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ABSTRACT Based on proposed joint human connectome project multi-modal parcellation JHCPMMP),
the study on the binary classification of Alzheimer’s disease was conducted. We tried to build a novel
classification model, which can be interpretative and have the ability to deal with the complexity and
individual differences of brain networks. The subclass weighted logistic regression (SWLR) based on logistic
regression was proposed in this paper. We conducted five groups of experiments, in which the accuracy of
HC vs. AD was 95.8%, HC vs. EMCI was 91.6%, HC vs. LMCI was 93.7%, EMCI vs. LMCI was 89.5%, and
LMCI vs. AD was 91.6%. In addition, we conducted a follow-up analysis of the coefficient matrix and found
that the distribution of core deterioration brain regions in different stages is different in the development of
Alzheimer’s disease. We located these brain regions in two-dimensional images and found that they generally

show a trend of continuous counterclockwise migration.

INDEX TERMS Alzheimer’s disease, human connectome project (HCP), multi-modal parcellation (MMP),

mild cognitive impairment (MCI), subclass-weighting.

I. INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease.
It destroys brain cells, leads to abnormalities in memory, cog-
nition, thinking and behavior, and seriously affects people’s
work and life until the body loses its function. Dementia
mainly occurs in people over the age of 60. The extension
of life expectancy leads to a rapid increase in the num-
ber of patients with dementia [1]. According to the world
Alzheimer’s disease report [2], about 50 million people were
affected by the disease in 2018, which is expected to triple
by 2050. In addition, Alzheimer’s disease has irreversible
characteristics, so how to confirm the stage of patients and
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treat them is very important to alleviate the development of
the disease.

Mild cognitive impairment (MCI) is a widely used term
that describes the intermediate stage from normal cognitive
function to dementia. Patients with mild cognitive impair-
ment have a high rate of developing dementia in a relatively
short time, even among subjects who returned to normal cog-
nition, the incidence of subsequent mild cognitive impairment
or dementia was higher than those who had never experi-
enced mild cognitive impairment [3]. The recent extensions
of ADNI (ADNI go, ADNI 2) have introduced the distinction
of MCI into early and late MCI. Late MCI (LMCI) refers
to the original definition (performance of 1.5 SD below the
normative mean), whereas in early MCI (EMCI), impairment
is defined as performance between 1.0 SD and 1.5 SD below
the normative mean on a standard test [4].
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The diagnosis of Alzheimer’s disease by brain imag-
ing technology is one of the commonly used methods in
medicine. Structural MRI is the most widely used brain
imaging method in AD research. FDG PET is the most char-
acteristic functional brain imaging method in AD research,
DTI has been used to study the integrity and connectivity of
white matter in patients with dementia and high-risk patients,
single photon emission computed tomography (SPECT) uses
a radioactive tracer to track brain perfusion for dementia,
which is very similar to PET scanning of glucose metabolism
in clinical diagnosis [5]. Functional magnetic resonance
imaging (fMRI) has been proved to be immeasurable value
in identifying the neural structures of human behavior and
cognition [6], [7], and the main principle is blood oxygena-
tion level dependent [8]. fMRI is divided into task fMRI and
resting state fMRI. Resting state fMRI captures the changes
in blood oxygenation levels of subjects in the rest state
task fMRI captures the changes in blood oxygenation levels
of subjects in the task state. In fact, the internal network
extracted from task scanning is very similar to that extracted
from static state scanning. At present, some studies [9]-[12]
have used task scanning for internal connection analysis when
there is no static state data.

The human connectome project (HCP) proposes a
multimodal parcellation (MMP) of human cerebral cortex.
HCPMMP is an adaptive brain zoning method with four
modes, including cortical thickness, myelin map, task fMRI
and resting state fMRI. Under the conditions of zoning spec-
ification and coordinate unified space, it can divide the left
and right brains of different people into 180 regions [13].
Joint-HCPMMP is a new data preprocessing method based on
HCPMMP data preprocessing method proposed by us [14],
which can appropriately reduce the data requirements of
HCP preprocessing framework. Our experimental data are
obtained based on Joint-HCPMMP method.

