
consequently employed to discover the optimal execu-
tion plan.

3) Enhancing the overall execution plan time and propos-
ing a new query optimizer that requires low or almost
constant time to generate the execution plan for any
query with any number of joins.

The rest of the paper is organized as follows: Section 2
presents background about the concepts used in this paper.
Then, previous work related to the proposed models is dis-
cussed in Section 3. Section 4 details the proposed models
and their different architectures. In section 5, the results
of the performance evaluation of the proposed models are
presented. Finally, Section 6 concludes the paper.

II. BACKGROUND
A. QUERY OPTIMIZATION
Query Optimization is the process of choosing a suitable
execution strategy for processing a query [1]. A traditional
query optimizer uses stored statistics and probabilities rules
to estimate the cardinalities of the different tables and conse-
quently finds the optimal query plan. These statistics include
the number of records, the number of blocks, the number
of distinct values in each column, and the selectivity of
each attribute that represents the average number of records
satisfying an equality condition [1]. The goal of the query
optimizer is to generate a query execution plan that minimizes
the overall query execution time. A traditional query opti-
mizer depends on heuristic and cost-based optimization. For
example, applying the SELECT and PROJECT operations
before the JOIN operations or applying the most restrictive
SELECT operations first before other SELECT operations
are examples of heuristics rules that mostly guarantee less
execution time when applied on the execution plans. In the
cost-based optimization step, the optimizer estimates and
compares the costs of query execution based on statistics and
cardinality estimations using different execution strategies
and algorithms. Then, it chooses the strategy with the lowest
cost estimate [1]. The lowest cost estimate is usually found
by performing the operations that initially reduce the size of
intermediate results.
Example 1: Consider the following query on the

Customer-Ordering database presented in Figure 1. The
Customer-Ordering database has five entities which are
‘‘ORDER’’, ‘‘CUSTOMER’’, ‘‘PRODUCT’’, ‘‘CATEGORY’’,
and ‘‘ADDRESS’’ with the cardinalities 1000000, 100000,
10000, 1000, and 1000 rows for each table respectively.

SELECT C.NAME, C.ADDRESS, P.PRICE,
P.NAME FROM CUSTOMER AS C CROSS JOIN
ORDER AS O CROSS JOIN PRODUCT AS P
WHERE CUSTOMER.ID = O.CUSTOMER_ID
AND P.ID = O.PRODUCT_ID
AND C.PHONE_NUMBER = “0111”

FIGURE 1. Customer-ordering database ERD.

Heuristic rules would recommend performing the query
selection operator first in order to reduce query intermediate
results [1] as shown in Figure 2. The following are the heuris-
tic query optimization steps [1]:

1) Designing the initial tree of the query.
2) Moving the SELECT operation down the query tree.
3) Applying the more restrictive SELECT operation first.
4) ReplacingCARTESIAN PRODUCT andSELECTwith

JOIN operation.
5) Moving PROJECT operations down the query tree.

The SELECT operation (σ c(R)) is used to select a subset
of tuples from a relation that satisfies a condition specified
in the selection. The selection operation is also known as
horizontal partitioning because it partitions the table or rela-
tion horizontally, where ‘c’ is the selection condition, which
is a Boolean condition. The PROJECT operation (πA(R))
is used to select certain attributes while discarding others.
The Project operation is also known as vertical partitioning
because it partitions the relation or table vertically, discarding
other columns or attributes, where ‘A’ is the attribute list,
which is the desired set of attributes from the attributes of
relation(R), and finally, the JOIN operation (R1 FG R2) is
used to join two tables R1 and R2 based on the join condition.
The outcome of joining two or more relations is a set of all
possible tuple combinations with the same common attribute.

B. JOIN ORDERING PROBLEM
A ‘‘join’’ operation is a relational operation that combines
rows from two tables based on a related column. While join
works with only two tables at a time, a query that joins N
tables is executed through N-1 joins. The optimizer needs
to take a critical decision regarding the selection of the
optimal join order which greatly influences the execution
time of a query. The process of choosing an efficient join
order is difficult as the number of possible join combinations
that the optimizer needs to explore and analyze increases
exponentially with the number of tables [2]. In addition, the
number of intermediate rows (results) is unknown at run time
which forces the optimizer to use pre-calculated statistics and

VOLUME 10, 2022 70503



M. Ramadan et al.: RL_QOptimizer: A Reinforcement Learning Based Query Optimizer

FIGURE 2. A query execution tree generated by traditional heuristic rules.

cardinality estimation to estimate the cost rather than the real
cost.
Example 2: Consider a query on the customer-ordering

database shown in Figure 1, where we want to get the cus-
tomers along with each product they have ordered. We can
write this simple query in PostgreSQL like this:

SELECT * FROM CUSTOMER
CROSS JOIN ORDER CROSS JOIN PRODUCT
WHERE CUSTOMER.ID = ORDER.CUSTOMER_ID
AND
PRODUCT.ID = ORDER.PRODUCT_ID

If the optimizer chooses to join the relations ‘‘CUSTOMER’’
and ‘‘PRODUCT’’ tables first, it leads to a cross-product
as there are no relationships between customer and prod-
uct tables, which accordingly generates a very large set of
intermediate results (100000 × 10000 = 109 rows) and
consequently results in a high execution time for the query but
if the optimizer chooses to join ‘‘CUSTOMER’’ and ‘‘ORDER’’
tables first, it leads to 106 rows as a maximum number of
intermediate results. The query optimizer’s role is to select
the best query join order that minimizes the query execution
time. The better choice is affected by many factors including:
database indexes, tables’ cardinality, data distributions, etc.
This problem is called a join ordering problem that has been
studied by researchers for many years given the huge number
of possible combinations where each candidate plan has a dif-
ferent effect on the query execution time. The problem has an
exponential complexity while using a dynamic programming
technique [6].

C. REINFORCEMENT LEARNING
Reinforcement learning is an important area of machine
learning, where an agent learns to take an action to

FIGURE 3. Simplified architecture of the RL mechanism.

maximize the total rewards in an environment [7]. Reinforce-
ment learning algorithms learn by performing actions and
receiving rewards or penalties from the environment. The
main goal of the agent is to maximize its cumulative rewards
while interacting with the environment.

The main elements in reinforcement learning are agents,
environments, states, actions, and a reward value [7].

Actions are the set of all possible actions that the agent
can choose from. The environment takes the agent action
and current state as input and returns a reward and the next
state. The reward function defines the goal in a reinforcement
learning problem, it maps the action state (or state-action pair)
of the environment to the reward value (negative or positive).
On each time step, the environment sends to the reinforce-
ment learning agent a single value called the reward [7]. The
policy is the strategy that an agent follows to determine the
next action based on the current state. Value function V(s)
is the expected long-term reward for an agent starting from
state s under a specific policy. It measures how good to be
in a given state. Action Value or Q-Value function Q (s, a)
measures how good it is to take an action at a given state, it is
the expected return or the overall reward for taking action a
in a specific state s.

