
Received 3 June 2022, accepted 23 June 2022, date of publication 27 June 2022, date of current version 1 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3186760

Building a Natural Language Query and Control
Interface for IoT Platforms
ZHIPENG XU 1, HAO WU 1, XU CHEN 1, YONGMEI WANG 1, AND ZHENYU YUE 1,2
1School of Information and Computer Science, Anhui Agricultural University, Hefei 230036, China
2Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Hefei 230036, China

Corresponding author: Yongmei Wang (plainfebruary@gmail.com)

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 62102004.

ABSTRACT The rapid development and popularity of IoT technology has reshaped the way people interact
with the real world. Many researchers have attempted to build natural language interfaces for IoT platforms,
but have not produced much progress in parsing natural language commands that contain multiple operations
and more complex logical structures. In this paper, we propose IoT-NLI, a natural language query and
control interface for popular IoT platforms, which uses hierarchical semantic parsing algorithms and directed
edge-tagged graph structures to efficiently parse natural language commands input by users, enabling them
to perform multiple operations contained in one complex natural language command. Experiments in three
domains, agriculture, industry, and smart home, show that IoT-NLI has excellent performance and reasonable
response time. Finally, a IoT-NLI application was developed on the Android platform and integrated with the
AliCloud platform. It enables users to query and control devices on Android phones through chat windows
similar to instant messaging software.

INDEX TERMS Natural language interface, human-computer interaction, natural language processing, IoT
platform.

I. INTRODUCTION
Benefiting from the rapid development of smart hardware
and mobile computing as well as the improvement of peo-
ple’s living standards, Internet of Things (IoT) technology
has been applied in a large number of fields such as smart
home, medical, automotive, and agriculture [1]. Real-time
information exchange between human and computer through
the Graphical User Interface (GUI) provided by the IoT plat-
form is a common human-computer interaction method of the
current IoT platform [2]. GUIs have contributed greatly to the
popularity of computers, but with the increasing number of
IoT devices, the design of GUI has become more and more
complex, which increases the learning and usage costs for
users. The development of natural language processing tech-
nology makes natural language interface [3] a new solution
for the interaction method of IoT platform, which means that
users can use natural and direct way for human-computer
interaction. The outstanding performance of virtual assistants

The associate editor coordinating the review of this manuscript and
approving it for publication was Maurizio Tucci.

in mobile applications, represented by Apple Siri and Google
Assistant [4], also proves the user-friendliness and efficiency
of natural language interfaces.

The task of building natural language interfaces for IoT
platforms has received the attention of many researchers due
to its practical relevance in real-life situations. The funda-
mental task of the interface is to analyze the meaning of
the commands in order to identify the user’s goals and send
them in a certain form to the device and lead to a series
of operations by the controlled device [5]. Keyword-based
interaction approaches are the most popular among related
studies: Austerjost et al. [6] constructed an intelligent virtual
assistant for a chemical laboratory that looks for key phrases
in the command text that match a pre-constructed lexicon
of device actions to trigger specific intentions leading to
the device’s actions. Baby et al. [7] performed word seg-
mentation as well as stop word filtering on natural language
command text and then matched the words in the command
with words in the device dictionary and action dictionary to
determine the control target. Mahnoosh et al. [8] constructed
a natural language interface for a smart home scenario,

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 68655

https://orcid.org/0000-0002-3066-3716
https://orcid.org/0000-0002-0795-3790
https://orcid.org/0000-0001-5107-8447
https://orcid.org/0000-0002-7508-6537
https://orcid.org/0000-0001-8238-7437


Z. Xu et al.: Building a Natural Language Query and Control Interface for IoT Platforms

which used NLP tools to do semantic annotation of natural
language commands to extract elements such as location,
device, and action from them, which is more goal-oriented
than the above approaches, but still focuses only on the
meanings expressed by individual words in the commands
and ignores the logical relationships contained in the natu-
ral language command statements. Several researchers have
explored grammar-based approaches: Noura et al. [9] pro-
posed the VISH grammar, which usesmultiple rules to extract
multiple types of entities from command for analyzing the
intent in natural language commands and controlling target
devices in smart home scenarios. Wu et al. [10] proposed
a parsing algorithm based on dependent syntactic analysis,
which uses a dependent syntactic tree and defined natural lan-
guage semantic parsing rules to semantically extract action-
location-device triplets, making the triads corresponding to
each operation logically independent, which solves the prob-
lem of parsing commands containingmultiple intents to some
extent. However, dependent syntactic analysis tools are very
sensitive to the length of the command sequence, making
it difficult to analyze complex commands with long lengths
effectively. In recent years, several researchers have experi-
mented using deep learning-based approaches: Gui et al. [11]
first classify natural language commands for intent, then
convert natural language commands into logical form using a
sequence-to-sequencemodel [12], and finally further compile
them into the form of JavaScript to send requests to sensors
and return responses. Park et al. [13] used a named entity
recognition method to annotate the words in the commands
so as to extract one logical form in the form of Key-Value
in each natural language command. Ye et al. [14] vectorize
the instruction text, compare it with the commands in the
command dictionary for similarity, and perform the opera-
tion corresponding to the instruction with the highest sim-
ilarity to it. These approaches above have made effective
attempts to build natural language interfaces for IoT plat-
forms, but most of the related work can only parse natural
language commands that contain a single operation. A com-
mon example of a real-world scenario is that when a user
wants to start a device and then adjust its parameters, two
separate commands are needed to perform two operations
(e.g., if the users wants to start the air conditioner first and
then adjust the temperature, they need to start the device by
entering ‘‘ ’’ (‘‘Please
turn on the air conditioner in the living room for me
first’’), wait for the command to be processed, and
then enter ‘‘ ’’(‘‘set the temperature
to 24 degrees’’) to adjust the parameters). Such a pro-
cess does not have the coherence and ease of use
of natural human-computer interaction. Amazon’s inter-
nal user command data shows that 53% of natural
language commands contain multiple actions [15], indi-
cating that users prefer to use commands with multi-
ple operations (e.g., ,

’’(‘‘Please turn on the air conditioner
in my living room and set the temperature to 24 degrees’’))

when performing more complex operations. In this paper,
we consider the command parsing problem as a construc-
tion process of a directed acyclic graph structure and use
the command structure features to obtain the intent of each
operation.

We have drawn some inspiration from the design of natural
language interfaces for relational databases [16], code gener-
ation tasks [17], knowledge bases [18], and web navigation
[19]. Xu et al. [20] proposed SQLNet, which uses a Seq2set
model and a dependency graph-based column attentionmech-
anism for SQL statement synthesis, effectively solving the
order-matters problem of the traditional Seq2Seq model on
related tasks. Su et al. [21] proposed a modular sequence-to-
sequence model for building an interactive natural language
interface that uses fine-grained user interactions to enhance
user experience and interface usability. Mazumder et al. [22]
proposed a continuous learning framework for knowledge
graph construction and updating by extracting knowledge
triples from conversational information with users. In addi-
tion, some studies on entity extraction, relationship extrac-
tion, and joint extraction have also inspired us in semantic
parsing methods. Wei et al. [24] introduced a new entry
point for the triplet extraction task by proposing the use
of a cascaded binary tagger for entity tagging, which ele-
gantly solves the common but intractable overlap problem
in relation extraction. Jie et al. [25] proposed an effective
way to incorporate dependent syntactic information into the
BiLSTM-CRF model [26] for the named entity recognition
task on which excellent results were achieved.