At present, machine learning and deep learning have
been widely used in the classification of neuroimaging data.
In machine learning, Gosztolya et al. [15] by automatically
extracting acoustic markers from subjects’ self-speaking
utterances and using linear SVM for classification,and accu-
racies of 80%, 86%, and 80% have been achieved for
CN vs. MCI, CN vs. mild AD (mAD), MCI vs. mAD.
Peng et al. [16] selected MRI and genetic features, and used
multi-kernel learning of support vector machine. Accuracy
of CN vs. AD, and CN vs. MCI are 96.1% and 80.3%,
respectively. In deep learning, Wang et al. [17] developed an
ensemble of 3D densely connected CNNs (3D-DenseNets),
which maximizes the information flow from one layer to next
layer and accuracies of 93.61%, 98.42%, and 98.83% have
been achieved for AD vs. stable MCI (sMCI), CN vs. sMCI,
CN vs. AD. Spasov et al. [18] used deep CNN for extracting
the descriptive features from structural MRI (sMRI) T1 based
on 3D separable and grouped convolutions. CNN was used
for classification with accuracies of 100%, and 92.5% for
CN vs. AD, sMCI vs. progressive MCI (pMCI).
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Although there are many classification studies on
Alzheimer’s disease, we have noticed that most studies focus
on the three stages of HC, MCI, and AD. Therefore, in this
experiment, four stages of HC, EMCI, LMCI and AD were
selected for classification. On this basis, we hope that our
research is not limited to the index of accuracy. An excellent
model should enable us to obtain useful information. In this
way, the finer the division of disease stages, the better we can
understand the development of disease through the model.
We note that the logistic regression algorithm has good
interpretability. However, the brain network constructed in
this experiment is very complex, and there are still inter-
ference factors such as individual differences. Therefore,
the traditional logistic regression cannot show satisfactory
results in the face of this task. Therefore, we proposed a
subclass weighted logistic regression (SWLR) algorithm on
the basis of traditional logistic regression. Firstly, we select
the appropriate clustering algorithm to divide the samples into
different subclasses. Then, on the basis of global coefficients,
we construct subclass coefficients for each subclass to realize
the weighting of different subclasses. Finally, we obtain the
optimal accuracy through continuous iterative optimization.

Il. MATERIALS AND METHODS

The experimental data in this paper are from Alzheimer’s
disease neuroimaging Initiative (ADNI). ADNI is an open
database for the world. Its main purpose is to predict,
diagnose and treat Alzheimer’s disease, and provide reli-
able medical imaging data and clinical data for Alzheimer’s
researchers all over the world. The experimental data in this
paper include HC, EMCI, LMCI and AD, with 24 subjects in
each group, a total of 96 people. The demographic informa-
tion of subjects is shown in Table 1. All methods were carried
out in accordance with relevant guidelines and regulations.
All experimental protocols were approved by the institu-
tional review board (IRB) at Hangzhou Dianzi University
(IRB-2020001).

A. DATA PREPROCESSING

HCP preprocessing pipeline was used to process MRI
structure data, including denoising, standardization, distortion
correction and spatial transformation, and align and register
brain data into CIFTI space. Based on surface analysis, CIFTI
defines 91,282 standard gray coordinates, including 26,298
subcortical voxels in 2mm MNI space and 32,492 surface
vertices in each hemisphere. HCPMMP obtains 180 brain
regions in each hemisphere through multimodal segmentation
on these gray coordinates. After the structural pipeline was
completed, the functional pipeline was carried out, including
removing the spatial distortion in the functional magnetic
resonance imaging data, rearranging the volume to compen-
sate for the movement of the subject, registering the fMRI
data on the structure, reducing the bias field, normalizing the
4D image, and finally mapping these time series from the
volume to the CIFTI gray coordinate space. After the above
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TABLE 1. Information of acquired ADNI subjects.

