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ABSTRACT Early fault diagnosis is essential for the proper operation of rotating machines. This article
proposes a fitness function in differential evolution (DE) that considers accuracy rate and false negative
rate for optimization in brushless DC (BLDC) motor fault diagnosis. Feature selection based on a distance
discriminant (FSDD) calculates the feature factors which base on the category separability of features after
the Hilbert–Huang transform (HHT) which extracts the features of four different type signals from BLDC
motor Hall sensor. The feature rank through DE to optimize before the features into the backpropagation
neural network (BPNN) in order. By reducing the feature number of Hall signal and decreasing the
complexity of neural network input, the combined method was proposed in this article can significantly
reduce the calculation cost. Finally, the identification model obtained an accuracy rate of 98.98% and
false negative rate of 13.66% when there were 18 features; besides, receiver operating characteristic (ROC)
curve and probability curve have been evidenced the number of false negative is decreased. Moreover, the
experiments have verified that the proposed method is effective in UCI data set.

INDEX TERMS Brushless DC, differential evolution, fault diagnosis, feature selection.

I. INTRODUCTION
Intelligent fault diagnosis (IFD), applications of machine
learning theories to machine fault diagnosis, is a promis-
ing way to release the contribution from human labor
and automatically recognize the health states of machines.
A commonly-implemented diagnosis procedure includes fea-
ture extraction, feature selection and classifiers. Deep learn-
ing (DL) is compared with IFD which features are manually
extracted and selected with required prior knowledge. With
the purpose of avoiding manual feature extraction, DL has
been successfully applied to fault diagnosis, including a fault
diagnosis model is designed with a novel stacked trans-
fer auto-encoder (NSTAE) [1], an adaptive feature learning
approach that is built on spatiotemporal pattern network
(STPN) [2], and deep belief network(DBN) be used as the
classification [3]. DL through adjusting connected weights
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to learn and select representations and patterns that can best
represent the condition of working machines from the input
data [4]. It helps automatically learn fault features from the
collected data instead of the artificial feature extraction of
IFD. However, the computational cost for deep learning mod-
els is high because the input data is usually high dimensional
network structure. And these models require a great deal of
training data to be labeled, even only a fraction of condition
monitoring data is labeled in the real issues [5].

The work in this article constructed a model to identify
the BLDC fault types. In order to detect the operation status
of the BLDC, Hall sensors or sensorless algorithms based
on back electromotive force are commonly used [6]. A Hall
sensor has the obvious advantages of a low cost and simple
structure [7]. Additionally, DC motors using Hall sensors
have been widely used in commercial and industrial applica-
tions [8]. Therefore, this article uses the Hall signal, which is
an electrical technology, to establish an identification model.
The motor may suffer from different failures, including stator
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failure [9]–[12], rotor failure [13], [14], bearing failure
[15], [16], eccentricity fault [17] and inverter fault [18]. Stator
failure accounts for 30% to 40% of the total failures in
motors; rotor failure accounts for 5% to 10% of the total
failures; and bearing failure accounts for 40% to 50% of total
failures [19].

The comprehensive description of the proposed fault diag-
nosis model includes feature extraction, feature selection and
classifiers. Signal analysis has been developed for decades,
and the Hilbert–Huang transform (HHT) is based on the
intrinsic mode functions (IMFs) of the original signal to
calculate the instantaneous frequency, and then perform spec-
trum analysis [20]. Since there does not have to choose the
mother wavelet, it is not affected by the resolution of the time
domain and frequency domain, so this method canmore accu-
rately decompose the signal in the high frequency domain.

After signal analysis, the original signal can provide fea-
tureswith a good identification rate through feature extraction
and feature selection. Feature selection can be divided into
filter, wrapper, hybrid approach and embedded feature selec-
tion [21]. The filter type is based on the relationship between
features as the criterion [22], and the wrapper type is based
on the relationship between features and the target variable
as the criterion [23]. The embedded type is usually used
for high dimensional data features [24], [25]. The wrapper
and hybrid approach types can obtain better results [26], but
the filter type is usually used when considering the com-
putational cost and a large number of features [24], [25].
Therefore, this study used the filter feature selection to cal-
culate feature weights, such as the Feature selection based
on a distance discriminant (FSDD), belonging to a clustering
algorithm [27].