As shown in Figure 3 the proposed query optimizer (agent)
interacts with the DBMS environment) by selecting one of
the join ordering conditions (actions) and receiving a neg-
ative execution time (penalty). The reinforcement learning
problems are closely related to optimal control problems,
particularly stochastic optimal control problems that can be
formulated as a Markov Decision Process (MDP) [7], [8].
A Markov process is a stochastic process in which the prob-
lem is a set of possible states and the future state depends
only on the current state rather than the history (Markov Prop-
erty). Markov Decision Process is described by the following
tuples 1.

< S,A,P(s, a),R(s, a) > (1)

where S stands for a set of states, A describes the set of actions
the agent can take, P(s, a) describes a probability distribution
to be in the new state by taking action a in state s and R(s, a)
is the reward of taking action a in state s.

70504 VOLUME 10, 2022



M. Ramadan et al.: RL_QOptimizer: A Reinforcement Learning Based Query Optimizer

D. DEEP REINFORCEMENT LEARNING
Neural networks are function approximators that can be used
in reinforcement learning when the state space or action space
is very large [4]. Deep reinforcement learning is the result of
applying reinforcement learning using deep neural networks.
Deep neural networks are used as the agents that learn to map
state-action pairs to rewards. Depending on the result, the
neural network is encouraged or discouraged by the action
on this input in the future.

Deep Reinforcement learning has been used widely in dif-
ferent domains. More specifically, it is used in those domains
that a reward/penalty can be given for any action of the agent.

Google DeepMind Team developed many artificial intel-
ligence models using deep reinforcement learning in differ-
ent games like a model to play Atari games and improves
itself [4] which used a convolutional neural network, trained
with a variant of Q-learning, whose input is raw pixels and
whose output is a value function estimating future rewards.
In addition to developing AlphaGo which is a Chinese game
that challenged artificial intelligence researchers for many
years [7] by combining deep neural networks with reinforce-
ment learning [9].

Deep reinforcement learning is used for other complex
problems like autonomous driving [10], [11]. As mentioned
in Sallab et al. [10], it is difficult to deal with autonomous
driving as a supervised learning problem due to strong inter-
actions with the environment. Finally, End-to-End Frame-
work for Fast Learning Asynchronous Agents research [12]
proposed a training framework that combines the benefits
of imitation learning (IL) and deep RL for fast learning
asynchronous agents through extending the Asynchronous
Advantage Actor-Critic (A3C) algorithm.

III. RELATED WORK
Related work is categorized into two main directions: Tra-
ditional query optimization and Learning-based query opti-
mization. Previous work in each of those directions is dis-
cussed in the following subsections.

A. TRADITIONAL QUERY OPTIMIZATION TECHNIQUES
Most of the query optimizers rely upon the dynamic pro-
gramming approach of System R [13], [14] which was the
first implementation of SQL and it pioneered several opti-
mization techniques, including the utilization of dynamic
programming for bottom-up join tree construction. They
use the traditional cost model to determine the best plan
for a given query by generating different strategies using
cardinality estimations [1], [15]. These estimates rely upon
statistics on the database and assumptions that may or
may not be true. Invalid assumptions or inaccurate calcula-
tions for the cardinality estimation lead to poor execution
plans [1], [15], [16].

Another type of query optimizer tries to use parametric
query optimization [17]–[21] Where the traditional optimiz-
ers make assumptions about many parameters [20] whose

values are unknown at compile-time, the time before the
actual execution, the parametric techniques attempt to iden-
tify several execution plans where each plan is optimal for
a subset of possible values of the run-time parameters [6].
The goal is to identify candidate plans at compile-time, each
optimal for some region of the parameter space, and the
optimal plan is selected once the actual parameter values
become known at run time. This type has many drawbacks
like the overhead of pruning all plans for the entire relational
selectivity space for one query which is not a cost-effective
approach [21]. This approach depends on assumptions that
may not be true all the time like assuming that a plan is
optimal for all values in a specific region [22].

Most DBMSs use histogram-based techniques as part of
their cost model to summarize the data of tables to perform
efficient selectivity estimations [23], [24]. A large number of
algorithms have been proposed for constructing histograms
over a single attribute and multiple attributes. A new algo-
rithm to build a histogram is introduced in [25] to construct it
by minimizing the aggregated error. As the algorithm needs
huge construction time, generating an efficient execution plan
for a given query from the space of possible execution plans
is very expensive. In addition, estimating the join operation
selectivity problem may lead to poor execution plans.

B. LEARNING-BASED QUERY OPTIMIZATION
Query Optimization using learning models has become
one of the hot topics in the database research directions
[26]–[35]. Some researchers have investigated the feasibility
of applying machine learning techniques in query optimiza-
tion to improve the query optimization process.

Some of the prior work used supervised learning to learn
from old execution plans that were generated by the query
optimizer for past queries to help in generating execution
plans for new queries [1]. The authors in [26] proposed an
execution plan recommendation system based on similar-
ity identification between SQL queries. They used machine
learning techniques to improve query similarity detection and
hence were able to identify and associate similar queries
having similar execution plans. This algorithm assumes that
similar textual queries have similar execution plans, however,
this is not always true in real-world where similar textual
queries can have different optimal execution plans. In addi-
tion, the paper didn’t use the query optimizers’ feedback to
enhance the query execution plan.

Other proposed machine learning-based query optimizer
models focus on adjusting incorrect statistics and cardinality
estimates of a query execution plan automatically by learn-
ing from query optimizer past mistakes. One of the first
approaches that focused on adjusting this information is [27]
which compares the optimizer’s estimates with the actual
cardinalities during run time and computes the errors. Then,
the model is adjusted to perform better in future runs. Also,
Adaptive Cardinality Estimation [32] proposes a cardinality
estimation approach that is integrated with the use of machine
learning techniques. The main contribution of this approach

VOLUME 10, 2022 70505



M. Ramadan et al.: RL_QOptimizer: A Reinforcement Learning Based Query Optimizer

is using query execution statistics of the previously executed
queries to improve cardinality estimations. The proposed
approaches have many issues e.g., they are designed for static
queries. In addition, they focus on cardinality estimation
so, they still require to use of the traditional cost model
and heuristic rules that may lead to poor plans. Similar to
the traditional optimizers, the proposed model planning time
increases as the number of join conditions increases. Another
approach was proposed by [28] which uses machine learning
algorithms for cardinality estimation to learn selectivity that
takes a bounded range on each column as input. This method
focused on the selectivity estimation of several range clauses
but did not consider Queries with joins. In addition, it focused
on cardinality estimation, not the actual execution time which
may affect dramatically the execution time.

The approaches presented in [29], [30] use a deep rein-
forcement learning technique in determining the execution
plan. ReJOIN model [29] focuses on the Join order selection
problem by applying deep reinforcement learning techniques.
In this model, the agent learns to maximize the reward
through continuous feedback with the help of an artificial
neural network. ReJOIN used the traditional cost model based
on cardinality estimation during the learning phase rather
than the actual execution time which may lead to non-optimal
plans. Learning State Representations for Query Optimiza-
tion discussed in [30] used deep neural networks to learn state
representations of queries in order to learn the optimal plans.
More specifically, the paper introduced two approaches, the
first approach transforms a query into a feature vector and
trains a deep neural network to take such vectors as input
and output the estimated cardinality. The second approach,
a recursive approach, in which they train the model to predict
the cardinality of a query consisting of a single new operation
applied to a subquery to incrementally generate a representa-
tion of each subquery’s intermediate results [30]. This paper
explored the idea of training a deep reinforcement learning
model to predict query cardinalities instead of relying entirely
on basic statistics to estimate costs.