In conclusion, building natural language interfaces for
IoT platforms has a positive effect on improving the
human-computer interaction experience in IoT scenarios.
However, the existing natural language interfaces are weak
in parsing commands that contain multiple operations and
complex logic, making the interaction process incoherent.
The contributions of this paper are as follows:

• In this paper, we propose a hierarchical semantic parsing
framework for efficient structured parsing of Chinese
natural language commands in the form of directed
edge-tagged graphs. It is able to overcome the drawback
that traditional natural language interface construction
methods for IoT platforms can only parse natural lan-
guage commands that contain a single operation.

• Experimental results on the publicly available HCIC
dataset show that our approach can effectively parse
commands containing multiple operations, making user
interactions more natural and coherent. And it has good
domain adaptability in common IoT scenarios such as
industrial, agricultural and smart home.

• We developed a user-conversational natural language
interaction application on Android platform in the form
of popular instant messengers such as WeChat, What-
sApp, and LINE. We integrate it with AliCloud IoT
platform and apply the proposed approach to real
scenarios.

68656 VOLUME 10, 2022



Z. Xu et al.: Building a Natural Language Query and Control Interface for IoT Platforms

FIGURE 1. Query and control API.

II. PRELIMINARY
A. INTERFACE DESIGN REQUIREMENTS
Data collection, data query, device control and parameter
adjustment are the main functions of the GUI interface of the
IoT platform. In the actual application scenario, the end-user
makes use of the GUI interface provided by the IoT platform
to query device data and control operations by clicking on the
page controls. In terms of technical principle, this approach
is to obtain key information through user interaction with the
GUI interface to determine the API to be called, and then
send HTTPS/HTTP GET or POST requests to the API server
address, and the IoT platform performs operations such as
device manipulation or data query based on the processing of
the request. Our IoT-NLI has the same design idea as GUI,
but we hope to provide a more user-friendly interaction for
users: the interface can parse the natural language commands
spoken by users, obtain key information and confirm the
intent of the commands, select the appropriate API, auto-
populate the key information in it, and then call the API to
complete the operation in the same way. In this paper, we take
the data query and device control APIs in the AliCloud IoT
platform API suite as an example. It should be noted that
our core technology can also be used in other popular IoT
platforms such as Tencent Cloud and Things Cloud, but we
only focus on the Ali Cloud IoT platform in this work, and
users can migrate according to their needs. Figure 1 shows
the form of query and control API involved in this paper,
the variable name after ’$’ indicates that it is the parameter
that needs to be populated, Action represents the operation
used by this API, PageSize as well as Asc are the variables
that do not need to be concerned in this paper. iotid is the
device in the IoT platform Identifer means the identifier
corresponding to the attribute name, and in the control API,
the identifier also needs to get its corresponding target value
TagetValue to set the value of the property. The approach of
extracting entities from natural language commands loses a
large amount of semantic information, and when multiple
entities of the same type appear in one command, order
problems among the entities lead to confusion in semantic
relations. For this reason, a structured logical form for natural
language commands is needed, which constrains the seman-
tic relations between entities while extracting the entities in
the commands. We define specific structured logical forms
for IoT-NLI tasks, consisting of four parts: location, device,
property, and value, and each structured logical form repre-
sents an action that can be executed. Given the natural lan-
guage command ‘‘ ,

FIGURE 2. Parameter dependencies.

‘‘(‘‘Please help me turn on the
power to the thermostat in the shed and check the tem-
perature of the water tank in the greenhouse’’), the corre-
sponding logical form is ‘location’: ‘ ’ (‘shed’), ‘device’:
‘ ’ (‘thermostat’), ’property’: ‘ ’ (’power’), ’value’:
‘ ’ (‘turn on’) and ‘location’: ‘ ’ (‘greenhouse’),
‘device’: ‘ ’ (‘water tank’), ‘property’: ‘ ’ (‘tem-
perature’), ‘value’: ‘ ’ (‘check’). The necessary contex-
tual information in each structured logical form, can be
populated into the API according to the parameter depen-
dencies shown in Figure 2. Parameter dependencies can
be obtained from the IoT platform through requests. The
script for obtaining parameter dependencies from the Ali-
Cloud platform and the related request code can be found
at https://github.com/CodaChan/IoT-NLI. Depending on the
length of the command, the expression of the intent, and
the number of operations contained in the command (i.e., the
number of structured logical forms), commands are classified
into basic natural language commands and complex natural
language commands, which are defined as shown in Table 1.

B. SYNTACTIC DEPENDENCY
Dependency parsing is one of the key techniques in natu-
ral language processing. The basic process is to determine
whether the composition of the input sentence is grammati-
cally correct or not, and to analyze the syntactic structure of
the sentence to construct a syntactic dependency tree. IoT-
NLI addresses the semantic understanding of basic natural
language commands by parsing the syntactic dependencies
in the commands. To better explain the semantic parsing
algorithm based on dependency parsing that we will propose
in Section 3.3, this subsection introduces syntactic depen-
dency relations and dependency parsing, and demonstrates
the process of dependency parsing. In DuCTB [27], a Chinese
syntactic dependency tree library constructed by Baidu, the
dependencies in the syntactic dependency tree are defined
as 14 annotation relations. Examples of several common
syntactic dependency relations HED, VOB, ATT, and COO
used in the semantic parsing algorithm are given in Table 2.

Dependency parsing of natural language commands
will be performed using the Chinese dependency parser
tool DDParser [28]. Taking the natural language com-
mand ‘‘ ’’ (‘‘Please help
me check the temperature of the air conditioner in the living

VOLUME 10, 2022 68657



Z. Xu et al.: Building a Natural Language Query and Control Interface for IoT Platforms

TABLE 1. Classification of natural language command.

TABLE 2. Syntactic dependencies.

FIGURE 3. Syntactic dependency graph.

room’’) as an example, DDParser will return the syntactic
dependency tree and lexical annotation results in the form of a
list. The syntactic dependency tree constructed by DDParser
is shown in Figure 3. In this example, the noun ‘‘ ’’
(‘‘temperature’’) corresponds to the verb ‘‘ ’’ (‘‘check’’)
in the command, and the corresponding relationship is a
verb-object relationship (VOB), which means that the noun
‘‘ ’’ is the object of the verb ‘‘ ’’. The noun ‘‘ ’’
(‘‘air conditioner’’) corresponds to the word ‘‘ ’’, and
the corresponding relationship is ATT, which means that the
noun ‘‘ ’’ is used as a gerund to modify ‘‘ ’’. The
noun ‘‘ ’’ (‘‘living room’’) is in ATT relationship with
the preposition ‘‘ ’’ (‘‘inside’’), and the preposition ‘‘ ’’
is also in ATT relationship with the noun ‘‘ ’’, so it can
be assumed that the noun ‘‘ ’’ modifies the noun ‘‘ ’’
through the preposition ‘‘ ’’.

