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ABSTRACT This work presents a hybridization of the Generalized Minimum Variance Control (GMVC)
with Parametric Robust Control (RPC) for Linear Time-Invariant (LTI) Uncertain Systems. A linear
parametric uncertainties model describes the system’s dynamic behavior. The controller synthesis is based
on a PID controller with a low-pass filter and formulated as a convex optimization problem that considers
the desired closed-loop performance and the uncertainties of the model parameters. The robust controller
gains represent the best solution for all possible models and assign the closed-loop poles within the desired
region in the s-plane and are transferred to GMVC by Tustin’s method, resulting in a parametric robust
generalized minimum variance (PRGMV) controller. It was compared to two other approaches, carrying out
several simulation essays in a Matlab environment. The performance index and sensitivity analysis highlight
the controller’s performance and efficiency. The results confirmed that the proposed controller ensures better
robustness and performance for reference tracking and disturbance rejection.

INDEX TERMS GMVC, parametric uncertainties, convex optimization, PID control, sensitivity analysis.

I. INTRODUCTION
IN 1997, it was established that high order controllers
were acutely sensitive to plant parameter perturbations,
leading to attention to the synthesis and design of low
order controllers, such as Proportional-Integral-Derivative
(PID) [1], [2]. Indeed, in recent years, most industries still
have employed such controllers due to their straightforward
functionality and ease of use and tuning. However, many
control practitioners pointed out that a PID tuned via a con-
ventional approach was not robust. From there arose the
need for robust control techniques for industrial applications
employing PID with modifications in its original structure to
guarantee the robustness of the control loop [3].

At first sight, such techniques proved to be better than the
PID in its original form, but subsequently, these controllers
became more complex in an uncertain environment [1], [4].
From there, the researchers felt there was a need to combine
the simplicity of this controller with advanced control tech-
niques [1]. In this context, GMVC (Generalized Minimum
Variance Control) became attractive due to its properties to
put different closed-loop characteristics under consideration
in its optimization problem [5], [6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Chao-Yang Chen .

Proposed by [7], the GMVC uses a generalized output
that is applied to a wider class of plants, being one of the
simplest member of the Stochastic Control, differing to the
most common Model-based Predictive Control (MPC) for
being based on ARMAX (Auto-Regressive Moving Average
with eXternal inputs) models while MPC on ARX (Auto-
Regressive with eXternal inputs), i.e.., the GMVC considers
a full description of system’s deterministic and stochastic
parts [8]. These important features enable the controller to
distinguish between noise and uncertainty from deterministic
cause and effect. In addition, the controlled plant presents a
more stable behavior with less sensitivity tomeasurement and
modeling uncertainty noises [9].

Several works about GMVC have been published in this
context. For example, we have the work of [10], which
presented a review of the controller design to eliminate the
steady-state offset error and stabilize a nonlinear system.
In [11] it was proposed a study on self-tuning control strate-
gies with GMVC in a fixed two degree of freedom structure.
This way, a considerable number of successful design studies
have been carried out to hybridize PID and GMVC over the
last years, like the one developed in [12] and [13].

Other applications can be seen in [14], in which presented
a hybrid GMVC design with PID tuning, whose excessive
actuator movements could be avoided and non-minimum
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phase plants were controlled, and in [15], that presented a new
self-tuning PID controller design, in which the parameters
were calculated online based on the relationship between the
PID and GMVC laws by considering the pole assignment
in the control system. Latest applications employing GMVC
control were presented in [16], [17] and [18].

In control system design, the primary requirement is the
asymptotic stability of controlled systems, which is guar-
anteed by designing an appropriate controller based on the
process nominal model. However, in reality, several sources
of uncertainties may make the nominal model inaccurate,
leading to controller performance degradation [19]. This limi-
tation is a drawback of designingGMVCbased on the process
nominal model.

Robust control deals explicitly with system uncertainties
and guarantees the controlled system performance, primarily
asymptotic stability when there are uncertainties [19], [20].
This design method has been studied extensively
in [21], [22] and [23]. In addition, recent studies developed
in [24]–[27] and [28] addressed an outstanding contribution
for the current state-of-the-art on the study of parametric
uncertainties. These works focused on robust controller syn-
thesis and analysis for converters by using Parametric Robust
Control (PRC), whose controller’s parameters were obtained
by solving a linear programming problem.

The work proposed in [29] presents a design of a fixed
order controller for an uncertain system that guarantees
closed-loop stability and a suitably adequate performance
under a stated restricted frequency range. Then, an LMI con-
dition ensures the robust stability of the closed-loop system
in the presence of bounded parametric uncertainties.

Given the state-of-the-art in GMVC and PRC, it is possible
to observe that there is a lack of a study on the hybridization
of these two cited areas for parametric uncertainty plants.
Furthermore, most studies in GMVC essentially still focus
on inflicting a scalar λ-tuning weight over the control signal,
such as in the positional case, with Q(z−1) = λ, as was made
in [30], and the incremental case for inclusion of a polynomial
weight, in [11]. In these cases, the calibration of λ was
mostly related to energy constraints regarding control effort
in order to have good disturbance rejection and reference
tracking, but without any consideration made on how this
parameter would affect the relative stability of the control
loop [11], [12].

In this context, this paper presents a hybridization of the
GMVC with PRC, resulting in a parametric robust predictive
control law which utilizes the predictive nature of the GMVC
for parametric uncertainty plant. The proposed design is
based on a PID controller with a low-pass filter, whose gains
are obtained employing the robust pole placement technique
and solved by formulating a convex optimization problem
integrated to the Chebyshev theorem, which incorporates
additional constraints on the system and desired performance
and allows the designer to find the controller parameters that
place closed-loop poles within desired intervals. PID gains
are transferred to GMVC by Tustin’s method, resulting in a

parametric robust generalized minimum variance (PRGMV)
controller.