Neo (Neural Optimizer) presented in [31], uses a super-
vised learning model to guide a search algorithm through a
large and complex space. Neo assumes the existence of a
sample workload which consists of a set of queries that is
considered a representative of the total workload. In addi-
tion, PostgreSQL optimizer is considered as the expert that
is responsible for generating the best query plans. Given
the sample workload and their best query plans generated
by the expert, the learnt model tries to generalize a model
that can infer the plan with the least execution time for a
query. In later stages, Neo retrains the supervised learning
model based on the feedback received while running the
model on its environment. Towards a Hands-Free QueryOpti-
mizer through Deep Learning presented in [36], is another
attempt that tries to identify potential complications for future
research that uses deep reinforcement in Query optimization
problems. Also, the authors referred to the possibility of
using latency as a reward function in the research directions.

The SkinnerDB system presented in [37] uses reinforcement
learning for query optimization. The proposed model learns
the optimal join order while running the query. The possible
join orders are divided into slices where the possible join
order is tested on each slice of the data until the best join
order is obtained and considered for the remaining slices of
data. Query performance is evaluated using regret bounds
as a reward system that considers the difference between
actual execution time and the time for an optimal join order.
Fully Observed Optimizer (FOOP) presented in [38] uses a
reinforcement learning model where the reward function is
defined as the cost model of the traditional DBMS optimizer.
Another model that utilizes reinforcement learning is pre-
sented in [33], which is the closest model to the proposed
model in this paper. The model suggests a learning-based
technique for join order based on the plans generated by
the DBMS optimizer to bootstrap the reinforcement learning
model before fine-tuning it using real-time execution time.
BAO (the Bandit optimizer) presented in [39], is a learned
component that sits on the top of an existing query optimizer
in order to enhance query optimization rather than discarding
the traditional query optimizer. Bao component learns to map
the query to the best execution strategy for the query. Then,
upon receiving a query, the query optimizer generates multi-
ple plans according to different strategies where the learned
model is expected to choose the best query plan given the
possible strategies.

Another research direction explores the use of deep rein-
forcement learning to administrate a DBMS. The case for
Automatic Database Administration investigated in [40] pro-
poses a new model of index selection to decide on which
attributes to create indexes on for a given workload based on
deep reinforcement learning. UDO(the Universal Database
Optimizer) [41] considers a variety of tuning choices, starting
from picking transaction code variants over-index selections
up to database system parameter tuning. UDO uses reinforce-
ment learning to converge to near-optimal configurations.

All of the earlier models have utilized DBMS optimizer
and its generated plans to train or at least bootstrap their
learned models. Consequently, the purpose of this research
is to develop reinforcement learning-based models that learn
directly from real query performance of different join orders
where the models are rewarded or penalized based on the
actual execution time of different query plans. Furthermore,
the proposed models explore the whole space of different
query plans to learn the best join order for any given query.

IV. PROPOSED MODELS
In this paper two versions of A Reinforcement Learning
Based Query Optimizer (RL_QOptimizer) are proposed to
solve the join ordering problem during query optimization.
Both approaches employ the Q-learning model [5], which
is one of the most popular reinforcement learning algo-
rithms. The first approach is a simple RL Q-Learning which
uses a simple lookup table (Q-table) to calculate the maxi-
mum expected future reward for each action at each state.

70506 VOLUME 10, 2022



M. Ramadan et al.: RL_QOptimizer: A Reinforcement Learning Based Query Optimizer

FIGURE 4. Model overview.

The second approach is a ‘Deep’ Q-Learning-based model,
which is more suitable for large states and actions as it uses
a neural network to approximate the Q-value function. Both
models operate by applying a set of general steps as shown in
Figure 4.

The system has two main phases that are applied for both
models, the first phase is the generation phase and the
second is the selection phase.
In the generation phase, the model either generates all

possible join ordering queries that may happen in the database
schema to learn or generate all the join ordering queries
from a given database workload. Generating all possible join
ordering queries allows the model to be trained from scratch
on every possible scenario For example, if the database has
JOINS between A, B, and C, the possible queries will be
A FG B, A FG C, B FG C, A FG B FG C. On the
other hand, If a database workload is available, the join
ordering queries in the workload will be used in the training
process by the model. Following that, the system selects
any one of join ordering queries in the selection phase.
All possible execution plans of the selected query will be
generated to train the model. For each possible execution
plan, the agent interacts with the DBMS to get the actual
execution time for this plan, which represents the reward
in our models, multiplied by -1 to minimize the execution
time. Both models are discussed in details in the following
subsections.

A. JOIN ORDERING USING REINFORCEMENT LEARNING
The first model uses Q-table to store the expected reward for
each action-state. The main function of the Q-table is to take

FIGURE 5. Q-learning.

a state and an action as input and produce the corresponding
Q-value as shown in Figure 5. On the other hand, the agent
performs a set of sequence actions to get the maximum total
reward. The total reward is called the Q-value which can be
calculated by performing an action in a specific state to get the
immediate reward and add it to the highest Q-value possible
from the next state using the following formula 2 [5], [42]:

Q(s, a) = r(s, a)+ γmaxQ(s′, a) (2)

The first part r(s, a) is the immediate reward for the taken
the action (a) given the state (s). The second part is the
discount factor (γ ) multiplied by the estimate of optimal
future value max Q(s′, a) which is known as the discounted
estimate of optimal future value.

The model consists of four components which are: the
input of the model, the states, the set of possible actions and
the reward function. The preceding equation shows how we
compute the Q-value for an action (a) starting from a state (s).
It is the sum of immediate rewards, and it takes greedy action
from the next state(s′) (choose the action that has maximum
Q value over other actions).

The input is typically represented as encoded query join
conditions. The characteristics of join conditions are encoded
in the form of a vector of size n, where n is the number of all
possible join conditions in the database schema. Each cell of
the vector can be a 0 or 1 where 1 means that this condition
is included in this query. E.g. Input = [1, 1, 0, 0] means that
this query includes first and second join conditions.

The main goal in the join ordering problem is to find the
best possible join order for a given query. In the proposed
models, the states represented by 0 or 1’s vector where
1 refers to join conditions that will be applied to a query.
In each state, the agent has a set of possible actions to select
one from them to move from one state to another. These
actions are all join conditions of the query represented by
one’s in-state vector. After selecting an action, the query
builder adds this condition in its order and sets its value to
zero in the state vector.

As no rules exist to correctly choose the reward func-
tion, the choice of the reward function is one of the most
challenging tasks in any reinforcement model. In the pro-
posed models, the goal is to optimize the total execution

VOLUME 10, 2022 70507



M. Ramadan et al.: RL_QOptimizer: A Reinforcement Learning Based Query Optimizer

time of queries, hence, the actual queries execution time
multiplied by -1 is used as a reward. During experiments,
PostgreSQL [43] DBMS is used to get the actual execution
time of the query. Obviously, the lower the execution time,
the higher the reward.