C. SEMANTIC RELATIONS IN COMMANDS
Semantic relations describe the semantic connections
between the components of a sentence [29]. For a specific

FIGURE 4. Semantic relations between the entities.

task, the correct semantic relations can be obtained by parsing
the dependencies and formulating extraction rules. The orig-
inal corpus of the dataset in this paper contains natural lan-
guage query and control commands in three IoT application
scenarios: agriculture, industry, and smart home. By sum-
marizing the semantic relations existing in natural language
query and control commands, this paper defines three seman-
tic relations between entities in structured logical forms: the
inclusion relation between location and device (‘‘is the loca-
tion of’’), the inclusion relation between device and property
(‘‘is the device of’’), and the key-value relation between
property and property value (‘‘its value is’’). It is worth noting
that the three semantic relations defined here denote semantic
logical connections between entities. Specifically, if the enti-
ties ea and eb form a semantic relation r, then ea and eb belong
to the same structured logical form. Given the natural lan-
guage command ‘‘

’’(‘‘Please help me turn on the
power of the air conditioner in the living room and turn
the color of the main light to blue’’), the semantic relations

68658 VOLUME 10, 2022



Z. Xu et al.: Building a Natural Language Query and Control Interface for IoT Platforms

FIGURE 5. IoT-NLI equivalent abstraction workflow.

between the entities is shown in Figure 4. For the above
example, the entity ‘‘living room’’ is in ‘‘is the location
of’’ relationship with ‘‘ ’’ (‘‘air conditioner’’), and the
entity ‘‘ ’’ (‘‘living room’’) is also in ‘‘is the location
of’’ relationship with ‘‘ ’’ (‘‘main light’’), which means
that ‘‘ ’’ and ‘‘ ’’ are both devices in the ‘‘ ’’. The
entity ‘‘ ’’ and ‘‘ ’’ (‘‘power’’) form ‘‘is the device of’’
relationship, and the entity ‘‘ ’’ and ‘‘ ’’ (‘‘color’’)
form ‘‘is the device of’’ relationship, which means that in
this command, ‘‘ ’’ is the property of ‘‘ ’’, ‘‘ ’’
is the property of ‘‘ ’’, the two are independent of each
other. Constraints via semantic relationships avoid seman-
tic confusion, and such constraints also exist in key-value
relationships between attributes and attribute values. In this
paper, the semantic relations in the commands are represented
using a triple of the form (h, r, t), where h is the head entity,
r is the relationship between entities, and tis the tail entity.

III. METHODOLOGY
A. IoT-NLI EQUIVALENT ABSTRACTION WORKFLOW
IoT-NLI is a natural language interface for IoT platform query
and control APIs based on hierarchical semantic parsing algo-
rithms, and its equivalent abstraction workflow is given in this
subsection. Its equivalent abstraction workflow is shown in
Figure 5.

The user takes the natural language command as input,
and the semantic parsing module of IoT-NLI first performs a
preliminary semantic parsing of the command using a seman-
tic parsing algorithm based on dependency parsing. If the
parsing is successful, the set of semantic relation triples of
the natural language command is generated. Commands that
fail will be parsed using semantic parsing algorithm based on
two-level taggers to achieve the same goal. The set of seman-
tic relation triples will be mapped into the command semantic
relation graph (CSRG) by defining mapping rules. Finally,
the CSRG2API module generates structured logical forms

from CSRG and determines their intent, and then completes
the automatic filling of the API according to the parameter
dependencies.

B. INTERMEDIATE LANGUAGE FRAMEWORK
The use of graph structures for structured representation of
text has many advantages over relational models and a range
of NoSQL alternatives [29]: graph-type text structures pro-
vide concise forms for text and reduce the noise interference
in discrete natural text. Complex and continuous relationships
between entities are captured through edges and paths in
graphs [30] and allow data to be stored in a more flexible
way [31]. Inspired by frame semantics [32] and related work
on knowledge graphs [29], we propose a graph-structured
command intermediate language framework and call it com-
mand semantic relation graph (CSRG) for structural parsing
of commands using semantic triple extraction. CSRG is the
form of directed edge-labelled graph, which takes entities in
commands as nodes and makes directed links through seman-
tic relations between entities to store necessary information in
natural language commands. The process of forming CSRG
from the semantic relation triad is shown in Figure 6, where
the blue, purple and brown directed edges represent the three
semantic relations ‘‘is the location of’’, ‘‘is the device of’’
and ‘‘its value is’’ respectively. This process is similar to
the construction of knowledge graph. The same entities in
different triples will be mapped to the same node in the CSRG
and the semantic relationships on the edges will be preserved.
It is important to note that in this process, the position number
of the entity in the command is stored in the CSRG to prevent
ambiguity.

C. SEMANTIC PARSING ALGORITHM BASED ON
DEPENDENCY PARSING
This subsection proposes a low-consumption semantic pars-
ing algorithm to accomplish the semantic parsing of basic

VOLUME 10, 2022 68659



Z. Xu et al.: Building a Natural Language Query and Control Interface for IoT Platforms

FIGURE 6. Construction of the command semantic relationship graph.

natural language commands based on syntactic dependencies.
The algorithm first uses DDParser to perform dependency
parsing of natural language commands to obtain the syntactic
dependency tree of the commands, and then converts the syn-
tactic dependencies to semantic relations by definingmultiple
rules. In this paper, we propose the following rules for this
process, each of which can be used multiple times during the
parsing process in a single natural language command.

Rule 1: When a verb that forms verb-object relation-
ship (VOB) with a noun exists in the command, the verb
indicates the action that will be performed on the noun. The
noun can be considered as an entity of ‘‘property’’ type, and
the verb as the corresponding value. The VOB relationship
can be used to extract the ‘‘its value is’’ relation triple.

Rule 2: Words in COO relationship with the same noun
w1 can be considered to belong to the same set of entities
W = {w1,w2 . . .wn}, and the words in the set W share the
same semantic relationship with w1.
Rule 3: The nouns that formATT relationship with the enti-

ties of ‘‘property’’ type extracted by Rule 1 can be extracted
as entities of ‘‘device’’ type, and the ‘‘is the device of’’
relationship triple is obtained.

Rule 4: The noun that forms ATT relationship with an
entity of the ‘‘device’’ type can be extracted as an entity of the
‘‘location’’ type, and the relationship triple ‘‘is the location
of’’ is obtained.

Rule 5: ATT relationship can be passed through preposi-
tions. Let the noun wa form an ATT relationship with the
preposition wf 1. If there exists a noun wb that forms ATT
relationship withwf 1,wa still modifieswb, which can be used
for rules 3 and 4. The process can be repeated if the word that
forms an ATT relation with wf 1 is also a preposition.
Based on the above rules, we take the natural language

command ‘‘ ’’
(‘‘Please help me check the temperature and airflow of the air
conditioner in my living room’’) as an example, and parse it
as follows. Firstly, we use DDParser to obtain the syntactic
dependency graph and lexical annotation results. As in this
example, the syntactic dependencies are shown in Figure 7.
The second step is to find the nouns that form verb-object
relations (VOB) with other words according to the parsing

FIGURE 7. Dependency parsing results for the natural language command
‘‘ Please help me check the temperature and airflow of the air conditioner
in my living room ’’.

results and, with the help of rule 1, to extract the entity of the
‘‘property’’ type and the corresponding value in the natural
language command. At the same time, according to rule 2, the
nouns that formCOO relations with entity of ‘‘property’’ type
belong to the same set of entities and share the same syntactic
relations. In this example, we first find the word ‘‘ ’’
(‘‘temperature’’), which forms VOB relationship with the
verb ‘‘ ’’ (‘‘check’’), and we can get the semantic rela-
tionship triple (‘‘ ’’, its value is, ‘‘ ’’) according to
rule 1. Meanwhile, the entity ‘‘ ’’ and the noun ‘‘ ’’
(‘‘airflow’’) form COO relationship, and according to rule 2,
we can get the triplet (‘‘ ’’, its value is, ‘‘ ’’).