HC Sex Age EMCI Sex Age LMCI Sex Age AD Sex Age
033_S_4176 M 90.5 137_S_4536 F 83.6 941_S_4187 M 67.8 136_S_4993 F 71.9
116_S_4453 M 72 137_S_4351 F 73.8 141_S_1378 F 72.1 130_S_5231 F 74.4
941_S_6094 F 69.6 137_S_4299 F 82.9 141_S_1052 F 80.7 130_S_5059 M 72.8
168_S_6131 F 68.3 114_S_2392 F 70.6 068_S_4061 F 70.5 130_S_4990 F 75.7
168_S_6085 F 55.8 094_S_2238 M 75.6 068_S_0802 F 91.8 130_S_4984 F 73.2
168_S_6098 M 63.4 094_S_2201 F 70.5 067_S_4782 M 77.1 130_S_4971 M 77.1
137_S_4482 F 83 082_S_2121 F 75.2 067_S_4767 F 71.4 130_S_4730 F 81.2
116_S_6119 F 67.1 068_S_4431 M 79.8 041_S_4510 F 72.1 130_S_4660 F 77.3
114_S_6063 F 74.3 068_S_4067 M 71.2 041_S_1418 M 91.6 130_S_4641 F 73.9
114_S_0416 F 87.2 068_S_2315 F 74.9 041_S_0679 M 74 130_S_4589 F 75.2
094_S_4649 M 71.2 068_S_2184 F 87.4 037_S_4214 M 79.6 100_S_5106 M 74.3
041_S_6192 F 83.3 067_S_4212 M 70.9 037_S_4030 F 74.7 053_S_5208 M 68.8
041_S_6159 M 76.3 067_S_4184 F 68.6 037_S_0377 M 91.3 053_S_5070 M 72.4
041_S_4200 F 76.4 067_S_4072 F 68.5 036_S_4715 F 62.2 019_S 5012 M 76.4
037_S_4028 F 70.7 067_S_2301 M 72.2 036_S_4538 F 84.5 019_S_4549 M 79.4
036_S_6189 F 69.6 041_S_4974 M 78.4 036_S_4430 M 85.9 019_S_4477 F 82.4
035_S_6160 M 60.7 041_S_4513 M 66.4 035_S_4414 F 66.4 019_S_4252 F 86.8
033_S_4177 M 91.4 037_S_4706 M 66.2 023_S_4115 M 73.9 018_S_5074 F 74.9
023_S_1190 F 87.4 014_S_2308 M 81.4 003_S_4354 M 81.3 018_S_4733 M 75.4
020_S_6185 M 82.7 012_S_4188 M 83.2 003_S_1122 F 87.2 018_S_4696 F 73.3
011_S_0021 F 84.9 011_S_4893 F 73.4 003_S_1074 F 95.9 013_S_5071 M 76.4
007_S_4387 F 82 011_S_4547 M 82.8 002_S_4654 F 80.5 006_S_4867 M 75.7
007_S_1222 F 84.4 007_S_4272 M 77.2 002_S_4229 M 72.4 006_S_4153 M 81.5
003_S_4288 F 78.4 002_S_4473 M 79.9 002_S_1155 M 68.2 002_S_5018 M 734

TABLE 2. Global cost efficiency of four groups of samples.

HC EMCI
0.329+0.040  0.323+0.037

LMCI
0.326+0.045

AD
0.319+0.035

GCE

steps, we obtained the segmentation of 360 brain regions and
the corresponding signal sequence, and then we calculated
the correlation between any two brain regions through the
Pearson correlation coefficient to obtain the functional brain
network. On this basis, we build a weighted network and a
binary network, the key to building a binary network is to find
an appropriate threshold. We use the proportion of strongest
weights (PSW) algorithm to determine the threshold [19].
Specifically, we set a step size for PSW and continuously
adjust the value of PSW through iteration to maximize the
global cost efficiency (GCE) parameters in the brain connec-
tion matrix. In this algorithm, the PSW value is defined as
the ratio of the number of reserved strong weights to the total
number of weights. Through this process, we eliminate some
edges with small weights to maintain significant connections
between regions of interest (ROIs). The specific formula of
the algorithm is as follows:
| Ziengzidy
E = - —_— 1)
g\; n—1

max(GCE) = E — PSW
psw

@

The average GCE values of the four groups of samples are
shown in Table 2.

B. CONSTRUCTION OF FEATURE MATRIX

After the previous step, we obtained weighted networks
and binary networks. The next step is to select the eval-
uation index of complex brain network and establish the
characteristic matrix. For the evaluation method of complex
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brain network, the global evaluation index and the local
evaluation index are representative. Seven brain network
evaluation indexes were selected in the case of weighted
network or binary network. They are: clustering coeffi-
cient (binary, weighted), degree (binary), efficiency (binary,
weighted), eigenvector centrality (binary, weighted), assorta-
tivity (weighted), k-coreness centrality (binary) and strength
(weighted). We can see that among the seven indexes,
efficiency, eigenvetor centrality and clustering can be calcu-
lated based on both weighted network and binary network.
We finally get 10 results with 10 x 360 features, which
correspond to 180 brain regions of the left and right brain,
according to these features. We establish a 48 x 3600 size
feature matrix for each binary classification. The calcula-
tion process of global and local metric parameters of brain
network is very complex. In this paper, we calculated all
required parameters with the help of brain connectivity tool-
box (https://sites.google.com/Site/bctnet/).