In the learning stage the system takes all possible join
conditions for the given database and generates different
possible queries to train on them. The model then builds
a vectorized representation of the query that is later used
as an input to the model. The agent selects one of the join
ordering conditions in this vector which is represented by
one’s, then the environment gives a reward by interacting
with PostgreSQL DBMS. This process is repeated until the
terminal state. Finally, the function Q(s, a) in the Q-table
using this equation is updated as follows 3 [5], [42]:

Q(s, a) = Q(s, a)+ α[r(s, a)+ γmaxQ(s′, a)− Q(s, a)]

(3)

The first part Q(s, a) is the current value in the state (s) if an
action (a) is taken, and the second part is the learning rate (α)
multiplied by the TD error. which is the difference between
the TD target and the current Q(s, a). with the following three
essential steps:

1) The agent begins in a state (s), acts (a), observe the next
state s′, and reward r.

2) The agent chooses an action by referring to the Q-table
with the greatest value for the next state(s′)

3) Update q-values.
Example 3: Consider the customer-ordering database

shown in Figure 1 that has 4 join conditions [CUSTOMER FG
ADDRESS, CUSTOMER FG ORDER, ORDER FG PROD-
UCT, PRODUCT FG CATEGORY] which is vectorized as
[1,1,1,1]. In the training phase, the agent tries to explore all
possible execution plans. First, the agent explores each join
condition individually, then it trains on the vector [1, 0, 0, 0]
and builds the first query with [CUSTOMER FG ADDRESS].
The environment interacts with the DBMS to get the actual
execution time of this query in addition to [ADDRESS FG
CUSTOMER] query execution time to update the Q-table. The
model performs the same process for each join condition
individually. Then, the model trains on all possible two join
conditions with each other. For example, it will train on
the vector [1, 1, 0, 0] for [CUSTOMER FG ADDRESS] and
[CUSTOMER FG ORDER]. In this case, the model trains on
the best join order out of the following two join orders.
The first join order consists of [CUSTOMER FG ADDRESS]
and the better order from [CUSTOMER FG ORDER] and
[ORDER FG CUSTOMER] where the second join order is
[ADDRESS FG CUSTOMER] with the better join order from
[CUSTOMER FG ORDER] and [ORDER FG CUSTOMER].
Where, the best from [[CUSTOMER FG ORDER] and
[ORDER FG CUSTOMER] joins is already discovered during
the previous cycle of training. This process is repeated until
the training process is terminated by training the whole
[1, 1, 1, 1] vector.

During the actual running when the model is required to
generate the best execution plan for a query that is vectorized
as [1, 1, 1, 0], the agent moves to the corresponding row in
Q-table to select the condition with maximum reward. If the
agent selects the third join condition, which is coded as one
in the vector, it will be replaced by zero and the new state will
be [1, 1, 0, 0]. Then, the agent selects the best join condition
given the chosen third join condition and this is also a one
in the vector and will be replaced by a zero. This process is
repeated recursively until the vector reaches the terminal state
which is [0, 0, 0, 0] to retrieve the best join conditions order.

B. JOIN ORDERING USING DEEP REINFORCEMENT
LEARNING
The join ordering using reinforcement learning model has
many limitations that need to be solved before considering
it as a practical solution. The main problem is related to
the size of the database schema and the number of tables.
A large database schema with many join conditions leads to
gigantic state space that may reach up to millions of states.
Consequently, the Q-table needs a large amount of memory
to store. In addition, the exploration of the Q-table won’t be
efficient. Another limitation is related to the generalization
as the Q-table model can’t infer a Q value of a new state
from the already trained states. Thus, join ordering using
deep reinforcement learning model was introduced to address
those limitations.

Join ordering using deep reinforcement learning model
introduces a deep neural network to approximate the Q-value
function. The state is given as input and the Q-value of all
possible actions is generated as output as shown in Figure 6.
Similar to any deep neural network, it uses coefficients to
approximate the function that maps an input to the out-
put. Accordingly, the algorithm learns the right coefficients
by adjusting their values iteratively in the learning state.
In the proposed model, weights of the deep neural network
are updated during training instead of updating the Q-value
directly in the Q-table.

The proposed model uses the Deep Q Network (DQN)
which uses a neural network to approximate the Q-value
function to tell the agent what action to take. This model
was proposed in DeepMind’s paper [4] to learn policies
from high-dimensional sensory input using reinforcement
learning. As stated in [42], RL is known to be unstable or
even diverge when neural networks are used to represent the
action-values. There are various factors that lead to this insta-
bility: The presence of correlations in the sequence of obser-
vations and the correlations between the action-values(Q)
and the target values. In the proposed model we followed
the following improvements on DeepMind’s model presented
in [4], [42] to tackle these issues:

1) Experience Replay: buffer replay was used to store
the latest N experience tuples observed by an agent,
including state, action, reward ‘‘response time’’, and
next state which allows the network to reuse this data
later by sampling from it randomly. During the training

70508 VOLUME 10, 2022



M. Ramadan et al.: RL_QOptimizer: A Reinforcement Learning Based Query Optimizer

FIGURE 6. DQN model.

phase, the model uses random training samples from
the replay data as input, which leads to more effi-
cient use of previous experiences and helps to reduce
database calls by using a buffer rather than calling the
engine for the same queries again.

2) Target Network: the Bellman equation provides us with
the value of Q(s, a) via Q(s′, a) as the following
equation 4:

Q(s, a) = Q(s, a)+[r(s, a)+γmaxQ(s′, a)− Q(s, a)]

(4)

In deep Q-learning, we need to minimize the mean
squared error between the target Q value (TD target)
and the current output which is called TD error and
we need to estimate the TD target using the following
equation 5 [5], [42]:

Q(s, a) = r(s, a)+ γmaxQ(s′, a) (5)

When the parameters of our Neural Networks are
changed to get Q(s, a) closer to the intended result, the
value produced for Q(s′, a′) can be changed indirectly
which can make our training very unstable. So, the
target network was introduced to stabilize the learning
process [42].

In the proposedmodel, a separate network with fixed parame-
ters was used to estimate Q-targets. At every step, the param-
eters are copied from the DQN network to a separate target
network to estimate the Q-targets. Similar to the first model,
the deep-reinforcement learning model takes the database
schema and possible join orders to explore all possible queries
in the training process. Assume the same customer-ordering
database presented in Figure 1 to train reinforcement learn-
ing model presented in the previous section. As presented
in Example 3, it’s required to train the model 4 join
conditions database [CUSTOMER FG ADDRESS, CUSTO-
MER FG ORDER, ORDER FG PRODUCT, PRODUCT FG
CATEGORY] which is encoded as vector [1,1,1,1]. In this

model, the same training process is applied but the neural
network is employed as an approximation function and is
used instead of the Q-table to predict the reward. The query
vector represents the input of the neural network and the
actual query execution time is the target value. The weights
of the neural network are modified to minimize the error
between the predicted value and the target value. This process
is repeated until the training process is terminated.