Next, the command will be extracted by rule 3: in this
example, the set of entities of the ‘‘property’’ type of the
command has been found according to rule 1 and rule 2, and
the noun ‘‘ ’’ (‘‘air conditioner’’) forms ATT relationship
with the entity ‘‘ ’’ of the ‘‘property’’ type, so the entity
‘‘ ’’ of the ‘‘device’’n type can be extracted. In addition,
according to rule 2, the entity ‘‘ ’’ modifies both ‘‘ ’’
and ‘‘ ’’. Then we can get the triple (‘‘ ’’, is the device
of, ‘‘ ’’) and (‘‘ ’’, is the device of, ‘‘ ’’).
Finally, according to rule 4 and rule 5, the noun ‘‘ ’’

(‘‘living room’’) modifies the entity ‘‘ ’’ of device type,
so we can extract ‘‘ ’’ as the entity of ‘‘location’’ type
and get the triple (‘‘ ’’, is the location of, ‘‘ ’’). With
semantic parsing algorithm based on dependency parsing,
natural language commands are parsed into semantic rela-
tions triples, which are then stored in the CSRG intermediate
language framework.

D. SEMANTIC PARSING ALGORITHM BASED ON
TWO-LEVEL TAGGERS
If the semantic parsing algorithm based on dependency pars-
ing fails (when the set of any relation triples is empty and the
existing relations cannot bemapped to a complete CSRG), the
command is considered as a complex natural language com-
mand, and IoT-NLI uses semantic parsing algorithm based on
two-level taggers to complete the parsing of complex natural
language commands. This method consumes more resources
but is more flexible in parsing natural language commands
and has stronger generalization capability. Common joint
extraction models are not suitable for the task of IoT-NLI due
to the overlapping problem of entities and the uncertainty of
the number of relationships. Therefore, we use a tagger-based

68660 VOLUME 10, 2022



Z. Xu et al.: Building a Natural Language Query and Control Interface for IoT Platforms

FIGURE 8. The structure of semantic parsing algorithm based on two-level taggers.

prediction model to accomplish the extraction of semantic
relationship triples. Its structure is shown in Figure 8.

In the example in Figure 8, the entity tagger extracts
‘‘ ’’ (‘‘living room’’), ‘‘ ’’ (‘‘lamp’’), ‘‘ ’’ (‘‘color’’),
and ‘‘ ’’ (‘‘blue’’) from the natural language commands,
and then performs structured prediction of each relationship
for each entity to generate semantic relations triples. For
example, when predicting the entity ‘‘ ’’ using the tag-
ger of the ‘‘is the location of’’ relation, the entity ‘‘ ’’ of
the ‘‘device’’ type is actually predicted based on the entity
‘‘ ’’ and the relation ‘‘is the location of’’. The semantic
relation triple (‘‘ ’’, is the location of, ‘‘ ’’) is obtained
by the above process. We will describe the various parts of
this process in detail.

1) BERT ENCODER
BERT[33] learns linguistic representation by masking or
replacing random words during training and making predic-
tions through context.We useBERT as encoder to encode nat-
ural language commands. We denote the Transformer Block
as Trm(x), and the operations of BERT at each layer can be
represented as

h0 = Trm
(
WOc + Es + Ep

)
(1)

hn = Trm (hn−1) (2)

where hn represents the hidden state vector of n-th layer.
We useBERT (x) to represent the BERTmodel. The operation
process can be expressed as

h = BERT
(
Et + Es + Ep

)
(3)

where E(t) is token embedding, Es is segmentation embed-
ding, and Ep is position embedding. Oc andW represents the
one-hot embedding of the input words and the BERT stored.

2) ENTITY TAGGER
We use two identical binary taggers to extract all entities in
natural language commands, as shown in Figure 8. When the
start tagger or end tagger marks the current character as 1,
we call the current character with a ‘‘start tag’’ or ‘‘end tag’’,

indicating that the current character is the start or end position
of an entity, thus completing the extraction of the entity. The
process of using tagger for prediction is as follows.

pstarti = sigmoid (Wstartvi + bstart ) (4)

pendi = sigmoid (Wend vi + bend ) (5)

where pstarti , pendi represent the probability of the i-th char-
acter as the start character or end character of the entity in
the input natural language command sequence, and vi is the
vector representation of the i-th character in the command
sequence after encoding by BERT. Wstart , Wend represent
trainableweights, respectively, and bstart , bend represent bias.
When pstartor pend is greater than the threshold value, taggers
mark the start tag or end tag as 1. Here we set the threshold
value to 0.6.

The minimum character span principle is used for multiple
entity detection, where characters with start tag are paired
towards the nearest character with end tag. All end tags
before the first start tag are ignored to ensure the integrity
of each entity. Let’s take the example shown in Figure 8: the
starting character ‘‘ ’’ is predicted by the start tagger, and we
extract the entity ‘‘ ’’ (‘‘color’’) by taking only the ending
character ‘‘ ’’ with the smallest character span (character
span of 1) as the ending character of the entity, while the
forward ending character ‘‘ ’’ and the ending character ‘‘ ’’
with a span of 4 will not be paired with the current starting
character

3) STRUCTURED PREDICTION
A structure similar to the entity tagger is used to structurally
predict the semantic relations triples using the header entities
already extracted by the entity tagger. In this process, each of
the three relationships defined in this paper will be assigned a
pair of taggers to locate the tail entity that forms the specific
relationship with the head entity. The prediction process for
the start tag and the end tag of the tail entity is as follows.
The semantic parsing algorithm based on two-level taggers
is not affected by the overlap problem because of the unique

VOLUME 10, 2022 68661



Z. Xu et al.: Building a Natural Language Query and Control Interface for IoT Platforms

structure of tagger.

pstart
′

i = sigmoid
(
Wstart ′

(
vi + vkw

)
+ bstart ′

)
(6)

pend
′

i = sigmoid
(
Wend ′

(
vi + vkw

)
+ bend ′

)
(7)

where vkw represents the vector representation of the k-th
entity captured by the entity tagger. When the entity con-
sists of multiple characters, vkw is the average vector of each
character contained in the k-th entity. The entity tagger and
structured prediction are trained as a whole.