The PRGMV is compared to two other controllers, one
proposed in [22] and another in [31]. It is important to
highlight that the PID gains and the robust stability anal-
ysis are obtained in the continuous frequency domain.
In contrast, the sensitivity and robustness analysis of the
PRGMV is performed in the discrete frequency domain,
whose results confirm that the PRGMVoutperforms the other
controllers. Hence, the proposed design method uses continu-
ous and discrete domain approaches, being one of this paper’s
contributions.

The significant contribution of this work lies in the nonex-
istence of a methodology directed to the hybridization of the
stochastic control theory and parametric robust control for
parametric uncertainty plants. Furthermore, the PRGMVpro-
vides a non-scalarQ(z−1), which filters the control signal and
reduces its variance, avoiding the need to tune this parameter
based on trial and error, and still ensures better robustness and
performance for reference tracking and disturbance rejection,
allowing to figure out the closed-loop performance in terms
of robustness analysis using sensitivity functions by means of
magnitude plots in the frequency domain. From those func-
tions, important indices are obtained to quantify the trade-off
between robustness and performance to guarantee a suitable
well-tuned controller.

In addition, a Parametric Robust Control approach of
the type proposed in this paper represents a competitive
option when dealing with some safety-critical plants, such
as biomedical and electric power systems. In such systems,
for safety reasons, it is not recommendable to use adaptive
control approaches demanding the injection of disturbance
test signals into the plant, a fact that may not be allowed in
such safety-critical applications.

Therefore, this paper is organized as follows: Section 2
presents the Parametric Robust control (PRC) background,
addressing the stability analysis, the Kharitonov theorem,
and the interval pole placement design. Section 3 shows the
Incremental GMVC Control. The synthesis of the PRGMV
is developed in Section 4, followed by its robustness analysis
in terms of sensitivity functions. In order to illustrate the
effectiveness of the proposed controller, Section 5 presents
simulation results. Finally, Section 6 gives conclusions and
prospects.

II. PARAMETRIC ROBUST CONTROL (PRC)
Much of modern control theory addresses problems involv-
ing mathematical model uncertainty. When it involves vari-
ous physical parameters specified within given bounds, it is
called parametric or structured uncertainty, but when uncer-
tainty concerns model structure or incorrect modeling, it is
called non-parametric or unstructured uncertainty [20]. These
uncertainties occur because a mathematical model cannot
accurately represent natural systems, which compromises the
system stability [19], [32]. In this case, control systems must
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consider model uncertainty so that the asymptotic stability of
the controlled systems can be guaranteed.

Parametric Robust Control deals explicitly with uncertain-
ties clarified above, providing satisfactory performance in a
closed-loop system for all process uncertainties and bounded
disturbances. Regarding stability, the robust control system
should ensure closed-loop stability under nominal conditions
and under uncertainties in the model [33], [34]. Therefore,
this paper focuses on robust controller design for systems
with parametric uncertainties.

A. PROBLEM STATEMENT
A Single Input Single Output (SISO) system, in the
continuous frequency domain, can be represented by a trans-
fer function G(s). The basic structure for uncertain sys-
tems is generally described by uncertain polynomials N (s, n)
and D(s, d), restricted within pre-specified closed real inter-
vals [35], [36]. Thus, the transfer function of the uncertain
system is given by:

G(s) =
N (s, n)
D(s, d)

=
nmsm + nm−1sm−1 + . . .+ n0
dlsl + dl−1sl−1 + . . .+ d0

(1)

where ni and di are bounded by intervals
[
n−i , n

+

i

]
and[

d−i , d
+

i

]
, respectively. Such a set of polynomials is called an

interval polynomial family [37]. Then, once theminimum and
maximum values of the various coefficients are assigned, the
parametric uncertainty is completely characterized by letting
ni and di lie in a box defined by

ni ∈ R; n−i ≤ ni ≤ n
+

i for i = 0, 1, . . . ,m

di ∈ R; d−i ≤ di ≤ d
+

i for i = 0, 1, . . . , l (2)

So, G(s) can be represented by

G(s) =
N (s, n)
D(s, d)

=

∑m
i=0

[
n−i , n

+

i

]
si∑l

i=0
[
d−i , d

+

i

]
si

(3)

B. ROBUST POLE ASSIGNMENT
Consider the closed-loop system as depicted in Fig. 1. The
controller C(s) is given by:

C(s) =
B(s)
A(s)
=
brsr + br−1sr−1 + . . .+ b0
atst + at−1st−1 + . . .+ a0

(4)

FIGURE 1. Schematic of the closed loop system.

In the case of a low-order controller, we have r ≤ t .
By using (3) and (4) the closed-loop transfer function will
be given by

[H (s)] =
B(s)N (s, n)

A(s)D(s, d)+ B(s)N (s, n)
(5)

and the closed-loop characteristic polynomial family is as
follows:

[1(s)] = A(s)D(s, d)+ B(s)N (s, n) (6)

Let us now introduce a desired characteristic polynomial
δ(s) of degree l+t which is Hurwitz andwhich has the desired
set of closed-loop characteristic roots:

δ(s) = δl+tsl+t + δl+t−1sl+t−1 + . . .+ δ0 (7)

In order to attain the desired characteristic polynomial
in (7), it is necessary and sufficient to solve a set of liner
inequations [21], [38]. However, when t = l − 1 the linear
equations admit a solution for the controller coefficients,
for arbitrary δ(s) whenever the plant has no common pole
zero pairs, and for t < l − 1 the exact attainment of the
desired polynomial is impossible [22]. So, for t ≤ l − 1,
(7) is enlarged into a box in the coefficient space, contain-
ing the point representing the original desired characteristic
polynomial. This corresponds to choosing an interval desired
polynomial family given by (8), which facilitates a solution
from a root space point of view, where δ−n ≤ δn ≤ δ+n for
n = 0, 1, . . . , l + t .