The main disadvantage of the filter feature selection is that
this method independently examines the relationship between
features, and the lack of a classifier to participate in the
feature selection process leads to ignoring the performance
of the feature for the identification results. In the proposed
model, the features with distance discriminant factor from
FSDD are optimized by DE, the classifier is involved in
the feature selection process through optimization to obtain
the features with optimized feature ranking. This article
combines DE with feature factors after feature selection to
optimize the feature ranking. Differential evolution (DE) is
an effective and simple global optimization algorithm. The
convergence speed and robustness of common benchmark
functions and practical problems are better than those ofmany
algorithms [28].

An artificial neural network (ANN) is a common nonlinear
function processor that imitates the structure and pattern
of the human brain [29]. The performance of the learning
process of the neural network depends on the weights of the
neural network in the training phase. A BPNN is a super-
vised machine learning technique that adjusts its weights to
minimize the error of the calculated output, and it is suit-
able for identifying nonlinear relationships [30]. A BPNN is
used in the fault diagnosis problem of NPC inverters [31],

high impedance faults [32] and virtual speed sensors for DC
motors [33].

Performance evaluation by metrics which includes true
positive (TP), false positive (FP), true negative (TN) and false
negative (FN) in novel convolutional neural network [34].
Regulated parameter to reduce variations that can lead to
false alarms in healthy operating conditions of the motor in
wound rotor induction machine drives [35]. Error probability
(false alarm and miss alarm), one of the thresholds, deter-
mine would continue iterative decision making in the fault
diagnosis scheme [36]. In most of the literature, false alarm
or miss alarm probability were mentioned to exactly identify
the performance of the proposed fault diagnosis scheme.

Based on the abovementioned related literature, this
research proposes a fault identification model for a BLDC
established by Hall signals, which includes signal analysis
selection, feature selection and classifiers. Besides, that dis-
cusses the number of false positive in the model to find out
the performance shift of the proposed fault diagnosis scheme.

II. EXPERIMENTAL SETUP AND RELATED METHOD
A. EXPERIMENTAL ARCHITECTURE
This section introduces the experimental equipment, experi-
mental architecture and signal samples in this research and
studies the healthy, bearing, winding and rotor, a total of
four different types in a BLDC to build a fault diagno-
sis model. The process of this research is that the servo
motor (11kW/2000rpm/69Hz) of the dynamometer gener-
ates the opposite torque to the BLDC (420W/3020 rpm/DC
24V/60Hz) as the load, and then the BLDC motor drives
the operation. The BLDCM parameters are listed in Table 1.
A total of four BLDCs were tested in this experiment. One
motor was healthy, whereas the other three motors were
faulty. The faulty types included bearing damage in the inner
raceway, winding short circuit and rotor damage. The bearing
inner raceway had a 1 mm physical crack. The winding short
circuit was set by exfoliating a part of the 2 coil insulation.
The rotor damage was set by digging a hole.

FIGURE 1. Original output voltage of the healthy BLDC hall-sensor in
150 points.
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TABLE 1. BLDC parameters.

The data acquisition system (NI PXIe-1073) was used to
acquire the Hall signal of the DC brushless motor, and the
sampling rate was 1000 Hz, and the measurement time was
1500 seconds. There was a total of 1500 seconds of mea-
surement records for BLDC motors in each condition, and
the 1500 second data were divided into 750 samples of data,
every sample having 2000 points. The adopted procedure
use HHT be preprocessing tools of the healthy BLDC hall-
sensor signals, the original output voltage of the hall-sensor
in 150 points is shown in Fig. 1. Matlab program is used to
compile and analyze signals in the personal computer with
Intel Core i5-4460 3.2 GHz and 8 GB RAM after the Hall
signal of the DC brushless motor was acquired by the data
acquisition system (NI PXIe-1073).

A total of 3000 samples of Hall signal data records for
motors and the measured signals were analyzed by the HHT
in Matlab. After the analysis, the extracted features that can
reflect the motor conditions were normalized so that the
feature values of the 4 motor types were between 0 and 1,
which avoids the gradient explosion problem in the classifier.
And then feature selection was used to calculate the factor of
the features. The rank of features was optimized by DE after
the features were ranked in descending order by the feature
factors. Finally, the results of the fault type identification from
classifiers were returned. The experimental processing and
configuration are shown in Fig. 2.