E. CSRG2API MODULE
After the parsing of the above two algorithms, natural lan-
guage commands can be stored in the form of CSRG.
However, suitable algorithms are still required to generate
structured logical forms by the intermediate language frame-
work and to convert the necessary parameters into suitable
APIs based on parameter dependencies. For the first step,
based on the directedness and edge labeling of the CSRG,
we perform a depth-first search of the CSRG starting from
the Location node to obtain several structured logical forms
in the graph. We describe this process with the CSRG in
Figure 6 as an example: there is only one location node
‘‘living room’’ in this graph, and the search starts from this
node based on the directed relationship of edges. The search
results are ‘‘ ’’ (‘‘living room’’), ‘‘ ’’ (‘‘main light’’),
‘‘ ’’ (‘‘switch’’), ‘‘ ’’ (‘‘turn on’’) and ‘‘ ’’ (‘‘liv-
ing room’’), ‘‘ ’’ (‘‘air conditioner’’), ‘‘ ’’ (‘‘switch’’),
‘‘ ’’ (‘‘turn on’’). This is consistent with the composition
of structured logical forms. Also, since the search depth of
a node corresponds to the node type, the node type (entity
type) can be obtained by the search depth. By the above
process, the following structured logical form can be obtained
‘‘’location’: ‘‘ ’’, ’device’: ‘‘ ’’, ’property’: ‘‘ ’’,
’value’: ‘‘ ’’ and ’location’: ‘‘ ’’, ’device’: ‘‘ ’’,
’property’: ‘‘ ’’, ’value’: ‘‘ ’’.’’ The next step is to
select the appropriate API for each structured logical form,
which is actually the process of classifying the intent of the
structured logical form. In the process of parsing commands,
we find that the intent information in structured logical forms
is usually reflected in the ‘‘value’’ parameters. In query com-
mands, the ‘‘value‘‘ is often the verb associatedwith the query
action, such as ‘‘ ’’ (‘‘view’’), ‘‘ ’’ (‘‘query’’), ‘‘ ’’
(‘‘tell’’), etc. In control commands, the ‘‘value’’ parameter
is usually the value that will be set for the property, such
as ‘‘ ’’ (‘‘open’’), ‘‘ ’’ (‘‘blue’’), etc. Based on this
feature, we propose a special method to select the appro-
priate API for structured logic forms. Given a structured
logical form, we first obtain the ‘‘value’’ parameter and a
pre-constructed list of query verbs, and use Word2Vec to
embed both the ‘‘value’’ parameter and the verbs in the list.
Then we calculate the cosine similarity between the ‘‘value’’
parameter and each verb in the query verb list in turn. For

word vectors xi and yi, the cosine similarity is calculated as:

cos < xi, yi >=

∑n
i=1 (xi × yi)√∑n

i=1 x
2
i ×

∑n
i=1 y

2
i

(8)

The cosine similarity can calculate the similarity between
words, and its value range is [0,1], the closer the result is to 1,
the more similar the semantics of the two words are. Here we
set the threshold to 0.68, when the cosine similarity between
the ‘‘value’’ parameter in the structured logical form and any
verb in the verb list is greater than 0.68, we consider the user’s
intent of the structured logical form to be a query, and vice
versa for control.

IV. EXPERIMENT
A. HCIC DATASET
To train and test IoT-NLI, we built HCIC (Human-computer
interaction, Chinese), a Chinese dataset for human-computer
interaction on IoT platforms, containing a total of 12,812
natural language commands and their corresponding struc-
tured logical forms, via crowdsourcing. The dataset can be
found at https://github.com/CodaChan/HCIC. In the crowd-
sourcing process, we only give structured logical forms and
employ crowdsourcing workers to expand the structured log-
ical forms into spoken natural language commands. The
crowdsourcing workflow is shown in Table 3. Since the same
structured logical form can be expressed using many different
ways of natural language commands, each structured logical
formwill be given to several different crowdsourcing workers
to increase the structural diversity of natural language com-
mands.

The HCIC dataset contains 12,812 data from three appli-
cation areas: agriculture, industry, and smart home, each of
which includes basic natural language commands as well as
complex natural language commands, and the distribution
of the data is shown in the Table 4. Basic natural language
commands are used to evaluate the metrics of the semantic
parsing algorithm based on dependency parsing. Complex
natural language commands will be used for semantic parsing
algorithm based on two-level taggers training and evaluation.

1) EVALUATION METRICS FOR SEMANTIC PARSING
ALGORITHMS
IoT-NLI uses two semantic parsing algorithms and the CSRG
intermediate language framework to parse natural language
commands and finally generate a unique structured logi-
cal form. We use Accuracy, Precision, Recall and F-score,
to evaluate the semantic parsing algorithm. Let N represent
the number of all samples tested and Nex represent the num-
ber of samples with exactly correct parsing results. Accuracy
is defined as

Accuracy =
Nex
N

(9)

Precision represents the ratio of the number of correct struc-
tured logical forms Nts obtained by the corresponding algo-
rithm to the number of all generated structured logical forms

68662 VOLUME 10, 2022



Z. Xu et al.: Building a Natural Language Query and Control Interface for IoT Platforms

TABLE 3. Crowdsourcing workflow.

TABLE 4. HCIC dataset distribution and sample.

Ns, which is calculated as follows.

Precision =
Nts
Ns

(10)

Recall represents the proportion of the number of correct
structured logical forms Nts obtained by the corresponding
algorithm to the number of all structured logical forms Nsd
contained in the command, which is calculated as follows.

Recall =
Nts
Nsd

(11)

The F-score is the summed average of precision and recall,
which can reflect the performance of the semantic parsing
algorithm in a comprehensive way, and is calculated as fol-
lows.

F − score =
2× Precision × Recall

Precision + Recall
(12)

B. PERFORMANCE EVALUATION OF SEMANTIC PARSING
ALGORITHMS BASED ON DEPENDENCY PARSING
This subsection evaluates the performance of the semantic
parsing algorithm based on dependency parsing using sam-
ples of basic natural language commands from the HCIC
dataset. Considering the effect of the number of samples and
the fields to which they belong on the experimental results,
the experiments will be conducted separately for each of the
three fields and 50/100/150/200 samples will be randomly
selected from the data sets of the respective fields for testing.
In addition, we recorded the maximum time consumption for
parsing natural language commands to evaluate whether the
response time of the semantic parsing algorithm meets the
requirements. The experimental results for natural language
commands for the three fields are shown in Tables 5, 6, and 7,
respectively. Analysis of the above experimental results leads
to the following conclusions.

VOLUME 10, 2022 68663



Z. Xu et al.: Building a Natural Language Query and Control Interface for IoT Platforms

TABLE 5. Test results for parsing basic natural language commands in
agriculture.

TABLE 6. Test results for parsing basic natural language commands in
industry.

TABLE 7. Test results for parsing basic natural language commands in
smart home.

• With the increase in the number of commands, the
metrics for generating the structured logical form are
decreasing in the range of about 2%-4%, which is within
the acceptable range.

• In the field of agriculture and smart home, the semantic
parsing algorithm based on dependency parsing analysis
has an average value of about 90% for all evaluation
metrics, and the parsing time is within 1.3s, which can
be considered to have good results in the field of agri-
culture and smart home, and the response time meets the
requirements.

• For basic natural language commands in the industry, the
parsing algorithms have relatively low relevant metrics
and long parsing times. The reason for this is the long
length of commands in industry and the low ability
of dependency parsing tools to parse long sequences.
However, the accuracy and response time are still within
the acceptable range.

C. PERFORMANCE EVALUATION OF SEMANTIC PARSING
ALGORITHM BASED ON TWO-LEVEL TAGGERS
1) MODEL TRAINING
This subsection uses 10458 samples of complex language
commands fromHCIC to train and test the model of semantic
parsing algorithm based on two-level taggers, where the ratio
of training set, validation set and test set is 8:1:1. It is worth
noting that the number of samples from different fields is

FIGURE 9. Accuracy, precision, recall and F-score variation curve.