[δ(s)] = δnsn + δn−1sn−1 + . . .+ δ0 (8)

To guarantee robust stability and robust performance, the
roots clusters of [1(s)] must be inside the roots clusters
of [δ(s)], i.e.,

< [1(s)] ⊆ < [δ(s)] (9)

where <(.) depict the roots clusters of [1(s)] and [δ(s)] [22].
From (9), one can formulate the set of linear inequalities

given in (10), as shown at the bottom of the next page, that
poses constraints to the controller’s coefficients so that (9)
can be satisfied.

Then, the robust design problem is summarized in the
choice of a parameters vector of the controller to be opti-
mized (xc), if possible, so that the set of inequalities in (10)
is satisfied for all n−i ≤ ni ≤ n

+

i and d−i ≤ di ≤ d
+

i . The
aforementioned robust performance control design problem,
given in (10), can be rewritten as the following optimization
problem [21], [39]:

min f (xc)

s.t aixc ≤ bi (11)

The cost function f (xc) must be built and minimized or
maximized according to the control goals and restrictions.
The solution of the problem given in (11) can be idealized as
a solution to a linear programming (LP) problem, although
different techniques solve it.

1) LINEAR PROGRAMMING BASED ON CHEBYSHEV’s
THEOREM
The Chebyshev’s theorem guarantees to be possible to find
the largest ball B of center xc and maximum radius r, which
is contained in the politope P, described by the set of linear
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FIGURE 2. Largest ball B inscribed in P .

inequalities, whose norm is Euclidean, according to Fig. 2.
The ball center xc is called the Chebyshev Center and is a
point inside P that is farthest from the exterior of P [40].

When the set P is convex, the computation of xc become
a convex optimization problem. More specifically, suppose
P ⊆ Rn is defined by a set of convex inequalities, i.e., P =
{aixc ≤ bi, i = 1, . . . , n}. Then, one can find xc by solving
the LP given in (12) for r ≥ 0, [40]:

max r

s.t aixc + r‖ai‖2 ≤ bi (12)

Comparing (11) and (12), the robust pole assignment tech-
nique reduces to an LP combined with the Chebyshev’s the-
orem as follows:

max f (x)

s.t aixc + r‖ai‖2 ≤ bi (13)

Equivalently,

max f (x)

s.t Acx ≤ bi (14)

where

Ac =

 ai ‖ai‖2
−ai ‖ai‖2
01×i −1

 , bi =

b+ib−i
0

 and x =
[
xc
r

]
The vector x contains the controller gains and the radius

of the Chebyshev sphere, f (x) is a linear cost function that
must be built and maximized according to the control goals,
‖ai‖2 is the Euclidean norm of the coefficients of ai, i.e.,
‖ai‖2 =

√(
aiT ai

)
[41]. In this study, the cost function f (x)

has been chosen to be the sum of the elements of x [21], [38].
Then, when a solution exists, (14) provides the robust param-
eters of C(s) and ensures a maximum stability region for
uncertain systems.

2) KHARITONOV STABILITY TEST
Considering that (6) can be represented by

[1(s, p)] =
∑n

i=0

[
p−i , p

+

i

]
si (15)

the polynomial family [1(s, p)] is stable if and only if all
its roots are contained in the left-hand side of the complex
plane. Then, [1(s, p)] is robustly stable if and only if all its
polynomials are stable for a set of operating points different
from the nominal operating point within its minimum and
maximum limits. However, it is not necessary to check the
stability of all its polynomials to ensure robust stability since
this can be verified by using Kharitonov’s theorem [20], [25].

The Kharitonov theorem states that the stability of the four
Kharitonov polynomials, given by

K1(s) = a−0 + a
−

1 s+ a
+

2 s
2
+ a+3 s

3
+ a−4 s

4
+ a−5 s

5
+ . . .

K2(s) = a+0 + a
+

1 s+ a
−

2 s
2
+ a−3 s

3
+ a+4 s

4
+ a+5 s

5
+ . . .

K3(s) = a+0 + a
−

1 s+ a
−

2 s
2
+ a+3 s

3
+ a+4 s

4
+ a−5 s

5
+ . . .

K4(s) = a−0 + a
+

1 s+ a
+

2 s
2
+ a−3 s

3
+ a−4 s

4

+ a+5 s
5
+ . . . (16)



δ−l+t
δ−l+t−1
.

.

.

.

.

.

.

.

.

δ−1
δ−0



≤



nm dl
nm−1 nm dl−1 dl
nm−2 nm−1 . dl−2 dl−1 .

nm−3 nm−2 . . dl−3 dl−2 . .

. nm−3 . . . . dl−3 . . .

. . . . . nm . . . . . dl

. . . . nm−1 . . . . dl−1
n2 . . nm−2 d2 . . dl−2
n1 n2 nm−3 d1 d2 dl−3
n0 n1 . . d0 d1 . .

n0 . . . d0 . . .

. . . . . . . .