C. SUBCLASS WEIGHTED LOGISTIC REGRESSION

The idea of traditional logistic regression algorithm is to
constantly adjust the weight coefficient corresponding to each
feature, and establish a hyperplane according to the weight
coefficient to distinguish the two types of samples, so as to
minimize the value of loss function. However, as the samples
become more and more complex and the feature dimension
becomes higher and higher, the traditional logical regression
can no longer meet the current needs. Therefore, we pro-
pose a new algorithm: subclass weighted logistic regression
algorithm. The specific idea of SWLR algorithm is to use
the training set data to do a logistic regression first, and
find the best global coefficient matrix U on the training set,
and build a subclass coefficient matrix for each subclass
on the basis of U. finally, the prediction label of a sample
is jointly determined by the global coefficient and subclass
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FIGURE 1. Subclass weighted logistic regression flow chart.

coefficient. In order to construct the subclass coefficient
matrix, we will use k-means++ clustering for the feature
matrix. Theoretically, sample with close Euclidean distance
are more likely to have the same label. It is worth mention-
ing that when the number of features is particularly large,
the clustering effect is often poor. Therefore, we use prin-
cipal component analysis (PCA) technology to reduce the
dimension of the characteristic matrix before clustering. The
idea of PCA dimensionality reduction is to project the data
from high-dimensional space to low-dimensional subspace
through linear projection, and expect the variance of the
projected data to be as large as possible, so as to retain
the sample difference information of the original data to the
greatest extent. Our goal is to minimize the loss function, so
we use the gradient descent method for iterative optimization.
In addition, in order to prevent over fitting, we have L2
regularized the global coefficients and subclass coefficients.
The specific algorithm flow is shown in Figure 1. The formula
of the algorithm is as follows:

i =x] U +x]veén (3)

where, z; is Intermediate variable In the following formula,
it is used to calculate the predicted value of the sample,
x; represents different sample U represents global coefficient,
V represents subclass coefficient, g, represents different
subclasses, and m takes 1-6 in this experiment.

1
7w (z) = m 4

l n
JWU,V) = - Z{)’i log (7 (zi)) + (1 — yi) log (1 -7 (zi)}

i=1
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U+ yer Ve 5)

m=1

where, 7 (z;) is the predicted value, J(U, V) is the loss func-
tion, y; is the sample label.

Since there are two variables U and V in the objective func-
tion J, we choose to fix one variable to iteratively optimize
the other variable until J converges. Specifically, we don’t
consider V at first, but only solve U:

ﬂ
90
1 & 1 1 .
o i=1 {yl i (i) i (1 +e—Zi)2 * (e )}
1 O »
— = (1 — ,') * * % (—e G
n ; { M 1—m (Zi) (] + e,Z[)Z ( )}
30 ©)

where, Uj represents the coefficients corresponding to differ-
ent characteristics. According to Equation (6), we finally get
that the partial derivative of j over Uj is:

aJ | — 1 Ly D
oL iy — —— Vi
v, =TT T 2

Then we update Uj:

oJ

U =U—a—
J J Ofan

®)

After continuous iteration, we obtain an optimal global
coefficient matrix U, and then we solve V of different
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FIGURE 2. Illustration of 8-fold cross-validation.

subclasses on the basis of U, Vj represents the coefficient
corresponding to different characteristics:

aJ
ang’"
| — 1 1
= —— j ok * * (—e
n {yl 7 (@) (1 n e*Zi)z ( e )}
1 < -1 -1
- 1 —v; ]
n;{( yl)*l_n(Zi)*(1+e—Zi)2*( e )]
+ Ym+1 yem )

After calculation, we finally get that the partial derivative
of J over Vj is

aJ 1 1 Vi1 e
Ve =_Zz{xi (yi_ l—e—Zi>}+ > Vi 1o
J =1

Then we update Vj:

aJ
8m
v,

8m .__ yy8m __
V=V, o 11

After continuous iteration, we get the optimal subclass
coefficient matrix V of different subclasses, and the predicted
value of a sample can be calculated by Equation (3) and
Equation (4).

IIl. RESULTS

We used subclass weighted logistic regression to classify
the samples to test the effect of the model. The experiment
was divided into HC vs. EMCI, HC vs. LMCI, HC vs. AD,
EMCI vs. LMCI, LMCI vs. AD groups, with 48 samples in
each group. Due to the small sample size, we adopted the
8-fold cross-validation technique shown in Figure 2. Specifi-
cally, we divide the 48 samples from each group into 8 subsets
with 6 samples in each subset. We then used 7 of the 8 subsets
for sequential training and the remaining one for testing,
examining the effectiveness of the model by averaging the
results of 8 cross-validations.