A four-layer feed-forward neural network with 30 neurons
in each hidden layer is used, with the number of input layer
neurons equal to the number of possible joins in the database
and the number of output layer neurons also equal to the num-
ber of possible joins. The input is fed as vector of integers and
the output is represented as a vector of integers. For example,
when the model is required to find the best execution plan
for a query of three join conditions in a database with five
possible joins, the network is fed a vector with these condi-
tions represented by ones and others represented by zeros,
such as [1, 1, 0, 1, 0]. The neural network output is expected
to be a vector with the reward value for each condition which
guides the agent to choose which join condition to perform.
The agent will apply the condition with the maximum reward.
The selected join condition, which is coded as one in the input
vector, will be replaced by zero in the input vector and the new
input vector will be fed to the network in order to identify the
next join condition. This process will be repeated until the
terminal state vector [0, 0, 0, 0, 0 ] is reached. The discount
factor is set to 0.9 and an Adam optimizer [44] is sued with a
learning rate of 0.001.

V. EVALUATION
The objective of the evaluation is to assess the quality of the
execution plans produced by the proposed models against
the execution plans produced by PostgreSQL DBMS as a
baseline in order to prove the proposed model effectiveness.
Towards this goal, the performance of the proposed models
are evaluated and compared with the results of PostgreSQL
DBMS query optimizer. The models were evaluated on two
databases, a real database that is used as a benchmark dataset
for the join-ordering problem [45] and a synthetic database
that is used in TPC-H benchmark with various sizes to test
different scaling factors [46].

A. EXPERIMENTS SETUP
All experiments are conducted using a laptop running Ubuntu
version 18.04.3 LTS with an 8-core Intel Core i7-8550U
and 8 GB of RAM. Memory was set as available per oper-
ator (work_mem) to 512MB and the size of the buffer
(shared_buffer) was set to 1 GB. Models were implemented
using Python, Tensorflow [47] and Keras [48] library to
implement the neural networks. For the DQN model, Adam
query optimizer [44] and the RelU activation function were
used. In addition, PostgreSQL (v10.13) was used and the join
collapse limit parameter was set to 1 at run-time to force
the planner to follow the join order. setting it to 1 prevents
any reordering of explicit Joins. Thus, the explicit join order

VOLUME 10, 2022 70509



M. Ramadan et al.: RL_QOptimizer: A Reinforcement Learning Based Query Optimizer

FIGURE 7. Simplified ER diagram of the IMDB database.

specified in the query will be the actual order in which the
relations are joined.
Databases:

1) IMDb (Internet Movie Database) [49] is an online
real-world database containing a large amount of infor-
mation about films, television programs, and home
videos which is available for non-commercial use that
is used as a benchmark for the join ordering prob-
lem in article [45]. During the training process, only
the tables shown in Figure 7 was used where the
average number of records per table is greater than
6 million records. According to figure 2 in the paper
[45], a typical query graph has five relationships with
the ‘‘title’’ table, which is the center table for the
research workload. As a result, we chose all joins
operations related to the ‘‘title’’ table to show us the
query optimizer problem in join ordering, which are as
follows: (movie_companies FG title, title FG kind_type,
movie_info FG title, aka_title FG title, movie_link FG
title, title FG complete_cast)

2) TPC-H Database [46]: Using the retail database exist-
ing in the TPCH benchmark which contains a large
amount of information about customers, orders, line-
items, parts, part suppliers, suppliers, nations, and
regions. TPC-H continues to be the most widely used
benchmark for relational systems and most join queries
operate on three tables or more [50]. lineitem and
orders, which carry around 83 percent of the total
data, are the most challenging and largest tables in
this schema. As a result, all lineitem, orders and cus-
tomer possible join operations are generated, totaling
7 tables, to demonstrate the join ordering challenge,
which are as follows: (customer FG nation, lineitem FG
part, lineitem FG supplier, lineitem FG orders, nation FG
region, orders FG customers). Our TPCH experiments
use a database scale factor of 1 which Consists of the
base row size (equals 1GB raw data). The simplified
ER diagram for entities without attributes is shown in
Figure 8.

FIGURE 8. Simplified ER diagram of the TPC-H database.

Because the model generates all potential execution plans
for the generated query during the training process to learn a
better plan than the traditional Postgresql model plan, some
of the generated plans may be significantly worse than the
PostgreSQL plan and take hours to complete. These plans
are ineffective and inefficient execution plans from which the
model shouldn’t learn. To overcome this issue, we cut off and
discard any query plan that takes execution time greater than a
configurable maximum time which is set to 3 minutes in our
experiments because using PostgreSQL’s traditional model,
all generated training queries in the experiments take less than
3 minutes.

In order to perform training and testing of the two rein-
forcement learning proposed models, all possible number of
join ordering queries for each database schema were gen-
erated where each query consists of a different number of
joins. Each query was encoded in vector format as shown in
Table 1 in order to use it during training and testing phases
where the vector encodes join conditions between different
relations.

The proposed models performance are compared to Post-
greSQL optimizer using their generated plans execution time.
In addition, the planning time required to generate the plans
by all models are collected during experiments. For example,
the proposed models generated a plan for the query men-
tioned in Table 1 that was executed in 60 seconds while
the traditional optimizer plan was executed in 100 seconds.
The optimizer decided to start by joining [MOVIE_INFO FG
TITLE] which took a larger execution time and led to a
very large intermediate results which was around 29 million
records. On the other hand, the proposedmodels plan chose to
start by joining [MOVIE_COMPANIES FG TITLE] which
led to less than 5 million intermediate results. In addition,
the proposed models required around 3 milliseconds to gen-
erate their plans while the PostgreSQL optimizer required
25 milliseconds.

Another experiment was conducted to evaluate the model
while using a databaseworkload during training phase instead
of training the model on generated queries. This experiment
uses the Join Order Benchmark (JOB), a collection of queries
used as a benchmark for the join ordering problem in arti-
cle [45]. Each query in the benchmark joins between four and

70510 VOLUME 10, 2022



M. Ramadan et al.: RL_QOptimizer: A Reinforcement Learning Based Query Optimizer

TABLE 1. A query example and its encoded vector.

FIGURE 9. Comparison between the results of reinforcement learning
models with PostgreSQL on IMDB database.

seventeen relations. Similar to the ReJOIN paper [29], the
same 10 queries were utilized to test the suggestedmodel. The
last experiment was conducted to assess the generalization
ability of the proposed models. The proposed models were
trained on 80% of the queries where the remaining 20%
were left for testing as unseen queries. The DQN model is
compared against Q-Learning based model on the test set of
unseen queries where the execution times are collected for
each query plan that is generated by each model.

B. EXPERIMENTAL RESULTS
1) IMDb Database Results

As shown in Figure 9 where the X-axis represents the
query IDs and Y-axis represents the query execution
times in milliseconds, the proposed models outper-
form PostgreSQL optimizer in 30% of the queries and
failed in 3% otherwise both provide the same exe-
cution plans. For one query, the optimizer failed to
finish it with the maximum time of 3 minutes and the
query execution was halted where the reinforcement
learning-based models which finished before the maxi-
mum time. In Figure 10 the interquartile range (IQR) is
used to measure the variability between different mod-
els using all queries performance on each model. The
figure shows that the interquartile range (IQR), maxi-
mum execution time, mean execution time (defined by
X mark in the graphs) of the PostgreSQL is larger than
the reinforcement learning-based proposed models.

FIGURE 10. Comparison between the results of reinforcement learning
models with PostgreSQL on IMDB using IQR.

FIGURE 11. Comparison between the results of reinforcement learning
models with PostgreSQL on TPCH database.