. . n2 . . d2
. n1 . d1

n0 d0





br
br−1
.

.

.

b0
at
at−1
.

.

.

a0



≤



δ+l+t
δ+l+t−1
.

.

.

.

.

.

.

.

.

δ+1
δ+0



(10)
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is a necessary and sufficient condition to guarantee the
stability of the interval polynomial family [42]. There-
fore, the closed-loop characteristic polynomial, given in (6),
is robustly stable if and only if the four Kharitonov polyno-
mials in (16) are stable [35], [43].

III. INCREMENTAL GMV CONTROL
The GMVC was developed from the Minimum Variance
Regulator (MVR) first introduced by Karl Johan Åström in
the 1970s. According to [12], its original structure does not
guarantee reference tracking and disturbance rejection for
plants without integrators [11], [12], being necessary to add
a filter 1 = 1− z−1 at the control weight of the generalized
output [44],

φ(k + d) = P(z−1)y(k + d)− T (z−1)r(k + d)
+Q(z−1)1u(k) (17)

being

P(z−1) = p0 + p1q−1 + · · · + pnpq
−np

T (z−1) = t0 + t1q−1 + · · · + tntq
−nt

Q(z−1) = q0 + q1q−1 + · · · + qnqq
−nq

The polynomials P(z−1), T (z−1) and Q(z−1) are weight-
ing filters for system’s output, reference and control signal,
respectively. The generalized output φ(k) is posed into a
stochastic optimization problem ofminimizing the GMV cost
function [30], [45],

J = E[φ2(k + d)] (18)

with respect to the control signal increment, i.e.,

∂J
∂1u(k)

= 0 (19)

where E[·] denotes the mathematical expectation operator.
Let us expand GMVC’s equations from ARIMAX (Auto-

Regressive Integrated Moving Average with Exogenous
Input) to generalized stochastic plant models of the following
form:

1A(z−1)y(k) = z−dB(z−1)1u(k)+ Cξ (z−1)ξ (k) (20)

being

A(z−1) = 1+ a1z−1 + · · · + anaq
−na

B(z−1) = b0 + b1z−1 + · · · + bnbq
−nb

Cξ (z−1) = 1+ c1z−1 + · · · + cncq
−nc

where y(k) is the system’s output, u(k) is the input, d is
the discrete time delay and ξ (k) represents a white noise
disturbance. By inspection of the right hand side of the gen-
eralized output in (17), y(k + d) is a future measurement
not available at instant k , so it must be predicted in order to
work with φ(k + d) [11]. Then, shifting (20) d-steps ahead
and remembering that P(z−1) multiplies the output y(k + d)
in (17), one obtains the following:

P(z−1)1A(z−1)y(k + d) = P(z−1)B(z−1)1u(k)

+P(z−1)Cξ (z−1)ξ (k + d) (21)

The future term of the noise, ξ (k + d), is unknown at
present k . Therefore it can be represented by present and
future parts, as follows:

P(z−1)Cξ (z−1)ξ (k + d)
1A(z−1)

=
F(z−1)ξ (k)
1A(z−1)︸ ︷︷ ︸
present

+E(z−1)ξ (k + d)︸ ︷︷ ︸
future

(22)

whereas these two auxiliary polynomials, E(z−1) and F(z−1),
can be determined by solving the following Diophantine
equation:

P(z−1)Cξ (z−1) = 1A(z−1)E(z−1)+ z−dF(z−1) (23)

being

E
(
z−1

)
= e0z−1 + e1z−1 + · · · + end−1z

−nd−1

F
(
z−1

)
= f0 + f1z−1 + · · · + fnf z

−nf

nf = max(np + nc, na + ne)− d

Using only the present data of (22), the predicted output
ŷ(k + d |k) is

P(z−1)ŷ(k + d |k) =
P(z−1)B(z−1)1u(k)

1A(z−1)
+
F(z−1)ξ (k)
1A(z−1)

(24)

By considering the elimination of the part E(z−1)ξ (k + d)
of (22) it introduces an error in the prediction, given by

E(z−1)ξ (k + d) = P(z−1)[y(k + d)− ŷ(k + d |k)] (25)

Thus, the present stochastic signal ξ (k), obtained from the
prediction error, is

ξ (k) =
P(z−1)
E(z−1)

[y(k)− ŷ(k|k)] (26)

Substituting (26) into (24) and after some algebraic manip-
ulations and using (22), the d-steps aheadMinimumVariance
Predictor (MVP) turns to,

ŷ(k + d |k) =
B(z−1)E(z−1)1u(k)+ F(z−1)y(k)

P(z−1)Cξ (z−1)
(27)

By substitution of (27) into the generalized output in (17),
the GMVC control law is thus obtained by solving (19) [9],
[45], resulting in

1u(k) =
Cξ (z−1)T (z−1)yr (k + d)− F(z−1)y(k)

B(z−1)E(z−1)+ Cξ (z−1)Q(z−1)
(28)

which guarantees in steady-state that the variance of the
generalized output, σ 2

φ , is a minimum.
At last, considering Cξ (z−1) = 1, the closed-loop transfer

function is obtained through the substitution of (28) and (23)
into (20). After some algebraic manipulations, one finds that

y(k) =
z−dB(z−1)T (z−1)

B(z−1)P(z−1)+1A(z−1)Q(z−1)
yr (k)

+
B(z−1)E(z−1)+ Q(z−1)

B(z−1)P(z−1)+1A(z−1)Q(z−1)
ξ (k) (29)
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which considers the closed-loop dynamics from the refer-
ence, yr (k), to the output, and from the white noise type
sequence, ξ (k), to the output.