Let TP, TN, FP, and FN represent true positives, true
negatives, false positives, and false negatives, respectively.
We considered three indicators in total, namely Accuracy
(ACC), Sensitivity (SEN), and Specificity (SPEC). They
are calculated as follows: Accuracy = (TP + TN)/
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(TP + TN 4 FP + FN), Sensitivity = TP/(TP + FN),
Specificity = TN/(TN + FP). Firstly, according to these indi-
cators, we compare the performance of SWLR and different
machine learning classifiers on our dataset. The results are
shown in Table 3 it can be seen that our proposed SWLR
method has achieved the highest accuracy in five groups,
and the performance of traditional logistic regression on our
data set is not ideal. Taking the accuracy rate as an example,
the overall level is maintained at about 85%, while SWLR
compared to LR has been greatly improved, of which the
HC vs. AD group increased by 8.3%, the HC vs. EMCI group
increased by 10.4%, the HC vs. LMCI group increased by
8.3%, the EMCI vs. LMCI group increased by 6.3%, the
LMCI vs. AD group increased by 8.4%, and the five groups
The accuracy was improved by an average of 8.34%. From
the two aspects of SEN and SPEC, we find that there are
obvious differences between LR and SWLR. The values of
spec and Sen of LR algorithm are very different, one is very
high and the other is very low, which seems to indicate that
LR algorithm will sacrifice one of the positive and negative
classes in order to ensure the overall prediction ability of the
model this problem has been well solved in SWLR.

In addition, we also compared the SWLR method with the
latest research methods. The results are shown in Table 4 it
can be seen that our algorithm has achieved the best accuracy
in HC vs. EMCI and EMCI vs. LMCI, and the accuracy
of the other three groups is also very close to the current
highest accuracy, which shows that our algorithm is effective.
Because logistic regression has the advantage of strong inter-
pretability, while SWLR retains this interpretability, we con-
ducted a follow-up analysis of the coefficient matrix U to
further explore the pathological process of the brain. In the
logistic regression, the coefficients in the coefficient matrix
represent the contribution of a feature to the classification
results. Therefore, we extracted all the coefficients in U,
grouped and summed all the coefficients according to brain
regions, so as to evaluate the comprehensive importance
of a brain region the brain regions were then ranked from
high to low. Since the distribution of left and right brain
regions is the same, we take the right brain as an example
for discussion. We found that the number of brain regions
in the top rankings is continuous or close, which means that
these brain regions that have more influence on the human
brain are likely to be concentrated in a certain area of the
brain. To prove this point, we used the connectome work-
bench (https://www.nitrc.org/projects/workbench/) to locate
the location of the core-brain regions of HC vs. EMCI, EMCI
vs. LMCI, and LMCI vs. AD, and draw pictures.

It is worth mentioning that the selection of the num-
ber of core brain regions is also critical. Too few or too
many are not conducive to the highlighting of the regularity.
In Figure 3(a), Figure 3(b), and Figure 3(c), we selected
20 core lesion brain regions. In order to prove the existence
of this law, we have also expanded the number of brain
regions. Figure 3(a’), Figure 3(b’) and Figure 3(c’) are the
result of adding 10 brain regions on the basis of Figure 3(a),
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TABLE 3. The two-classification average accuracy of different classifier.

HC vs. EMCI HC vs. LMCI HC vs. AD EMCI vs. LMCI LMCI vs. AD
Method
ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC ACC SEN SPEC
RE 76.5% 75.0% 77.8% 76.5% 77.8% 75.0% 83.3% 100% 75.0% 73.3% 75.0% 71.4% 75.0% 66.7% 83.3%
SVM 86.7%  833%  889%  90.0%  90.0%  90.0%  933%  100%  88.9%  85.0%  833%  87.5%  86.7%  100%  75.0%
LR 81.3% 62.5% 100% 85.4% 95.8% 75.0% 87.5% 75.0% 100% 83.3% 100% 66.7% 83.3% 91.7% 75.0%
Ours 91.7% 87.5% 95.8% 93.7% 100% 87.5% 95.8% 91.7% 100% 89.6% 91.7% 87.5% 91.7% 87.5% 95.8%
TABLE 4. Comparison of classification accuracy for recent studies.
Authors Target Method ACC SEN SPEC
HCvsEMCI 84.0% 83.2% 84.4%
Forouzannezhad et al.”’ HCvsLMCI 84.1% 80.4% 87.6%
HCvsAD DNN 96.8% 94.1% 98.2%
EMCIvsLMCI 69.5% 80.6% 60.5%
LMCIvsAD 80.2% 86.8% 71.9%
HCvsEMCI 88.0% 82.0% 100%
Zhang et al = HCvSLMCI 94.0% 100% 91.0%
HCvsAD Spherical Sparse Coding 96.0% 91.0% 100%
EMCIvsLMCI 84.0% 81.0% 100%
LMCIvsAD 93.0% 89.0% 100%
HCvsEMCI 87.0% 86.6% 86.6%
Mehmood et al.** HCVSLMCI 89.1% 89.2% 88.9%
HCvsAD Layer-wise Transfer Learning 98.7% 98.2% 99.1%
EMCIvsLMCI 81.1% 80.6% 81.5%
LMCIvsAD 82.1% 81.4% 82.4%
HCvSEMCI 82.8% 69.7% -
Yang et al.** HCvsLMCI Fused Sparse Network 87.2% 75.6% -
EMCIvsLMCI 80.9% 71.1% -
HCvSEMCI 91.7% 87.5% 95.8%
HCvsLMCI 93.7% 100% 87.5%
HCvsAD SWLR 95.8% 91.7% 100%
Ours EMCIVSLMCI 89.6% 91.7% 87.5%
LMCIvsAD 91.7% 87.5% 95.8%

Figure 3(b) and Figure 3(c). In Table 5, we show the five most
informative features of each binary classification.