FIGURE 10. Loss variation curve.

TABLE 8. Test results for parsing complex natural language commands in
agriculture.

similar in each set. IoT-NLI uses the open-source BERT-
wwm from HIT as the pre-training model. The maximum
length of one-time encoding is 60, the batch size is 16, and
the learning rate is set to 1e-5. The loss function is set to the
sum of the binary cross-entropy of all predicted tag lists and
the true tag lists. The change curves of accuracy, precision,
recall and F-score during training are shown in Figure 9,
and the change curves of Loss during training are shown in
Figure 10. After 8 epochs of training, the accuracy of the
model in the test set is 73.52%. The parsing accuracy is within
a reasonable range considering the complexity of this task
and the weakening of parsing ability in the face of commands
containing multiple structured logical forms.

2) SUITABILITY TESTING
To explore the actual performance of the model in each field,
we took 150 samples from the test set, in each field, for the
suitability test of the model, and the experimental results are
shown in Tables 8, 9 and 10.

68664 VOLUME 10, 2022



Z. Xu et al.: Building a Natural Language Query and Control Interface for IoT Platforms

TABLE 9. Test results for parsing complex natural language commands in
industry.

TABLE 10. Test results for parsing complex natural language commands
in smart home.

TABLE 11. Test results of CSRG2API module.

The analysis of the above data leads to the following con-
clusions.

• The results of the independent tests in the three fields are
less different from the results of the mixed tests. It can
be concluded that the model has good results in all three
fields of agriculture, industry, and smart home.

• The maximum time taken for the parsing process of the
model in the three fields is within 4s, which is longer
than the semantic analysis algorithm based on depen-
dency parsing. However, since the algorithm is used to
parse more complex natural language commands, the
time taken is still within an acceptable range and meets
the general requirements for real-time interaction.

D. PERFORMANCE EVALUATION OF CSRG2API MODULE
The CSRG2API module is a CSRG-oriented API generation
method proposed in this paper, which aims to use CSRG and
parameter dependencies to select the appropriate APIs and
fill them automatically. This subsection will use a sample of
150 structured logical forms in each field, the results of which
are shown in Table 11.

E. COMPOSITE SERVICE PERFORMANCE EVALUATION OF
IOT-NLI
We evaluate the comprehensive service performance of
IoT-NLI in this subsection. To ensure the fairness of the
experimental process, the evaluation process of all methods is

TABLE 12. Test results of IoT-NLI composite service performance.

performed using 600 natural language commands randomly
selected from the HCIC dataset. The ratio of basic natural
language commands to complex natural language commands
is 3:2, and complex natural language commands are extracted
from the test set. the uniqueness of IoT-NLI is that it tries to
extract all the information needed in the API from natural
language commands. We tried our best to migrate several
common approaches to building natural language interfaces
for IoT platforms to our task for comparative experiments.
It should be noted that the training and validation sets dur-
ing the training of the deep learning-based approach are
consistent with the IoT-NLI, only in a different form. The
experimental results are shown in Table 12.

Gui et al. [11] proposed the use of the SeqSeq model
to construct an industrial IoT natural language interface to
convert natural language commands into their corresponding
logical form. This is in line with the goal of IoT-NLI in the
structured parsing process. In addition, a variant model using
BERT for encoding was added to the scope of the comparison
experiments. Batch size was set to 64 and epoch was set to
15 during the training of the Seq2Seq model. Experimental
results showed that the Seq2Seq model failed to achieve good
results under the current task, which may be mainly due to
the long sequence length of the commands and the Seq2Seq
model’s feature extraction is not obvious enough. Park et al.
[13] developed a natural language interface for smart home
scenarios using BiLSTM-CRF as a main model for named
entity recognition of keywords in commands. Their variant
using BERT for encoding was also added to the comparison
scope. The problem with the sequence annotation model is
that although it is able to extract entities from natural lan-
guage commands more accurately, the relationships between
keywords will be ignored in the extraction results. This leads
to the inability of such models to effectively parse natural
language commands with complex logic. The DSA algo-
rithm proposed by Wu et al. [10] uses a dependency syn-
tax tree for instruction analysis to extract the ‘‘ ACTION’’-
‘‘LOCATION’’-‘‘DEVICE’’ triples from the commands to
simple manipulation of equipment. We add the rule 3 of
semantic parsing algorithm based on dependency parsing
to make it applicable to our task. DSA solves the problem
of parsing natural language commands containing multiple
operations with its unique rules, but the drawback is obvi-
ous: the dependency analysis approach relies heavily on the

VOLUME 10, 2022 68665



Z. Xu et al.: Building a Natural Language Query and Control Interface for IoT Platforms

FIGURE 11. IoT-NLI application.

defined rules, which leads to weak generalization capabilities
and makes it difficult to parse commands with complex logic.

Compared with the above approaches, IoT-NLI solves the
problem of parsing natural language commands containing
multiple operations and complex logic with the help of its
hierarchical semantic parsing framework and unique graph
structure. In the ablation experiments, IoT-NLI-Basic (pars-
ing using only semantic parsing algorithm based on depen-
dency parsing) is not strong enough for parsing complex
natural language commands, but significantly reduces the
parsing time. IoT-NLI-Complex (parsing using only semantic
parsing algorithm based on two-level taggers) has stronger
parsing power and consumes longer time. The hierarchical
framework effectively reduces the average parsing time while
ensuring accuracy.

V. NATURAL LANGUAGE INTERFACE
In this subsection, we developed a mobile application for
the Android platform to integrate IoT-NLI with an IoT plat-
form with an interactive interface similar to popular instant
messaging software such as WhatsApp, WeChat, and LINE.
In this way, we hope to minimize the learning cost and
distance of users to the new interaction method, so that they
can get started quickly. When users first use the IoT-NLI
application, they need to fill in their AK (Access Key ID) and
SK (Secret Access Key) to authenticate with the IoT platform.
The authentication interface is shown in Figure 11(a). (During
the demonstration of this application, IoT-NLI is chosen to
be integrated into AliCloud IoT platform according to the
sample in this paper). After completing the authentication,
the application provides a natural language interface as well
as a device status display interface, and the device status is

obtained by the software making continuous requests to the
IoT platform.

The operation process is shown in Figure 11(b).
The IoT-NLI semantic parsing framework receives the
command ‘‘ ,

’’ (‘‘Please turn on the switch of the
air conditioner in the living room for me first, and then set
the temperature to 24 ◦C’’)and parses it, then fills in the key
information into the appropriate API with the help of param-
eter dependencies. While returning the parsing result to the
user, the software will send an HTTPS/HTTP GET or POST
request to the OpenAPI server of the IoT platform to invoke
the API just generated, and the platform will perform param-
eter setting or data query operation on the specific IoT device
according to the processing of the request. In Figure 11(c)
as well as in Figure 11(d), the software provides feedback in
the graphical interface on the commands just entered by the
user (i.e., in Figure 11(c), the air conditioner has been turned
on, while in Figure 11(b), the air conditioner temperature
has been lowered from 26 ◦C to 24 ◦C) The user can use
the device status display interface to determine whether the
operation is successful, observe the device status before and
after device manipulation, and perform next operation.