B. SIGNAL ANALYSIS AND FEATURE EXTRACTION
The signal can be analyzed in the time and frequency
domains. In some cases, the frequency domain of the signal
can be presented in a clearer way than the time domain [37].
Dr. Norden E. Huang proposed the HHT in 1998, and it
has since been widely used in speech analysis and nonlinear
and unstable signal analysis [38]. HHT consists of empirical
mode decomposition (EMD) and Hilbert transform (HT).
The original function of the input can be decomposed into
intrinsic mode functions (IMFs) and trend functions through
EMD. EMD which is a series of shifting decomposition
of signal, a highly efficient data decomposition method,
adaptively extract the basis functions from signals. Hilbert
spectral analysis that each IMF is analyzed by Hilbert trans-
form which transfer to plural modus to get the Hilbert
spectrum of the signal. EMD separates the four types of
motor Hall signals into the eight layers (IMF1 to IMF7
and Residual), and Hilbert–Huang transform decompose the
IMFs to obtain the instantaneous amplitude and instanta-
neous frequency of each layer. Additionally, there have
12 features that are captured are maximum (Tmax), aver-
age (Tmean), mean square error (Tmse), standard deviation

(Tstd), maximum/mean (Tmax/Tmean) and maximum/root
mean square (Tmax/Trms) of the time domain, and the max-
imum (Fmax), average (Fmean), mean square error (Fmse),
standard deviation (Fstd), maximum/average (Fmax/Fmean)
and maximum/root mean square (Fmax/Frms) of the fre-
quency domain. Each IMF of every single sample took 12 fea-
tures and normalized them so that the feature values of the
4 motor types were distributed between 0 and 1. This step
obtained a total of 96 features, as shown in Table 2. The exper-
iment uses feature extraction method to obtain the feature set
before optimizing the feature rank by feature selection and
optimizer methods and then uses classifiers to present the
results, as shown in Fig. 3.

TABLE 2. Feature extraction of the HHT.

C. FEATURE SELECTION
The model includes feature selection in order to eliminate
redundant features which improve prediction accuracy and
reduce computational cost. The feature selection was imple-
mented using the FSDD of the clustering algorithm to cal-
culate the category separability of features. The higher value
of the factor represents which is the more important feature.
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FIGURE 2. Experimental architecture process.

FIGURE 3. Fault diagnosis model architecture.

Therefore, the features were ranked in descending order
by feature factors after feature selection. The features can
increase the recognition rate of the classifier or not affect the
recognition result by feature selection and deletion which are
extracted from the Hall signal after signal analysis, which
can reduce the computation cost of the recognition model.
The feature distance discriminant factor λm is based on the
Euclidean distance between the features of the same category
dmw and the Euclidean distance between the features of dif-
ferent categories dmb . The Euclidean distance of the feature
was calculated by the center of the category feature gmc and
the center of the sample feature gmi , where C , m and i are
the category number, feature number and sample number.
qmi is the feature of the sample. The compensation factor
ηm was calculated by the distance variance umb and vmw . The
calculation procedure is as follows:

Step 1. Calculate the variance and average of all the sam-
ples in the mth feature.

qm =
1
N

N∑
i=1

qmi (1)

σ 2
m =

1
N

N∑
i=1

(
qmi − qm

)2 (2)

Step 2. Calculate the variance and the average of the sample
of class C in the mth feature.

σ 2
m(C) =

1
NC

NC∑
i=1

(
qmi − q

m
C

)2
(3)

qmC =
1
NC

NC∑
i=1

qmi (4)

Step 3. Calculate the weighted variance of the class center gC
at the mth feature.

σ ′′
2
m =

C∑
C=1

ρC
(
gmC − g

m)2 (5)

gm =
C∑

C=1

ρCgmC (6)

Step 4. Calculate the inter-class distance of themth feature db
and the intra-class distance of the mth feature dw.

dmb =
σ ′′

2
m

σ 2
m

(7)

dmw = 2

C∑
C=1

ρCσ
2
m (C)

σ 2
m

(8)
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ρC =
NC∑

C=1
NC

(9)

Step 5. Calculate the variance factor vmb of dmb in the mth fea-
ture and the variance factor vmw of dmw in the mth feature.

vmb =
max

∥∥∥gmi − gmC∥∥∥
min

∥∥∥gmi − gmC∥∥∥ (10)

∥∥∥gmi − gmC∥∥∥ = gmi − g
m
C

σ 2
m

(11)

vmw =
max

(
dmw
)

min
(
dmw
) (12)

Step 6. Calculate the compensation factor of the mth feature.