IV. DISCUSSIONS
The experimental results according to Table 3 and

Table 4 show that our proposed idea of subclass weighting is
effective and meaningful. By local weighting for subclasses,
the coefficient values of some features can be modified in
subclasses on the basis of the coefficient matrix constructed
by LR, which can effectively reduce the interference of
individual differences and improve the generalization ability
of the model. In addition, according to Figure 3(a)-3(b),
we also found that the distribution of core brain regions in
different stages is also different, and the change trajectory of
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core brain regions on the two-dimensional image generally
has a trend of continuous migration in the counterclockwise
direction during the process of disease progression. This trend
persisted even after we added 10 brain regions, as shown in
Figures 3(a’)-3(c’). Specifically, according to Figure 3(a),
it can be seen that in the HC-EMCI stage, the core brain
regions are mainly concentrated in the right half of the
region, and a few parts appear in the lower half, which just
shows that the core brain area of EMCI-LMCI stage will
migrate downward. Figure 3(c) shows that the core brain
area is mainly concentrated in the left half of the LMCI-AD
stage. In addition, we compared our findings with existing
studies, which we will describe in terms of microscopic and
macroscopic.
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TABLE 5. The most informative features of each binary classification.

Classfication Feature Hemisphere Area
3337 L-97 i6-8
2173 L-13 V3A
HC vs. EMCI
1535 L-95 LIPd
3249 L-9 3b
1482 L-42 7AL
1781 R-161 31pd
3492 R-72 10d
HC vs. LMCI
3504 R-84 46
1685 R-65 10r
1644 R-24 Al
2233 L-73 8C
1690 R-70 8BL
HC vs. AD
1795 R-175 A4
1726 R-106 Pol2
1510 L-70 8BL
1663 R-43 SCEF
1393 R-133 TElp
EMCI vs. LMCI
1644 R-24 Al
1345 R-85 a9-46v
1702 R-82 IFSa
1393 R-133 TElp
2151 R-171 p47r
LMCI vs. AD
1976 L-176 STSva
675 R-135 TF
1422 R-162 3la

FIGURE 3. This picture describes the changes in the brain areas of the core deterioration at different stages, a-c describe the distribution of the
first 20 core brain regions, and a’-c’ are the result of adding 10 brain regions on the basis of a-c.

A. MACRO ASPECT
1) HC-EMCI STAGE

According to Figure 3(a) and Figure 4, it can be seen that the
significant deterioration areas of HC-EMCI mainly involve
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sensor/motor, auditory and task negative. With regard to
auditory, Swords et al. [24] pointed out that despite exten-
sive brain atrophy in AD, specific structures seems to be
at greater risk than other structures in prodromal stages of
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The HCP’s multi-modal cortical parcellation (HCP_MMP1.0)

D Auditory
. Task positive

I:‘ Visual

D Task negative

. Sensory/motor

FIGURE 4. This figure describes the functions of each region of the
human brain, A-D are three dimensional drawing, E-F are two
dimensional drawing, F stands for the right brain. The figure introduced
by (Glasser MF, Coalson TS et al. 2016).

disease, especially in the central auditory structure. In terms
of sensory/motor, some longitudinal studies [25]-[29] show
that a considerable number of patients have changes in sen-
sory and motor systems in prodromal stages of AD. The
changes of smell, hearing and even walking speed may pre-
cede the onset of cognitive impairment and dementia for
5 to 15 years, which is a strong risk factor for AD. Task
negative, also known as default mode network, is composed
of discrete, bilateral and symmetrical cortical regions, which
are located in the medial and lateral parietal lobe, medial
prefrontal lobe, medial and lateral temporal lobe cortex of
human, non-human primates, cats and rodents. DMN will be
less active when participating in cognitive tasks and more
active at rest. In recent years, DMN has attracted extensive
attention as a potential biomarker of AD [30], [31]. Some
neuroimaging studies have shown that there are overlapping
parts between amyloid plaque deposition area and DMN area
[32]. In AD and MCI, the functional connection of DMN
is destroyed [33]-[35]. Since the functional connectivity in
DMN has been noted to have an impact on episodic memory,
the destruction of DMN connectivity may be a potential cause
of early memory loss in AD patients [36].