IV. PRGMV CONTROLLER DESIGN
This section presents the hybridization of the GMVC with
PRC, whose design is based on a PID controller with a low-
pass filter, resulting in a PRGMV control law that utilizes the
predictive nature of the GMVC for parametric uncertainties
plant. The controller gains are obtained by solving the convex
optimization problem given in (14) and transferred to the
GMVC using Tustin’s method.

A. GMVC BASED ON PID CONTROLLER
The controller C(s) is represented in the Laplace complex
domain by

C(s) =
U (s)
Er (s)

=
kd s2 + kps+ ki

s (s+ α)
(30)

with U (s), Er (s) = Yr (s)− Y(s), α, kp, ki and kd being the
controller’s output signal, error signal, high frequency lag,
proportional, integral and derivative gains, respectively.

The low-pass filter is included on the control law to
reduce the influence of non-minimum phase (undershoot) and
to assess further enhancements on the performance of the
control-loop, particularly if the error is measured in a noisy
environment [2]. Then, the problem of stabilization comes
down to determine the gains ofC(s), i.e., xc := [kd , kp, ki, α],
for which the closed-loop characteristic polynomial family
[1(s)] in (6) is Hurwitz [46]–[48].
Due to an integral part of the error signal, any controller

with this feature already provides asymptotic tracking and
disturbance rejection for step-like references [2], [32]. On the
other hand, integrating plants might impose more difficulties
to be stabilized using PID controllers, and sometimes it might
be necessary to exclude an integral part of the controller.

Defining

s :=
2
ts

(
1− z−1

1+ z−1

)
(31)

the Tustin’s method for converting (30) to its corre-
sponding discrete-time control law, being ts the sampling
time, the discrete PID control law is obtained after some
algebraic manipulations, which results in the following
RST structure [31]:

Rrst (z−1)1u(k) = Trst (z−1)yr (k)− Srst (z−1)y(k) (32)

being

Rrst (z−1) = r0 + r1z−1

Srst (z−1) = s0 + s1z−1 + s2z−2

Trst (z−1) = s0 + s1z−1 + s2z−2

so that

s0 = 4kd + 2kpts + kits2

s1 = −8kd + 2kits2

s2 = 4kd − 2kpts + kits2

r0 = 4+ 2αts
r1 = −4+ 2αts (33)

Adding 1 = 1− z−1 to both (28) and (32) will guarantee
step-like reference tracking and disturbance rejection for the
closed-loop systems. These controllers generate the control
increment, which is then applied to the process as follows:

u(k) = u(k − 1)+1u(k) (34)

From (17), when φ(k + d) = 0, we have

Q(z−1)1u(k) = T (z−1)yr (k + d)− P(z−1)y(k + d) (35)

By comparing (35) to (32), the polynomials P(z−1), T (z−1)
and Q(z−1) become

P(z−1) = Srst (z−1)

T (z−1) = Trst (z−1)

Q(z−1) = Rrst (z−1) (36)

By looking at (36) and (33), note that the parameters of the
polynomials P(z−1), T (z−1) and Q(z−1) strongly depend on
the PID controller gains, which will be computed by solving
the convex optimization problem given in (14), making them
robust. Therefore, since the PID controller gains given in (33)
are robust, the GMVC control law in (28) becomes

1u(k) =
Cξ (z−1)Tprgmv(z−1)yr (k + d)− F(z−1)y(k)

B(z−1)E(z−1)+ Cξ (z−1)Qprgmv(z−1)
(37)

which represents the PRGMV controller control law and
guarantees in steady-state that the variance of the generalized
output, σ 2

φ , is a minimum, whereas the Diophantine equation,
given by (23), then becomes

Pprgmv(z−1)Cξ (z−1) = 1A(z−1)E(z−1)+ z−dF(z−1) (38)

where

Pprgmv(z−1) = s0 + s1z−1 + s2z−2

Tprgmv(z−1) = s0 + s1z−1 + s2z−2

Qprgmv(z−1) = r0 + r1z−1 (39)

Note that the PRGMV control law in (37) is in the RST
structure, and its control loop is depicted in Fig. 3 [49].
All (z−1) were hidden for the sake of simplicity; d(k) can rep-
resent an output disturbance or a noise added to the measured
output.

At last, considering Cξ (z−1) = 1, the closed-loop transfer
function is given by

y(k) =
z−dB(z−1)Tprgmv(z−1)

B(z−1)Pprgmv(z−1)+1A(z−1)Qprgmv(z−1)
yr (k)

+
1A(z−1)

[
B(z−1)E(z−1)+ Qprgmv(z−1)

]
B(z−1)Pprgmv(z−1)+1A(z−1)Qprgmv(z−1)

d (k)

(40)
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FIGURE 3. Block diagram of the PRGMV control loop.

Note that the transfer function that characterizes the
closed-loop dynamic behavior of y(k) from yr (k) in (40)
is explicitly represented by the polynomials that weight
the optimization problem in the GMVC, i.e., Pprgmv(z−1),
Tprgmv(z−1) and Qprgmv(z−1). Therefore, these polynomials
guarantee robust stability and performance for parametric
uncertainties systems, satisfying (9) since its parameters
strongly depend on the PID controller gains, which are com-
puted by solving the problem (14), making it robustly stable.