ηm =
1
vmw
+

1
vmb

(13)

Step 7. Calculate the distance discrimination factor of the
mth feature.

λm = dmb − ηmd
m
w (14)

Step 8. Normalize the distance discriminant factor.

λm′ =
λm − min (λm)

max (λm)− min (λm)
(15)

D. CLASSIFIER
The feature rank is obtained by feature selection, which is
conducive to the classifier of the neural network model. The
nonlinear classifier BPNN which randomly selects 70% of
the data from the motor samples, and the features are brought
into the classifier for training, and the remaining 30% of data
are used as test samples. The size of input layer depends on
the feature number, the size of hidden layer is 60 and the
training function which is trainscg uses less memory. The
BPNN parameters are listed in Table 3. A BPNN imitates
the capabilities of neural system resource processing data and
discriminant analysis by simulating the structure of biological
data processing. Among them, neurons are used for message
transmission and backpropagation to correct errors in order
to achieve the best identification result. A BPNN has three
structures that are composed of an input layer, a hidden layer
and an output layer.

III. THE PROPOSED METHOD
A. DIFFERENTIAL EVOLUTION
Differential evolution proposed by Price and Storn is an
optimization technique that is a competitive and reliable evo-
lutionary used to solve various complex problems [39].The
calculation principle is similar to the genetic algorithm (GA),
including three mechanisms of mutation, crossover and selec-
tion. The offspring are derived from random parental param-
eter mutations, as shown in Fig. 4. In addition, this algorithm
refers to particle swarm optimization (PSO) to make the evo-
lution direction approach the best particle. The randomness
used in DE is a random search algorithm that prevents the

TABLE 3. BPNN Parameters.

algorithm from falling into the local optimum. Therefore,
it can be used for many important problems that need to be
optimized, including neural network training, and Bayesian
network inference [40]. Other articles have proposed the
algorithms which were combined with the DE algorithm to
improve the computational efficiency or improve the recog-
nition rate [41], [42]. In this article, the accuracy rate and
false negative rate are combined to be set as the fitness value,
the feature rank is a rank optimized by DE after optimized
to improve the identification and false negative rate. The
calculation procedure of the differential evolution algorithm
is as follows:

Step 1. Initially, set the parameters as follow: the number
of population r = 10, the numbers of particle which are
the numbers of feature i = 96, crossover rate CR=0.8,
G1,0, the distance discriminant factor from FSDD, is the first
generation of the first particle in population and initialize
iterations j = 0.
Step 2. Calculate the fitness value of the first generation of

the first particle.
Step 3. Randomly select the parameters in the offspring

G1,j, G2,j and G3,j to produce mutations.

Vr,j+1 = G1,j + F
(
G2,j − G3,j

)
(16)

Step 4. The step of crossover is a random operation that bases
on rand and CR. If CR is smaller, it means vectors U and G
are more similar.

Ur,j+1 =
{
Vr,j+1 if rand ≤ CR
Gr,j+1 if rand > CR

}
(17)

Step 5. The step of elimination obtains a better fitness value
through the greedy algorithm.

Ur,j+1 =
{
Ur,j+1 if Ur,j+1 ≤ Gr,j
Gr,j

}
(18)

Step 6. The stopping rule is whether the fitness value has
converged, meaning the optimal value. The fitness value com-
bine the accuracy rate and false negative rate. If the number
of calculations reaches the iterations j, it stops. Otherwise,
repeat steps 3 to 5.
Step 7. Finally, all particles converge to obtain the best

global solution. After the optimization, a set of solutions can
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FIGURE 4. Flow chart of the DE.

be obtained as the best particle coordinate Gbest which is the
optimized importance of the feature.

B. FITNESS FUNCTION
There are four possible results in the recognition test, true
positive, true negative, false positive and false negative.
A false negative (FN) is an error in which a test result is
negative of a positive subject, while a false positive (FP)
is an opposite error, where the test result is negative subject is
positive. The false positive and false negative exist where the
negative samples (left curve) and the positive samples (right
curve) overlap, as shown in Fig. 5. The false negative rate
(FNR) can be decreased by setting different thresholds (verti-
cal bar), at the cost of raising the number of false positive (FP)
and decreasing the accuracy rate (ACC), or vice versa [43].
A perfect test would have zero false positives and zero false
negatives, so building the curve of samples by the different
recognized results is another way. The false negative rate is
shown in (20), where FN is the number of false negatives, TP
is the number of true positives and N =FN +TP is the total
number of ground truth positives [40].