2) EMCI-LMCI STAGE

According to Figure 3(b) and Figure 4, it can be seen that
the significant deterioration area of EMCI-LMCI mainly
involves two aspects of Auditory and Task negative, which
are similar to those involved in HC-EMCI, so I will not repeat
them here.

3) LMCI-AD STAGE

According to Figure 3(c) and Figure 4, it can be seen
that the significant deterioration area of LMCI-AD mainly
involves Task negative and Visual. Visual is an aspect that
is significantly different from the previous two stages, so it
is of great research value. Lavallee et al. [37] pointed
out that AD patients have deficits in higher-level visual
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processes, more specifically in perceiving individual faces,
a function that relies on global representations of upright
facial stimuli. These deficits, combined with their memory
impairment, can lead to difficulty recognizing familiar
people. Hinton ef al. [38] showed extensive optic axonal
degeneration in AD patients. Using different staining and
morphological methods, Albers et al. [39] integrated the
literature on ad sensory system disorders and found that ad
related pathology was found in both cortical and subcortical
areas related to visual function in addition to the eye itself.

B. MICRO ASPECT

As HCPMMP is the most granularly brain zoning method at
present, there is a lack of corresponding research on some
new brain regions proposed by HCP. We can only select some
brain regions for further analysis according to the existing
literature and the weight coefficient of brain regions. Another
point to be explained is that there are few studies on EMCI
and LMCI, we can only prove that the brain regions involved
in EMCI and LMCI stage act on MCI stage.

1) HC-EMCI STAGE

S6-8, 8BL and 9p belong to dorsal prefrontal cortex (DLPFC)
Syed et al. [40] found that the bilateral activation of DLPFC
in MCI group was significantly higher than that in HC group.
Hyperactivity of DLPFC has also been found previously
and is considered to reflect the compensatory mechanism
of several behavioral defects. S6-8, also known as frontal
cortex (FC), is located in the frontal cortex. Ansari and
Scheff [41] studied the oxidative stress of FC after death
in 8 samples with mild cognitive impairment. 10 subjects
without cognitive impairment matched with these cases were
used as controls. It was found that the oxidative stress of FC
tissue in MCI patients was significantly higher than that in
healthy controls. PeEc corresponds to BA35 and BA36 in
the traditional division, while h is the hippocampus, which
belongs to the medical temporal cortex (MTL), Xie et al.
[42] studied the subregions of the medical temporal cortex
(MTL). His study showed that the longitudinal atrophy rate
of all MTL subregions of early prodromal AD was signif-
icantly higher than that of the healthy control group, and
longitudinal changes in BA35 showed the strongest statis-
tical significance in distinguishing AD patients with early
prodromal symptoms from amyloid-f8 negative controls. Fur-
thermore, neuropathological and structural MRI studies have
shown that MTL is the earliest affected brain region in
AD [43]. 3b belongs to the primary somatosensory cortex
(S1), which contains two regions 3b and 3a. 3b is related
to human somatic sensation. Some studies in recent years
have begun to show that sensorimotor dysfunction occurs
earlier than previously thought. Suva et al. [44] found that
once senile plaques were found in other cortical related
areas, senile plaques were found in sensorimotor areas.
Initially, only the hippocampus showed isolated plaques.
Stephen et al. [45] found that in the first three peaks of pri-
mary somatosensory source response, MCI patients showed
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larger amplitude responses than HC and AD groups (P\0.03).
Other relationships between neuropsychological measures
and SI amplitudes were also determined. Amplitudes of con-
tralateral secondary somatosensory sources did not differ
significantly across diagnostic categories. These results sug-
gest that the somatosensory cortex is affected early in AD
progression and may have implications for behavioral and
functional measures. TGd is one of two brain regions that
form temporal polar cortex (TPC), and TPC has been shown
to be one of the earliest causes of AD disease [46]-[48].