Remark that since the PRGMV is a stochastic controller,
the sensitivity function of the controlled systems might differ
from the closed-loop sensitivity of the PID case, leading
to better results regarding the PRGMV that enhances to a
more stable behavior with less sensitivity to the measurement
noise. This occurs due to the presence of the E(z−1) polyno-
mial in both (29) and (40), that is obtained from the solution
of GMV’s Diophantine equation and is related to the noise
prediction [9].

B. ROBUSTNESS ANALYSIS
This section covers robustness analysis usingmagnitude plots
of the sensitivity functions Ssen(z−1) and Tsen(z−1) in the
frequency domain. From those functions, important indices,
such as gain margin (GM), phase margin (PM) and maximum
amplitude ratios, can be obtained to quantify the trade-off
between robustness and performance to guarantee a suitable
well tuned controller. Thus, according to [50], (40) is rewrit-
ten to

y(k) = Tsen(z−1)yr (k)+ Ssen(z−1)d (k) (41)

where Ssen(z−1) is the transfer function between the distur-
bance d(k) and the output y(k) (output sensitivity function)
and characterizes the system performance from the point of
view of disturbance rejection, and Tsen(z−1) is the sensitivity
function between yr (k) and y(k) (also called complementary
sensitivity function) and characterizes the closed loop system
performance [11], [49].

By considering Cξ (z−1)Tprgmv(z−1) = F(z−1) in (37),
since the PRGMV controller is based on the PID struc-
ture, the sensitivity functions have the property Ssen(z−1) +
Tsen(z−1) = 1 and reflect many interesting properties of the
closed-loop system, particularly, robustness to the model’s
uncertainties. The maximum amplitude ratios of Ssen(z−1)

and Tsen(z−1), respectivelyMS and MT , are given by

MS = max
ω

∣∣∣Ssen(ejωts )∣∣∣
MT = max

ω

∣∣∣Tsen(ejωs )∣∣∣ (42)

The equation (42) quantifies the sensibility of the control
loop to the excitation signal under consideration, e.g., small
MS values make the system less sensitive to d(k), whereas
MT considers the influence of the reference signal, yr (k), and
is equivalent to the amplitude of the resonant peak as well,
that in general, is desirable to be kept small [11]. In [50],
it is suggested that MS and MT values be respectively in the
range of 1.2–2 and 1–1.5 to give a suitable trade-off between
robustness and performance.

According to [51], [52], gain and phase margins have been
vastly used to characterize robustness of control loops, and it
is common sense, that GM →∞ and PM ≥ 60◦ character-
ize robust stability. To obtain a softer compromise between
robustness and performance, [50] suggests that GM and PM
should be kept in the range of 1.7 dB–4dB and 30◦ to 45◦,
respectively, and that both indices can be obtained using the
following equations:

GMS ≥ 20 log 10
(

MS
MS−1

)
PMS ≥ 2sin−1

(
1

2MS

) (
180
π

)
GMT ≥ 20 log 10

(
1+ 1

MT

)
PMT ≥ 2sin−1

(
1

2MT

) (
180
π

) (43)

Therefore, from (43), it is possible to characterize the ‘‘sta-
bility margin’’ and ‘‘robustness’’ of the closed-loop system
concerning variations of the system parameters (or uncertain-
ties in parameter values).

V. SIMULATIONS RESULTS
In this section, two simulation examples illustrate the effec-
tiveness of the design presented in Section IV. The PRGMV
performance is compared to two other controllers, one
designed by a robust pole placement (RPP)method, presented
in [22] and the other by a classic pole placement (CPP)
method, presented in [31]. In addition, the performance of the
three controllers is analyzed using the integral of the squared
error (ISE) [24].

A. EXAMPLE 1: SECOND ORDER SYSTEM
Consider the following process to represent a DC motor
position control problem with intervals parameters [39]:

[G(s)] =
[15.43, 16.55]

s2 + [10.09, 10.82]s
(44)

Since (44) is an integrating process, it is not consid-
ered the integral part of the controller given in (30). So,
the design objective is to find xc := [kd , kp, α] by solv-
ing the LP problem in (14). For transient response, it was
considered an interval overshoot [Mp] = [7, 13]% cen-
tered in Mpc = 10% and a peak time tp = 1 s, resulting in
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TABLE 1. PID controller parameters.

the desired or target closed-loop characteristic polynomial
[δ(s)] = s3+[24.4826, 31.9111]s2+[97.2821, 158.3745]s+
[286.2859, 450.5124]. Table 1 presents the PID gains for the
PRGMV, RPP and CPP methods. Their digital counterparts
were obtained using a sampling time ts = 0.05 s.

1) ROBUST STABILITY ANALYSIS
The robust stability analysis of the three control-loops was
performed employing the four Kharitonov polynomials by
plotting its roots in the s-plane, as shown in Fig. 4.

FIGURE 4. Four Kharitonov polynomials pole map in the s-plane.

From Fig. 4, note that the four Kharitonov polynomials are
stable, which means that the three controllers can stabilize
all the interval polynomial family given in (44). Therefore,
this feature is transferred to GMV, stabilizing the interval
polynomial family.

2) REFERENCE TRACKING
Fig. 5 depicts the simulated output behavior and the control
signal using the three controllers. During the tests, a step
reference is first applied for three operating points: lower,
nominal and upper. After the system achieves the steady-
state, the reference is varied from 1 pu to 2 pu at t = 10 sec
and at t = 20 sec it is reduced again to 1 pu.
According to Fig. 5, both controllers can compensate for

the reference variation, and the output could asymptotically
track the step-like sequence in the face of parameter uncer-
tainty. It can be seen that the CPP and RPP have similar FIGURE 5. Closed-loop output and control signal.
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performance with severe control signal spikes and take a
longer time to restore the output values to their respective
set points. The PRGMV outperforms them both since it
quickly compensates for the oscillations and provides a faster
response while requiring less control effort.