ACC =
TP+ TN

TP+ FP+ FN + TN
× 100 % (19)

FNR =
FN

FN + TP
× 100 % (20)

In the following paragraph, the equations of fitness value
combine the accuracy rate and the false negative rate, and
then the property of equations are represented in the sur-
face plot which is a visual medium to exactly describe the
performance. The red points in the surface plot of fitness
evolution are the accuracy rate and false negative rate before
optimization to state the global situation.

Equation 21 referent the Pearson correlation coefficient
to combine the accuracy rate and false negative rate after
optimizing in the iterations. ACC and FNR are accuracy rate
and false negative rate. There has obviously been scaling in
Fitness when the FNR is extremely smaller, Fitness is flat at
other times. The increased degree of fitness is unobvious that
could not search the evolution direction as shown in Fig. 6.

Fitness =
k × ACC

√
k + k × (k − 1)× FNR

(21)

Equation 22 cancel the division in the equation to increase
the degree of change in fitness. FNR is original accuracy rate
and false negative rate. There have many combined options
of ACC and FNR with the same fitness value. It leads to an
increase in Fitness, while ACC and FNR are not optimized at
the same time as shown in Fig. 7.

Fitness = ACC +
(
FNR− FNR

)
(22)

FIGURE 5. Schematic diagram of probability distribution.

Equation 23, Fitness will be improved when the ACC is
increased and the FNR is reduced at the same time. ACC and
FNR are original accuracy rate and false negative rate, which
are the origin of coordinate in the evolution plot. There has
the plain and slope even the ACC and FNR are in the micro
shift so that the optimization has a clear direction as shown
in Fig. 8.

Fitness =
∣∣ACC − ACC∣∣× (FNR− FNR)
+
(
ACC − ACC

)
×
∣∣FNR− FNR∣∣ (23)

IV. METHOD EFFICIENCY
A. DATASET RESULTS
The work in this article built a model, and an original signal
was brought into the model. In the classifier part of the model,
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FIGURE 6. Fitness evolution plot of pearson correlation coefficient.

FIGURE 7. Fitness evolution plot of equation 25.

the signal was brought into the BPNNwhich can obtain better
results in BLDC fault diagnosis. The features from 2,100
samples of data were brought into the classifier for training,
whilst the features from the remaining 900 samples of data
were used as test samples, and this was repeated 100 times
to calculate the average accuracy rate in order to know the
resolution of the degree of the type of motor failure. Initially,
the input was 96 features, and then the number of inputs
decreased after the feature selection. The data matrix was
96× 3000, which means 96 features and 3000 samples from
four types of motor.

The signal was directly recognized by the classifier after
the feature analysis by the HHT. Although the number of
features was the largest, there may be more features that
cannot clearly distinguish the fault, which led to an accuracy
rate for the BPNN of 95.70%. Feature selection can reduce
computational costs by determining the features of less influ-
ence and redundancy.

In Fig. 9, the method can obtain a smooth accuracy rate
after the number of features was more than 10. The accuracy
rate is 95.70% when the number of features is 96; the highest
accuracy rate in a full experiment is 99.25%when the number
of features is 62; the lowest false negative rate in a full
experiment is 1.00% when the number of features is 58.

TABLE 4. The accuracy rate and false negative rate with different number
of features.

When number of features is 96, there is no outstanding
advantage in accuracy and false negative; the false negative
rate is the lowest when there are 58 features but the number
of features is large; the recognition rate is the highest when
there are 62 features but the false negative rate is high.
As mentioned above is the reason that the number of features
that will be optimized should be another position. When the
recognition rate is around 16 features, it gradually stabilizes.
And the false negative rate is also relatively lower in the entire
experiment result.

In Fig. 9, the accuracy rate is gradually stabilized from
around 10 features, but the false negative rate is unstable
even in more features. There has a feature point worth being
noteworthy that the false negative rate is relatively lower and
the beginning of stabilized accuracy rate when the number
of features is 18. From this finding, the work in this article
used a differential evolution to optimize the factor of the first
18 important features.