2) TPC-H Database Experiment
Applying the proposed models on the TPCH database
shows that the proposed models outperform Post-
greSQL in 27% of queries and failed in 8% with very
small differences in execution time as shown in Fig-
ure 11. During the evaluation, the optimizer failed to
finish one query within the maximum allowed time
where the reinforcement learning-based models suc-
ceeded. As shown in Figure 12 interquartile range
(IQR), maximum execution time, mean execution time
(defined by Xmark in the graphs) of the PostgreSQL is
larger than the reinforcement learning-based proposed
models.
Another important observation from Figure 9 and
Figure 11 is that Q-Learning model results are very
close to DQN model results in all queries.

3) Join Order Benchmark Queries Results
The proposed model discovered execution plans that
outperform PostgreSQL in 70% of total queries
in the benchmark queries and failed in 8% with
small differences in execution time. Nevertheless,
both provide the same execution plans. As shown in
Figure 13 and Figure 14, the interquartile range (IQR)
of PostgreSQL’s mean execution time (shown by
the X mark in graphs) is greater than that of the
DQN model. Using the proposed DQN model, the

VOLUME 10, 2022 70511



M. Ramadan et al.: RL_QOptimizer: A Reinforcement Learning Based Query Optimizer

FIGURE 12. Comparison between the results of reinforcement learning
models with PostgreSQL on TPCH database using IQR.

FIGURE 13. Comparison between the results of the DQN model with
PostgreSQL on join order benchmark 113 queries using IQR without
showing extreme outliers.

average execution time of queries in the benchmark is
8670 ms when the average execution time for Post-
greSQL is 16479 ms. In addition, the DQN model
outperforms PostgreSQL exceptionally in a subset of
queries. For Example, Query ‘‘17b’’ in the benchmark
queries requires 50000 ms while using the plan gen-
erated by the DQN model unlike the plan generated
by PostgreSQL which requires 140000 ms. In com-
parison to the PostgreSQL optimizer, the DQN model
generates query plans that are, on average, 27% less
expensive for the 113 queries in the benchmark queries.
In addition, The model was tested using the same
ten queries that were used in ReJOIN [29] as shown
in Figure 15 and demonstrated that the model pro-
vided join ordering plans that were 27% cheaper than
those generated by the PostgreSQL optimizer Which
is superior to the ReJOIN approach, which provides
on average 20% improvement. In addition, for a query
(16b), the plan generated by the DQN model is 60%
less expensive than PostgreSQL generated plan. How-
ever, the ReJOIN generated plan is just 20% less
expensive.

FIGURE 14. Comparison between the results of the DQN model with
PostgreSQL on join order benchmark 113 queries using IQR with showing
extreme outliers.

FIGURE 15. The percentage by which the DQN model outperformed
PostgreSQL on the join order benchmark test queries.

FIGURE 16. Comparison between the planning time of reinforcement
learning models with PostgreSQL.

4) Planning Time
In Figure 16, the relationship between the planning
time and the number of join conditions for both models
is shown where the planning time increases as the num-
ber of join conditions increases in PostgreSQL DBMS
while the planning time forQ-learningmodels is almost
constant.

5) Generalization Assessment
Q-learning is built around the Q-table where it can
predict the best actions only for the states that are used
during the model training phase and doesn’t generalize

70512 VOLUME 10, 2022



M. Ramadan et al.: RL_QOptimizer: A Reinforcement Learning Based Query Optimizer

FIGURE 17. Comparison between the results of the DQN and the
Q-learning models on IMDB database for new queries.

for queries that haven’t been seen. In the proposed
model, The Q-table has all possible join conditions in
the database schema, and for states that have never been
seen before, the Q-table will reward all actions equally.
As a result, in the case of Q-table, themodel will choose
any action at random from the set of possible join
conditions. On the other hand, DQN depends on a deep
neural network that transforms the state’s information
and their best actions into neurons learned weights.
Thus, the DQN model is expected to be able to take
an action for states that were never seen before given
their similarity with the states used previously during
the training phase. To assess the DQN model gener-
alization ability, 20% of the generated queries were
chosen as test data to cover a variety of queries with
varying numbers of joins operations, which included
four queries with two joins operations, two with three
joins, four with four joins, and one with five joins.
The model was trained on the remaining queries on
the IMDB Database. As shown in Figure 17, the DQN
model outperforms the Q-learning model in 55% of
queries, however, it loses in 18% of queries. Otherwise,
the two models provide the same execution times. The
experiment shows clearly the ability of the DQNmodel
to generalize to queries states that were never seen
before unlike the Q-learning model that depends on
randomization to generate plans for unseen queries.
Although Q-learning is better than DQN in Queries 5,
6, there’s no guarantee to provide the same plans every
time the same experiment is conducted as it’s based on
random choices.
Generally, the results show clearly the effectiveness
of the proposed models against PostgreSQL DBMS
optimizer where execution plans produced by the pro-
posed models needed less execution time and produced
smaller intermediate results than the execution plans
produced by PostgreSQL DBMS.
In addition, the deep reinforcement learning based
model had performed equally as the regular reinforce-
ment learning model and was able to generalize for
new and unseen queries during the training phase. Deep

FIGURE 18. Training curve showing average penalty per episodes during
the training process on IMDB database.

reinforcement learning based model provides a great
flexibility to run the proposed models on real envi-
ronments rather than the restrictions presented in the
Q-Table of the reinforcement learning model.

6) Training Overhead
In supervised learning, tracking the model perfor-
mance and adjusting it during training can be done
using a validation set. On the other hand, tracking
reinforcement-based model performance during train-
ing can be a challenging task [4]. Reinforcement-
based model training is tracked using the average
penalty applied during different training episodes.
Figure 18 shows the evolution of the cost function
during the training process of the DQN model. The
figure shows how the total cost decreases during train-
ing on the IMDB Database. During training, it was
found that 1000 iterations would require 30 minutes
assuming that the actual response time of each query
plan exists in the buffer replay. The network was able
to learn from previous experience by using the buffer
reply which was used to store the latest N experi-
ence tuples observed by an agent where each expe-
rience tuple includes state, action, reward (response
time), and next state. Once the data is stored in the
buffer reply, the network can utilize it when required
through learning without having to interact with the
database management system again. This feature has
a significant impact on the training time. For example,
storing 1000 states in buffer replay with their rewards
(response times) prevents us from calling the database
management system again to retrieve the response
time for each of the 1000 state. More specifically,
if the average response time for a query in each of
the 1000 states in the buffer reply is 30 seconds, the
total required time to retrieve their response times
is 8 hours. Preserving the states data in the buffer
reply would save 8 hours of training time in case the
states response times were required twice during the
training.