Fig. 6 shows the test result when a load disturbance of
magnitude 0.5 pu is applied to the nominal system output at
t = 5 sec. Observe that the PRGMV presents the best perfor-
mance, outperforming the other approaches by minimizing
the disturbance effect and reducing the recovery time of the
system output to the desired set point.

FIGURE 6. Closed-loop output with load disturbance.

Fig. 7 present the results when a white noise signal ξ (k),
with a relatively small variance of σ 2

ξ = 0.01, is applied to
the system output. Once again, the PRGMV presents the best
results, outperforming the other approaches by mitigating
the influence of the white noise signal on the system and
minimizing the variance of the control and the output signals.

Fig. 8 shows a cost comparison between the assessed con-
trollers utilizing the ISE cost function. This index evaluates
the impact of the step reference on the controllers’ perfor-
mances and is almost constant regardless of the operating
point. The PRGMV presents the smallest ISE, confirming its
improved performance with the lowest cost.

Fig. 9 presents the robustness analysis of the three con-
trollers by plotting the sensitivity functions. Gain and phase
margins shown in Table 2 ratify the effectiveness of the
PRGMV in the three operating points because this controller,
at least in this studied example, presented minimal control
effort and energy consumption to track the reference signal
for the assessed operating points. Note that the PRGMVagain
outperforms the other controllers because it makes the system
less sensitive to the output disturbance d(k) and guarantees a
more significant stability margin and consequent closed-loop
robustness to disturbances and modeling uncertainties.

FIGURE 7. Closed-loop output with white noise.

FIGURE 8. Performance index.

TABLE 2. Robustness index and margins.

By considering that the three controllers can stabilize the
interval system given in (44), the same procedure is repeated
for a sinusoidal reference sequence at a frequency fo = 0.1Hz
≈ 0.628 rad/s, which lies within the lower frequencies region
where the complementary sensitivity is still close to 0 dB.
However, since integral control action is included in all three
design methods investigated, a phase lag of 90◦ is introduced
into the control loop, which is eventually reflected in the

75892 VOLUME 10, 2022



L. B. Cunha et al.: Parametric Robust Generalized Minimum Variance Control

FIGURE 9. Sensitivity analysis.

results shown in Fig. 10. This sinusoidal tracking test was
conducted only at the nominal operating point.

FIGURE 10. Closed-loop output with sinusoidal input.

According to [53], [54], if a stable linear time-invariant
system is submitted to a sinusoidal input, it will have a
steady-state output sinusoidal with the same frequency as
the input. Fig. 10 shows that the steady-state response of
the system for the sinusoidal input is also sinusoidal, at the
same input frequency and differing slightly only in amplitude
and phase angle, as expected. It is also noticeable that the
PRGMV outperforms the other controllers by minimizing the
variances of the controlled system.

B. EXAMPLE 2: NON-MINIMUM PHASE PROCESS
The following example represents a SISO linear model with
a variation of 10% in its parameters: [55].

[G(s)] =
n1s+ n0

s3 + d2s2 + d1s+ d0
(45)

where n1 = [−34.13,−27.92], n0 = [40.2, 49.14], d2 =
[9.715, 11.87], d1 = [33.02, 40.35] and d0 = [35.89, 43.87].
For transient response, it was considered an interval over-

shoot [Mp] = [15, 25]% centred in Mpc = 20%, a peak
time tp = 10 s and non-dominant poles, which leads to
[δ(s)] = s5 + δ4s4 + δ3s3 + δ2s2 + δ1s + δ0, such that
δ4 = [10.6745, 14.6078], δ3 = [39.0346, 73.0157], δ2 =
[52.8448, 134.2061], δ1 = [15.7907, 49.5679] and δ0 =
[4.9085, 14.3691].

The main design purpose is to obtain xc := [kd , kp, ki, α]
by solving the LP problem given in (14). Table 3 presents
the PID gains for PRGMV and RPP methods only, whose
values in the discrete domain were obtained using a sampling
time ts = 0.25 sec, since for CPP it was not possible to
find a solution, because the PID is designed by a classic pole
placement that works only with plants of order na ≤ 2 [56].
Then it is clear that the order of a control system considerably
limite the design of traditional controllers by pole assignment
due to their limited number of tuning parameters [57].

TABLE 3. PID controller gains.

1) ROBUST STABILITY ANALYSIS
Fig. 11 shows the robust stability analysis of the closed-loop
system employing the four Kharitonov polynomials by plot-
ting its roots in the complex plane. Note that the four
Kharitonov polynomials are stable, meaning that the two con-
trollers stabilize the interval polynomial family given in (45).
Therefore, this feature will be transferred to GMV, which will
also stabilize the interval polynomial family.

2) REFERENCE TRACKING
The reference tracking performance in closed-loop for three
operating points (lower, nominal and upper) is presented
in Fig. 12. After the system achieves the steady state, the
reference is varied from 1 pu to 2 pu at t = 10 sec and at
t = 20 sec it is reduced again to 1 pu.
Fig. 12 shows the simulated output behavior and the con-

trol signal using RPP and PRGMV. Observe that both con-
trollers can compensate for the step-like reference change,
and the output converges asymptotically in the face of param-
eter uncertainty. However, the RPP presents output oscilla-
tions and control signal spikes and takes a slightly longer
time to restore the output values to the desired set points.
The PRGMV, on the other hand, quickly tracks the reference
without oscillations, providing better performance with faster
response and less control effort.