B. OPTIMIZATION
The number of 18 features in Table 4 is the best, and the
recognition rate and false negative rate are both the best
values. Although the 18 features did not have outstanding
advantages in the overall experiment. The 18 features com-
pared with the number of features previously proposed, only
need to use a lesser number of features are recognized, and
the shortcomings can be optimized to increase the recognition
rate and reduce the false negative rate.

In Table 5, when the fitness value combines the accuracy
rate and false negative rate as (21) can effectively enhance
fitness, greatly reduce false negatives, and reduce the accu-
racy rate. Adding the original point of fitness into the fit-
ness formula as (22) can effectively improve fitness, greatly
reduce false negatives, and slightly reduce the recognition
rate. Considering the original point of fitness and mutation
direction, (23) effectively increases the recognition rate and
reduces false negatives at the same time which is the best
fitness function in these three equations.

This subsection uses the continuous dataset provided by
UCI for verification [44], experimental verifications are per-
formed to demonstrate the effectiveness of the proposed
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FIGURE 8. Fitness evolution plot of equation 26.

FIGURE 9. Accuracy and false negative curves.

TABLE 5. The accuracy rate and false negative rate with different fitness
of optimization.

method, and the features of the dataset are carried out with
the (23) inDE. First, the feature is selected by using the FSDD
before ranking the feature factors. Then features are entered
into the DE optimizer. The optimizer results are shown in
Table 6, the false negative rates and accuracy rates after opti-
mizing were better than the original. ROC curve compares the
TPR and FPR in the plot to confirm the FP situation [45], [46].
If only changing result cutoff values could lead the FP to be
raised when decreasing the FN [47], [48]. The ROC curves

TABLE 6. The accuracy rate and false negative rate of the different
recognition.

for diagnostic with optimization and without optimization are
plotted in Fig. 10 that illustrates the FP would not obviously
increase in the proposed method. The area under the ROC
curve (AUC), a metric derived from the ROC curve, evaluates
the performance of classifiers. The AUC values of model
with DE are higher than the model without optimization,
except for the AUC value of winding short circuit motor
which is nuance in the two models, as shown in Table 7.
In order to compare the probability curve after optimization,
the probability distribution of motor accuracy in four types
is created by accuracy and probability. Fig. 11 shows the
probability of one type motor being classified as the four
conditions of motors. The fault motor probability curve of
rotor damage and short circuit in stator windings moves to
both ends of accuracy after optimization that expounds the
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FIGURE 10. ROC curves of four kind motor result (a) before optimization (b) after optimization.

TABLE 7. AUC value of four kind motor.

FIGURE 11. Probability distribution of motor accuracy in four types. (a) the identification result of the healthy motor dataset (b) the identification result
of the bearing damage motor dataset (c) the identification result of the rotor damage motor dataset (d) the identification result of the winding damage
motor dataset in 96 features without DE model. (e) the identification result of the healthy motor dataset (f) the identification result of the bearing
damage motor dataset (g) the identification result of the rotor damage motor dataset (h) the identification result of the winding damage motor dataset
in 18 features with DE model.

probability of these two types being classified as the correct
motor raises, as shown in Fig. 11(c), (d), (g), (h).

ROC curve has argued the false negative numbers of
model with the proposed fitness function as similarly less
as without optimization. Above ROC result and probability
curve has been testified the model with the proposed fitness

function is better than only moving the threshold to raise the
accuracy rate.

V. CONCLUSION
In fault types, bearing damage, stator winding failure
and rotor damage make up the majority. The complexity
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of fault detection is reduced through this model in
executing the preliminary diagnosis. This article pre-
sented a fault diagnosis model for BLDCs. This model
includes five subsystems which are signal analysis, fea-
ture extraction, feature selection, ranking optimization and
classifiers.

In this article, the proposed model reduced the number
of features to 18, which significantly eliminated 81% of
the redundant features in the BLDC dataset, and then the
model has been successfully applied to the other dataset.
The final accuracy rate reached 98.98% and false negative
rate was 13.66% in the BLDC dataset, which is higher than
the result of the identification of 96 features. Moreover, the
model with the proposed fitness function has been testified
through the ROC curve and probability curve this is more than
moving the threshold and increasing the accuracy probability
even.
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