VOLUME 10, 2022 70513



M. Ramadan et al.: RL_QOptimizer: A Reinforcement Learning Based Query Optimizer

VI. CONCLUSION
The process of finding the optimal join order is a complex
problem as the number of possible join combinations that the
optimizer needs to explore increases exponentially with the
number of tables that would be impossible for the optimizer to
analyze costs for all possible combinations. So, most optimiz-
ers use heuristics rules to prune the search space which helps
the optimizer to balance between the optimization time and
the plan quality. Besides, the optimizer uses pre-calculated
statistics to estimate the cost of a plan that may mislead the
optimizer to choose an inefficient plan. The planning time
for traditional models increases as the number of join condi-
tions increases. In this paper, we presented A Reinforcement
Learning Based Query Optimizer (RL_QOptimizer), a new
approach to recommend a query execution plan focusing on
join ordering problems using reinforcement learning-based
models. As the query execution time is the most crucial
requirement from any query engine, execution time was used
as a reward for the proposed reinforcement learning mod-
els. The achieved results of the performance evaluation show
that the RL_QOptimizer outperforms PostgreSQL in choos-
ing the best join orders for many queries and show how the
Learning-based models can save query planning time. Also,
the deep reinforcement learning model achieves very close
results to the Q-learning model with a key advantage that it is
more suitable for large number of states and actions as it uses
a neural network to approximate the query execution time.
In addition, the experiments show the ability of the DQN
model to generalize to queries states that were never seen
before during training phase which is another key advantage
for deep reinforcement learning model.

The current models have a limited scope in that they can
only handle join-only queries with no extra predicates. The
study focuses on Join Ordering only because it is one of
the most difficult problems in query optimization [2], and
the study aims to demonstrate the concept of using Rein-
forcement Learning in Query Optimizer to replace the cost
model by focusing on execution time, which will pave the
way for more research to create a comprehensive end-to-end
Reinforcement Learning Optimizer.

REFERENCES
[1] R. Elmasri and N. Shamkant, Fundamentals of Database Systems.

San Francisco, CA, USA: Benjamin-Cummings Publishing, 2001.
[2] B. Nevarez, Inside the SQL Server Query Optimizer, C. Massey, Ed.

Salford, U.K.: Hight Performance SQL Server, Simple Talk, 2010.
[3] S. Chaudhuri, ‘‘An overview of query optimization in relational systems,’’

in Proc. 17th ACM SIGACT-SIGMOD-SIGART Symp. Princ. Database
Syst. (PODS), 1998, pp. 34–43.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, ‘‘Playing Atari with deep reinforcement
learning,’’ in Neural Inf. Process. Syst. Workshop, 2013, pp. 1–9.

[5] C. J. C. H. Watkins and P. Dayan, ‘‘Q-learning,’’ Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, 1992.

[6] S. Vellevt, ‘‘Review of algorithms for join ordering problem in database
query optimization,’’ Inf. Technol. Control, vol. 1, pp. 1312–2622,
Jan. 2009.

[7] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning.
Cambridge, MA, USA: MIT Press, 1998.

[8] R. Bellman, ‘‘A Markovian decision process,’’ Indiana Univ. Math. J.,
vol. 6, no. 4, pp. 679–684, Apr. 1957.

[9] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. V. D. Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, andM. Lanctot, ‘‘Mas-
tering the game of Go with deep neural networks and tree search,’’ Nature,
vol. 529, no. 7587, pp. 484–489, 2016.

[10] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, ‘‘Deep reinforcement
learning framework for autonomous driving,’’ Electron. Imag., vol. 29,
no. 19, pp. 70–76, Jan. 2017.

[11] V. Talpaert, I. Sobh, B. Kiran, P. Mannion, S. Yogamani, A. El-Sallab, and
P. Perez, ‘‘Exploring applications of deep reinforcement learning for real-
world autonomous driving systems,’’ inProc. 14th Int. Joint Conf. Comput.
Vis., Imag. Comput. Graph. Theory Appl., 2019, pp. 564–572.

[12] S. Ibrahim and D. Nevin, ‘‘End-to-end framework for fast learning asyn-
chronous agents,’’ in Proc. 32nd Conf. Neural Inf. Process. Syst., Imitation
Learn. Challenges Robot. Workshop (NIPS), 2018. [Online]. Available:
https://sites.google.com/view/nips18-ilr#h.p_6wGpM-tJnQIU

[13] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price, ‘‘Access path selection in a relational database management
system,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data (SIGMOD),
1979, pp. 23–34.

[14] P. M. G. Apers, A. R. Hevner, and S. B. Yao, ‘‘Optimization algorithms for
distributed queries,’’ IEEE Trans. Softw. Eng., vol. SE-9, no. 1, pp. 57–68,
Jan. 1983.

[15] N. Bruno and S. Chaudhuri, ‘‘Exploiting statistics on query expressions
for optimization,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data
(SIGMOD), 2002, pp. 263–274.

[16] S. Christodoulakis, ‘‘Estimating selectivities in data bases,’’ Univ. Toronto,
Toronto, ON, Canada, Tech. Rep. CSRG-136, 1982.

[17] Y. E. Ioannidis, R. T. Ng, K. Shim, and T. K. Sellis, ‘‘Parametric query
optimization,’’ VLDB J. Int. J. Very Large Data Bases, vol. 6, no. 2,
pp. 132–151, May 1997.

[18] R. L. Cole and G. Graefe, ‘‘Optimization of dynamic query evaluation
plans,’’ inProc. ACMSIGMOD Int. Conf. Manage. Data (SIGMOD), 1994,
pp. 150–160.

[19] S. Ganguly, ‘‘Design and analysis of parametric query optimization algo-
rithms,’’ in Proc. 24rd Int. Conf. Very Large Data Bases. New York, NY,
USA, Aug. 1998, pp. 228–238.

[20] A. Hulgeri and S. Sudarsh, ‘‘Parametric query optimization for linear and
piecewise linear cost functions,’’ in Proc. 28th Int. Conf. Very Large Data
Bases, Aug. 2002, pp. 167–178.

[21] P. Bizarro, N. Bruno, and D. J. DeWitt, ‘‘Progressive parametric query
optimization,’’ IEEE Trans. Knowl. Data Eng., vol. 21, no. 4, pp. 582–594,
Apr. 2009.

[22] N. Reddy and J. R. Haritsa, ‘‘Analyzing plan diagrams of database query
optimizers,’’ in Proc. VLDB Endowment, Aug. 2005, pp. 1228–1239.

[23] B. J. Oommen, ‘‘The efficiency of histogram-like techniques for database
query optimization,’’ Comput. J., vol. 45, no. 5, pp. 494–510, May 2002.

[24] V. Poosala, P. J. Haas, Y. E. Ioannidis, and E. J. Shekita, ‘‘Improved
histograms for selectivity estimation of range predicates,’’ in Proc. ACM
SIGMOD Int. Conf. Manage. Data (SIGMOD), 1996, pp. 294–305.

[25] X. Lu and J. Guan, ‘‘A new approach to building histogram for selectivity
estimation in query processing optimization,’’ Comput. Math. With Appl.,
vol. 57, no. 6, pp. 1037–1047, Mar. 2009.

[26] J. Zahir and A. E. Qadi, ‘‘A recommendation system for execution plans
using machine learning,’’ Math. Comput. Appl., vol. 21, no. 23, p. 23,
Jun. 2016.

[27] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil, ‘‘LEO-DB2’s
learning optimizer,’’ in Proc. 27th Int. Conf. Very Large Data Bases.
San Francisco, CA, USA: Morgan Kaufmann, Sep. 2001, pp. 19–28.