2) EMCI-LMCI STAGE

Many brain regions involved in this stage have been dis-
cussed in the HC-EMCI section, and we will focus on
selecting brain regions not mentioned above for analysis.
EMCI-LMCI and HC-EMCI stage have two notable differ-
ences. In EMCI-LMCI stage, Ventral Stream Visual Cortex
and Auditory Cortex have a significant impact on disease
development. Auditory Cortex contains LBelt, MBelt, STVa,
STVp, STGa in the diagram. Recent studies have shown
that both peripheral and central auditory system dysfunc-
tion occur in the prodromal stages of Alzheimer’s disease
(AD). Rahman et al. [49] performed a central auditory pro-
cessing test in MCI patients in addition to using pure tone
audiometry (PTA) immittance, selective auditory attention
test (PPS), and pitch pattern test (GFW). They found that
MCI patients scored significantly lower than controls on
the selective auditory attention test (SAAT), dichotic dig-
itstest (DDT) left ear, pitch pattern sequence (PPS) and
Goldman-Fristoe-Woodcock (GFW) tests. Ventral Stream
Visual Cortex contains the VMV1, VMV3, and VVC brain
regions in Figure 3(b). Data show that cortical visual pro-
cessing is divided into dorsal and ventral streams, with the
ventral stream processing object recognition of visual or
“what” features [50], [51]. Graewe et al. [52] added to
previous fMRI studies by exploring temporal and parietal
mechanisms in healthy aging and MCI using a related cog-
nitive task (perception of motor-defined facial stimuli). They
found that during structure-from-motion face perception in
MCI, there is an overemphasis on low-level cognition at the
expense of overall processing, which are aberrant activation
patterns in the fusiform face area (FFA)/occipital face area
(OFA). Furthermore, MCI is characterized by alterations in
the dorsal-ventral integration area and attention-related net-
works. Although previous studies have highlighted visual
dorsal flow dysfunction in MCI they found that the FFA/OFA
activity pattern in the visual ventral region is a highly accurate
biomarker of MCI.

3) LMCI-AD STAGE

The biggest difference between this stage and EMCI-LMCI
is that there are a large number of cortices related to vision.
V1 belongs to Primary Visual Cortex, V2 and V3 belong to
Early Visual Cortex, VMV 1 belongs to Ventral Stream Visual
Cortex, and V3A and V3B belong to Dorsal Stream Visual
Cortex. Past studies have shown that cholinergic deficits in
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the primary visual cortex may underlie some abnormalities
in visual processing and overall cognitive performance in
Alzheimer’s disease (AD). Ikonomovic et al. [53] assessed
(choline acetyltransferase) ChAT and (acetylcholinesterase)
ACHhE activity and ((nerve growth factor) NGF protein levels
in the primary visual cortex of subjects without cognitive
impairment (NCI), mild cognitive impairment (MCI) and
AD, and the results showed that Decreased ChAT activity
was found in primary visual cortex in to moderate AD but
not in MCI, a finding that clearly points to differences in
primary visual cortex at MCI and AD stages, consistent
with our findings. There are few related studies on Early
Visual Cortex, but V2, V3 are important components of
the dorsal and ventral visual pathways. The Dorsal Stream
Visual Cortex associated with V3A, V3B is mainly related
to motor information, and Yamasaki et al. [54] studied the
differences in dorsal flow changes between MCI and AD
patients and healthy controls. They recorded (event-related
potentials) ERPs of AD and MCI patients and healthy con-
trols in response to optic flow (OF) and horizontal (HO)
motor stimuli. Movement-related N170 (V5/middle temporal
(MT) origin) and OF-specific P200 (v-d origin) were major
components in all groups. Compared with healthy controls,
MCI patients had prolonged P200 latency to both stimuli, but
not N170 latency. In contrast, AD patients had significantly
longer latencies to both stimuli N170 and P200 compared to
the other groups, a finding that demonstrates that there are
also differences in dorsal flow changes between AD and MCI
patients.

V. CONCLUSION

In this paper, we proposed a new subclass weighting algo-
rithm based on logistic regression, namely the SWLR
algorithm. Specifically, K-means++ clustering samples is
performed, and several samples with similar Euclidean dis-
tances are regarded as a subclass. Establish a subclass weight
for each subclass. The predicted label of the final sample
is jointly determined by the subclass weight and the global
weight. In order to prevent over fitting and improve the
problem that the dimension of the feature set is too high,
we adopt L2 regularization for both U and V in the loss
function. In order to prove the effectiveness of the algorithm,
we did five sets of comparative experiments, namely HC vs.
EMCI, HC vs. LMCI, EMCI vs. LMCI, LMCI vs. AD, and
HC vs. AD. Experiments show that the SWLR algorithm has
decent performance. In addition, we conducted the follow-
up analysis of the coefficient matrix U, selected the features
with the highest weight coefficients in each stage, and then
located the corresponding brain regions in the toolbox pro-
vided by HCPMMP. We found that during the development
of the disease from HC to AD, there is a law in the dis-
tribution of the core brain region, which generally migrates
counterclockwise. Then, we compare our findings with the
existing research from both macro and micro aspects, and the
results show that our findings are consistent with the existing
research. It is worth mentioning that, in view of the current
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research literature on EMCI and LMCI is less, our research
can be said to be enlightening.
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