Fig. 13 presents a load disturbance essay. The load mag-
nitude of 0.5 was applied to the nominal system output
at t = 50 sec. The PRGMV presented the best recovery
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FIGURE 11. Four Kharitonov polynomials pole map.

TABLE 4. Robustness index and margins.

performance, outperforming the RPP by minimizing the load
effect and reducing the recovery time.

Fig. 14 presents the simulation results when a white noise
sequence is applied to the system’s output. The noise signal ξ ,
with a relatively small variance of σ 2

= 0.01, was assessed.
Once again, the PRGMV presented the best performance
compared to the RPP since the control and output variances
in the PRGMV case were smaller, confirming that PRGMV
is more cost-effective than RPP.

Fig. 15 shows the performance comparison using the ISE
cost function. This index evaluates the impact of the step-like
reference on the control loop. Note that the ISE is almost
constant regardless of the operating point value for step input
variation. However, for PRGMV, the ISE was smaller than
for RPP, confirming PRGMV’s performance improvement
while requiring less control energy.

Fig. 16 presents the robustness analysis of the two con-
trollers by plotting the sensitivity functions. The values of
GM and PM ratify the effectiveness of the proposed con-
troller for reference tracking and can confirm, at least for this
studied example, the excellent performance of the PRGMV
for parameter uncertainty plants with minimum control effort
and minimum energy for tracking the reference signal. The
PRGMV once again outperforms the RPP because it makes
the system less sensitive to d(k) and exhibits a more sig-
nificant stability margin and robustness of the closed-loop
system, as shown in Table 4. FIGURE 12. Closed-loop output and control signal.
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FIGURE 13. Closed-loop output with disturbance.

FIGURE 14. Closed-loop output with white noise.

According to Fig. 11, the RPP and PRGMV stabilize the
system given in (45), so the reference tracking performance
analysis in closed-loop for a sinusoidal input with frequency
fo = 0.0159H considering only nominal operation point is
realized. The results are presented in Fig. 17.

Fig. 17 shows that the steady-state response of the sys-
tem for the sinusoidal input is also sinusoidal, at the
same input frequency and differing in amplitude and phase
angle [53], [54]. The results highlight the excellent perfor-
mance of the PRGMV since it outperforms the other con-
trollers by minimizing the variance of system output and
control signal.

C. GENERAL ASSESSMENT OF RESULTS
Based on the presented results of the previous section,
note that PRGMV copes better with the requirements of

FIGURE 15. Performance index.

FIGURE 16. Sensitivity analysis.

disturbance rejection and asymptotic reference trackingwhile
keeping a smooth control signal and faster response with
considerable variance minimization in the output and control
signals and therefore provoking little stress on the controlled
system whereas the other controllers presented control signal
spikes and chattering.

The PRGMV outperforms the other controllers thanks to
its formulation structure with polynomial filters Pprgmv(z−1),
Tprgmv(z−1) and Qprgmv(z−1) which robustly weight the out-
put, the reference and the control signals, respectively. The
non-scalar polynomial Qprgmv(z−1) = r0 + r1z−1 filters out
the control signal variations caused by the feedback of noisy
measurements or disturbances and reduces the aggressiveness
of the controller, leading to a smooth behavior with minimum
control effort and energy consumption in the task of tracking
the reference signal, according to Fig. 7 and Fig. 14 and con-
firmed by the variance minimization, i.e.., the linear power
minimization.
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FIGURE 17. Closed-loop output with sinusoidal input.

The weighting polynomials Pprgmv(z−1) and Tprgmv(z−1)
assign robust performance characteristics for the PRGMV,
producing a better desired closed-loop response for refer-
ence tracking and disturbance rejection, as depicted in the
figures 5, 6, 10, 12, 13 and 17. It also assigns greater stability
margins and minor sensitivity to disturbances, as presented in
figures 8, 9, 15 and 16, as well as in Table 2 and Table 4. The
presented data confirmed, for the studied cases, that PRGMV
can guarantee the stability of the system for all the vertices
of the uncertain polytopic P domain as depicted in Fig. 2.
It also achieves a desired maximum stability region thanks
to Chebyshev’s theorem that minimizes the overall deviation
from the desired performance for the closed-loop system,
maintaining an adequate compromise between robustness
and performance with lower sensitivity to parametric
uncertainties.

VI. CONCLUSION
This paper presented a novel methodology for designing
robust predictive controllers to ensure robust stability and per-
formance for a predefined uncertainty region. The design pro-
cedure is inspired in [22] and [25]. The proposed method was
compared to two control methods, assessing performance in
reference tracking and robustness to modeling uncertainties,
load and noise. The results clearly showed that the proposed
method could maintain the desired performance while com-
pensating for load and stochastic disturbances, outperforming
the other controllers.

The performance indicators obtained for the proposed
method improved the system performance compared with
the other methods that could not adequately compensate for
the parametric variations and avoid the performance degra-
dation. The results indicate that the PRGMV is justified and
presented relevant improvements for parametric uncertainties
systems, offering robust performance and stability.

Therefore, considering the lack of research regarding the
hybridization of the two areas mentioned for plants with

parametric uncertainty, it glimpses the development of the
proposed methodology directly in the discrete frequency
domain. In other words, obtaining the PID gains by pole
placement and performing the Kharitonov’s test directly in
the discrete domain is an open topic for an investigation that
might pay off in the end. In addition, it glimpses the extension
of this work for MIMO system, systems with transport delay,
e other predictive controllers, such as GPC.
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