[28] H. Liu, M. Xu, Z. Yu, V. Corvinelli, and C. Zuzarte, ‘‘Cardinality estima-
tion using neural networks,’’ in Proc. 25th Annu. Int. Conf. Comput. Sci.
Softw. Eng. Riverton, NJ, USA: IBM Corp., Nov. 2015, pp. 53–59.

[29] R. Marcus and O. Papaemmanouil, ‘‘Deep reinforcement learning for join
order enumeration,’’ in Proc. 1st Int. Workshop Exploiting Artif. Intell.
Techn. Data Manage., Jun. 2018, pp. 1–4.

[30] J. Ortiz, M. Balazinska, J. Gehrke, and S. S. Keerthi, ‘‘Learning state
representations for query optimization with deep reinforcement learning,’’
in Proc. Workshop Data Manage. End End Mach. Learn., no. 4, Jun. 2018,
pp. 1–4.

[31] R. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska,
O. Papaemmanouil, and N. Tatbul, ‘‘Neo: A learned query optimizer,’’
Proc. VLDB Endowment, vol. 12, no. 11, pp. 1705–1718, Jul. 2019.

[32] O. Ivanov and S. Bartunov, ‘‘Adaptive cardinality estimation,’’ 2017,
arXiv:1711.08330.

70514 VOLUME 10, 2022



M. Ramadan et al.: RL_QOptimizer: A Reinforcement Learning Based Query Optimizer

[33] S. Krishnan, Z. Yang, K. Goldberg, J. Hellerstein, and I. Stoica, ‘‘Learn-
ing to optimize join queries with deep reinforcement learning,’’ 2018,
arXiv:1808.03196.

[34] K. Tzoumas, T. Sellis, and C. S. Jensen, ‘‘A reinforcement learning
approach for adaptive query processing,’’ Inst. Datalogi, Aalborg
Universitet, Aalborg, Denmark, 1DB Tech. Rep. 22, 2008. [Online].
Available: https://vbn.aau.dk/en/publications/a-reinforcement-learning-
approach-for-adaptive-query-processing

[35] R. B. Guo and K. Daudjee, ‘‘Research challenges in deep reinforce-
ment learning-based join query optimization,’’ in Proc. 3rd Int. Workshop
Exploiting Artif. Intell. Techn. Data Manage., Jun. 2020, pp. 1–6.

[36] R.Marcus and O. Papaemmanouil, ‘‘Towards a hands-free query optimizer
through deep learning,’’ in Proc. 9th Biennial Conf. Innov. Data Syst. Res.,
(CIDR), 2019, pp. 1–8.

[37] I. Trummer, J. Wang, D. Maram, S. Moseley, S. Jo, and J. Antonakakis,
‘‘SkinnerDB: Regret-bounded query evaluation via reinforcement learn-
ing,’’ in Proc. Int. Conf. Manage. Data, Jun. 2019, pp. 1153–1170.

[38] J. Heitz and K. Stockinger, ‘‘Join query optimization with deep reinforce-
ment learning algorithms,’’ 2019, arXiv:1911.11689.

[39] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska, ‘‘Bao:
Making learned query optimization practical,’’ in Proc. Int. Conf. Manage.
Data, Jun. 2021, pp. 1275–1288.

[40] A. Sharma, F. M. Schuhknecht, and J. Dittrich, ‘‘The case for auto-
matic database administration using deep reinforcement learning,’’ 2018,
arXiv:1801.05643.

[41] J.Wang, I. Trummer, andD. Basu, ‘‘UDO:Universal database optimization
using reinforcement learning,’’ Proc. VLDB Endowment, vol. 14, no. 13,
pp. 3402–3414, Sep. 2021.

[42] V. Mnih et al., ‘‘Human-level control through deep reinforcement learn-
ing,’’ Nature, vol. 518, pp. 529–533, Feb. 2015.

[43] (1996). Postgresql. [Online]. Available: https://www.postgresql.org/
[44] D. P. Kingma and J. B. Adam, ‘‘A method for stochastic optimization,’’ in

Proc. 3rd Int. Conf. Learn. Represent. (ICLR), San Diego, CA, USA, 2015,
pp. 1–15.

[45] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann,
‘‘How good are query optimizers, really?’’Proc. VLDBEndowment, vol. 9,
no. 3, pp. 204–215, Nov. 2015.

[46] (1993). TPC-H. [Online]. Available: http://www.tpc.org/tpch/
[47] (2015). Tensorflow. [Online]. Available: https://www.tensorflow.org
[48] (2015). Keras. [Online]. Available: https://keras.io/
[49] (1990). Imdb. [Online]. Available: https://www.imdb.com/
[50] M. Dreseler, M. Boissier, T. Rabl, and M. Uflacker, ‘‘Quantifying TPC-H

choke points and their optimizations,’’ Proc. VLDB Endowment, vol. 13,
no. 8, pp. 1206–1220, Apr. 2020.

MOHAMED RAMADAN received the B.Sc.
degree from the Information Systems Department,
Faculty of Computers and Artificial Intelligence,
Cairo University, in 2016. He is currently a Teach-
ing Assistant and a Researcher at the Faculty of
Computers and Artificial Intelligence, Cairo Uni-
versity. He has six years of experience in the area
of software development.

AYMAN EL-KILANY received the M.Sc. and
Ph.D. degrees from the Information Systems
Department, Faculty of Computers and Artificial
Intelligence, Cairo University, in 2012 and 2018,
respectively. He is currently an Assistant Professor
and a Researcher at the Faculty of Computers and
Artificial Intelligence, Cairo University.

HODA M. O. MOKHTAR received the B.Sc.
(Hons.) and M.Sc. degrees from the Department
of Computer Engineering, Faculty of Engineering,
Cairo University, in 1997 and 2000, respectively,
and the Ph.D. degree in computer science from the
University of California at Santa Barbara, in 2005.
She is currently the Dean of the Faculty of Com-
puting and Information Sciences, Egypt University
of Informatics. Before being the Dean, she was
the Chair of the Information Systems Department,

Faculty of Computers and Artificial Intelligence, Cairo University. In 2000,
she was awarded a scholarship and the Dean’s Fellowship from the Com-
puter Science Department, UCSB. She taught multiple courses both for
the undergraduate and graduate levels at the Faculty of Computers and
Artificial Intelligence, Cairo University, where she has supervised a number
of master’s and Ph.D. theses at the Faculty of Computers and Artificial
Intelligence. She has participated in several national committees, and was
awardedmultiple awards and certificates for her academic achievements. Her
research interests include big data analytics, data warehousing, data mining,
database systems, social network analysis, bioinformatics, and web services.

IBRAHIM SOBH received the B.Sc. and M.Sc.
degrees in computer engineering from the Fac-
ulty of Engineering, Cairo University, and the
Ph.D. degree in deep reinforcement learning for
fast learning agents acting in 3D environments.
Currently, he is a Senior Expert of AI at Valeo.
He has more than 20 years of experience in the
area of machine learning and software develop-
ment. His M.Sc. thesis is in the field of machine
learning applied on automatic documents summa-

rization. He has participated in several related national and international
mega projects, conferences and summits. He delivers training and lectures
for academic and industrial entities. His publications including international
journals and conference papers are mainly in the machine and deep learning
fields. His research interests include computer vision, natural language
processing, and speech processing.

VOLUME 10, 2022 70515