VI. CONCLUSION
In this paper, we design and propose IoT-NLI, a natural lan-
guage query and control interface for IoT platforms. IoT-NLI
accomplishes the operation of converting natural language
commands into APIs with the help of command semantic
relationship graph, CSRG2APImodule and parameter depen-
dencies. Finally, the software queries and controls the devices
by sending requests to the OpenAPI server. To test the perfor-
mance of the interface, we built a Chinese natural language

68666 VOLUME 10, 2022



Z. Xu et al.: Building a Natural Language Query and Control Interface for IoT Platforms

command dataset by crowdsourcing. The experiments on the
datasets of agriculture, industry and smart home show that
IoT-NLI has a relatively good parsing performance and the
time consumption meets the basic requirements of human-
computer interaction. With its unique graph structure, IoT-
NLI solves to a certain extent the problem of parsing natural
language commands that contain multiple operations and
more complex logical structures, enriching user scenarios and
making user interaction more free and coherent.

This study has two main limitations that could be investi-
gated in more depth in future work. First, the study focuses
on the construction of Chinese natural language interface
for IoT platforms, which are not very migratory for other
languages. This is due to the fact that the semantic parsing
algorithm used in the framework based on dependency pars-
ing relies on the syntactic structural properties of Chinese
commands. Nevertheless, in terms of ideas, the algorithm
can be adapted to different languages by researchers who
redefine the relevant rules according to the characteristics
of different languages. However, in future work, we hope
to further explore generic frameworks that can be used in
different languages. Second, during the interaction, the user
commands must mention all the information needed by the
API. This makes the user use process slightly cumbersome.
In future work, we hope to integrate research related to natural
language inference into natural language interfaces or provide
multimodal input for users to accommodate more informa-
tion. Overall, our approach provides a more convenient way
for users to interact with the IoT platform. In future work we
will further explore the potential of natural human-computer
interaction approaches.

ACKNOWLEDGMENT
The authors sincerely thank the anonymous reviewers for
their helpful comments and suggestions. They also sincerely
thank Ziwei Niu from the School of Computer Science and
Technology, Zhejiang University, for his valuable sugges-
tions.

REFERENCES
[1] J. Wang, M. K. Lim, C. Wang, and M.-L. Tseng, ‘‘The evolution of the

Internet of Things (IoT) over the past 20 years,’’ Comput. Ind. Eng.,
vol. 155, May 2021, Art. no. 107174, doi: 10.1016/j.cie.2021.107174.

[2] J. Grudin, ‘‘From tool to partner: The evolution of human-computer
interaction,’’ Synth. Lectures Hum.-Centered Informat., vol. 10, no. 1,
pp. 1–183, Jan. 2017, doi: 10.2200/S00745ED1V01Y201612HCI035.

[3] I. Androutsopoulos and M. Aretoulaki, Natural Language
Interaction, vol. 1. Oxford, U.K.: Oxford Univ. Press, 2012, doi:
10.1093/oxfordhb/9780199276349.013.0035.

[4] M. B. Hoy, ‘‘Alexa, Siri, Cortana, and more: An introduction to voice
assistants,’’ Med. Reference Services Quart., vol. 37, no. 1, pp. 81–88,
Jan. 2018, doi: 10.1080/02763869.2018.1404391.

[5] M. Noura, S. Heil, and M. Gaedke, ‘‘GROWTH: Goal-oriented end user
development for web of things devices,’’ inProc. Int. Conf.WebEng., 2018,
pp. 358–365.

[6] J. Austerjost, M. Porr, N. Riedel, D. Geier, T. Becker, T. Scheper,
D. Marquard, P. Lindner, and S. Beutel, ‘‘Introducing a virtual assistant
to the lab: A voice user interface for the intuitive control of laboratory
instruments,’’ SLAS Technol., vol. 23, no. 5, pp. 476–482, Oct. 2018, doi:
10.1177/2472630318788040.

[7] C. J. Baby, F. A. Khan, and J. N. Swathi, ‘‘Home automation
using IoT and a chatbot using natural language processing,’’ in Proc.
Innov. Power Adv. Comput. Technol. (i-PACT), Apr. 2017, pp. 1–6, doi:
10.1109/IPACT.2017.8245185.

[8] M. Mehrabani, S. Bangalore, and B. Stern, ‘‘Personalized speech
recognition for Internet of Things,’’ in Proc. IEEE 2nd World Forum
Internet Things (WF-IoT), Dec. 2015, pp. 369–374, doi: 10.1109/WF-
IoT.2015.7389082.

[9] M. Noura, S. Heil, and M. Gaedke, ‘‘Natural language goal understanding
for smart home environments,’’ in Proc. 10th Int. Conf. Internet Things,
Malmö, Sweden, Oct. 2020, pp. 1–8, doi: 10.1145/3410992.3410996.

[10] H. Wu, C. Shen, Z. He, Y. Wang, and X. Xu, ‘‘SCADA-NLI: A natural lan-
guage query and control interface for distributed systems,’’ IEEE Access,
vol. 9, pp. 78108–78127, 2021, doi: 10.1109/ACCESS.2021.3083540.

[11] Z. Gui and A. Harth, ‘‘Towards a data driven natural language inter-
face for industrial IoT use cases,’’ in Proc. IEEE 2nd Int. Conf. Hum.-
Mach. Syst. (ICHMS), Magdeburg, Germany, Sep. 2021, pp. 1–3, doi:
10.1109/ICHMS53169.2021.9582450.

[12] I. Sutskever, O. Vinyals, and Q. V. Le, ‘‘Sequence to sequence learning
with neural networks,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 27,
2014, pp. 1–9.

[13] G. Park and H. Kim, ‘‘Low-cost implementation of a named entity
recognition system for voice-activated human-appliance interfaces in a
smart home,’’ Sustainability, vol. 10, no. 2, p. 488, Feb. 2018, doi:
10.3390/su10020488.

[14] J. Ye, L. Zhang, P. Lan, H. He, D. Yang, and Z. Wu, ‘‘Improved intelli-
gent semantics based Chinese sentence similarity computing for natural
language processing in IoT,’’ in IoT as a Service, vol. 346, B. Li, C. Li,
M. Yang, Z. Yan, and J. Zheng, Eds. Cham, Switzerland: Springer, 2021,
pp. 234–246, doi: 10.1007/978-3-030-67514-1_19.

[15] L. Qin, T. Xie, W. Che, and T. Liu, ‘‘A survey on spoken language under-
standing: Recent advances and new frontiers,’’ 2021, arXiv:2103.03095.

[16] H. Kim, B.-H. So, W.-S. Han, and H. Lee, ‘‘Natural language to
SQL: Where are we today?’’ Proc. VLDB Endowment, vol. 13, no. 10,
pp. 1737–1750, Jun. 2020, doi: 10.14778/3401960.3401970.

[17] X. Victoria Lin, C. Wang, L. Zettlemoyer, and M. D. Ernst, ‘‘NL2Bash:
A corpus and semantic parser for natural language interface to the Linux
operating system,’’ 2018, arXiv:1802.08979.

[18] A. Ait-Mlouk and L. Jiang, ‘‘KBot: A knowledge graph based ChatBot
for natural language understanding over linked data,’’ IEEE Access, vol. 8,
pp. 149220–149230, 2020, doi: 10.1109/ACCESS.2020.3016142.

[19] S. Mazumder and O. Riva, ‘‘FLIN: A flexible natural language interface
for web navigation,’’ 2020, arXiv:2010.12844.

[20] X. Xu, C. Liu, and D. Song, ‘‘SQLNet: Generating structured
queries from natural language without reinforcement learning,’’ 2017,
arXiv:1711.04436.

[21] Y. Su, A. Hassan Awadallah, M. Wang, and R. W. White, ‘‘Natural
language interfaces with fine-grained user interaction: A case study on
web APIs,’’ in Proc. 41st Int. ACM SIGIR Conf. Res. Develop. Inf. Retr.,
Jun. 2018, pp. 855–864, doi: 10.1145/3209978.3210013.

[22] S. Mazumder, B. Liu, S. Wang, and N. Ma, ‘‘Lifelong and interactive
learning of factual knowledge in dialogues,’’ in Proc. 20th Annu. SIGdial
Meeting Discourse Dialogue, 2019, pp. 21–31, doi: 10.18653/v1/W19-
5903.

[23] H.Wang,M. Tan,M. Yu, S. Chang, D.Wang, K. Xu, X. Guo, and S. Potdar,
‘‘Extracting multiple-relations in one-pass with pre-trained transformers,’’
2019, arXiv:1902.01030.

[24] Z.Wei, J. Su, Y.Wang, Y. Tian, and Y. Chang, ‘‘A novel cascade binary tag-
ging framework for relational triple extraction,’’ 2019, arXiv:1909.03227.

[25] Z. Jie and W. Lu, ‘‘Dependency-guided LSTM-CRF for named entity
recognition,’’ in Proc. Conf. Empirical Methods Natural Lang. Pro-
cess., 9th Int. Joint Conf. Natural Lang. Process. (EMNLP-IJCNLP),
Hong Kong, 2019, pp. 3860–3870, doi: 10.18653/v1/D19-1399.

[26] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer,
‘‘Neural architectures for named entity recognition,’’ in Proc. Conf.
North Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang. Technol.,
San Diego, CA, USA, 2016, pp. 260–270, doi: 10.18653/v1/N16-1030.

[27] S. Zhang, L. Wang, K. Sun, and X. Xiao, ‘‘A practical Chinese dependency
parser based on a large-scale dataset,’’ 2020, arXiv:2009.00901.

[28] T. Dozat and C. D. Manning, ‘‘Simpler but more accurate semantic
dependency parsing,’’ in Proc. 56th Annu. Meeting Assoc. Comput. Lin-
guistics, Melbourne, VIC, Australia, vol. 2, 2018, pp. 484–490, doi:
10.18653/v1/P18-2077.

VOLUME 10, 2022 68667

http://dx.doi.org/10.1016/j.cie.2021.107174
http://dx.doi.org/10.2200/S00745ED1V01Y201612HCI035
http://dx.doi.org/10.1093/oxfordhb/9780199276349.013.0035
http://dx.doi.org/10.1080/02763869.2018.1404391
http://dx.doi.org/10.1177/2472630318788040
http://dx.doi.org/10.1109/IPACT.2017.8245185
http://dx.doi.org/10.1109/WF-IoT.2015.7389082
http://dx.doi.org/10.1109/WF-IoT.2015.7389082
http://dx.doi.org/10.1145/3410992.3410996
http://dx.doi.org/10.1109/ACCESS.2021.3083540
http://dx.doi.org/10.1109/ICHMS53169.2021.9582450
http://dx.doi.org/10.3390/su10020488
http://dx.doi.org/10.1007/978-3-030-67514-1_19
http://dx.doi.org/10.14778/3401960.3401970
http://dx.doi.org/10.1109/ACCESS.2020.3016142
http://dx.doi.org/10.1145/3209978.3210013
http://dx.doi.org/10.18653/v1/W19-5903
http://dx.doi.org/10.18653/v1/W19-5903
http://dx.doi.org/10.18653/v1/D19-1399
http://dx.doi.org/10.18653/v1/N16-1030
http://dx.doi.org/10.18653/v1/P18-2077


Z. Xu et al.: Building a Natural Language Query and Control Interface for IoT Platforms

[29] A. Hogan, E. Blomqvist, M. Cochez, C. D’amato, G. D. Melo,
C. Gutierrez, S. Kirrane, J. E. L. Gayo, R. Navigli, S. Neumaier,
A.-C.-N. Ngomo, A. Polleres, S. M. Rashid, A. Rula, L. Schmelzeisen,
J. Sequeda, S. Staab, and A. Zimmermann, ‘‘Knowledge graphs,’’
ACM Comput. Surveys, vol. 54, no. 4, pp. 1–37, May 2022, doi:
10.1145/3447772.

[30] R. Angles and C. Gutírrez, ‘‘Survey of graph database models,’’
ACM Comput. Surv., vol. 40, no. 1, pp. 1–39, Feb. 2008, doi:
10.1145/1322432.1322433.

[31] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. Reutter, and D. Vrgoč,
‘‘Foundations of modern query languages for graph databases,’’
ACM Comput. Surveys, vol. 50, no. 5, pp. 1–40, Sep. 2018, doi:
10.1145/3104031.

[32] C. F. Baker, C. J. Fillmore, and J. B. Lowe, ‘‘The Berkeley FrameNet
project,’’ presented at the 17th Int. Conf. Comput. Linguistics, vol. 1, 1998.

[33] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-
training of deep bidirectional transformers for language understanding,’’
in Proc. Conf. North, Minneapolis, MN, USA, 2019, pp. 4171–4186, doi:
10.18653/v1/N19-1423.

ZHIPENG XU was born in Hefei, Anhui, China.
He is currently pursuing the bachelor’s degree with
the School of Information and Computer Science,
Anhui Agricultural University. His research inter-
ests include natural language processing, knowl-
edge graphs, and human–computer interaction.

HAO WU was born in Anhui, China. He is cur-
rently pursuing the bachelor’s degree in computer
science and technology with the School of Infor-
mation and Computer Science, Anhui Agricultural
University. He has been guaranteed a place at the
Department of Computer Science, University of
Science and Technology of China. His research
interests include deep learning, natural language
processing, and human–computer dialogue inter-
action.

XU CHEN is currently pursuing the bachelor’s
degree with the School of Information and Com-
puter Science, Anhui Agricultural University. His
research interests include information extraction
and natural language generation and inference.

YONGMEI WANG was born in Hefei, Anhui,
China, in 1974. She received the master’s degree in
computer science and technology from the School
of Information and Computer Science, Hefei Uni-
versity of Technology, in 2010. She has been
engaged in teaching and research in the fields of
big data, agricultural informatization, and agri-
cultural products traceability. She has presided
over and participated in more than ten national
and provincial educational and scientific research
projects.

ZHENYU YUE received the Ph.D. degree from
Anhui University. He is currently a Teacher at the
School of Information and Computer, Anhui Agri-
cultural University. His research interests include
development of bioinformatics tools and databases
and deep learning.

68668 VOLUME 10, 2022

http://dx.doi.org/10.1145/3447772
http://dx.doi.org/10.1145/1322432.1322433
http://dx.doi.org/10.1145/3104031
http://dx.doi.org/10.18653/v1/N19-1423

