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ABSTRACT Adaptive Resonance Theory (ART) is considered as an effective approach for realizing
continual learning thanks to its ability to handle the plasticity-stability dilemma. In general, however,
the clustering performance of ART-based algorithms strongly depends on the specification of a similarity
threshold, i.e., a vigilance parameter, which is data-dependent and specified by hand. This paper proposes
an ART-based topological clustering algorithm with a mechanism that automatically estimates a similarity
threshold from the distribution of data points. In addition, for improving information extraction performance,
a divisive hierarchical clustering algorithm capable of continual learning is proposed by introducing a hier-
archical structure to the proposed algorithm. Experimental results demonstrate that the proposed algorithm
has high clustering performance comparable with recently-proposed state-of-the-art hierarchical clustering
algorithms.

INDEX TERMS Adaptive resonance theory, topological clustering, hierarchical clustering, continual
learning.

I. INTRODUCTION
Clustering is an essential technique to extract information
from data. With the recent development of IoT technology,
the importance of clustering increases as the availability of
big data increases. Generally speaking, big data includes a
wide range of useful information, e.g., hidden characteristics
of data and explicit/implicit relationships among data points
and/or attributes. To utilize useful information in big datawith
a pluralistic and appropriate information granularity, infor-
mation extraction approaches such as hierarchical clustering
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are widely studied. In particular, since a divisive hierarchical
clustering algorithm can adaptively generate partitions in
response to the changes in the data distribution, the algorithm
has the potential to realize continual learning, which is an
essential ability to efficiently utilize big data.

Typical divisive hierarchical clustering algorithms with
an adaptive cluster structure are Growing Hierarchical
Self-Organizing Map (GHSOM) [1] and Growing Hierarchi-
cal Neural Gas (GHNG) [2]. GHSOM uses Self-Organizing
Map (SOM) [3] as a base clustering approach while GHNG
uses Growing Neural Gas (GNG) [4]. Both GHSOM and
GHNG can grow in the vertical and horizontal direc-
tions by constructing a tree-like structure based on the
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distribution of data points. However, in general, SOM-
based and GNG-based clustering algorithms cannot avoid the
plasticity-stability dilemma [5], i.e., the trade-off between
catastrophic forgetting and continual learning of new
information.

In the research field of clustering, Adaptive Reso-
nance Theory (ART) [6] is a successful approach for
handling the plasticity-stability dilemma. Among existing
ART-based clustering algorithms [7]–[12], Fast Topologi-
cal Correntropy-Induced Metric-based ART (FTCA) [12]
has superior clustering performance and functionality than
the others. FTCA utilizes the Correntropy-Induced Metric
(CIM) [13] as a similarity measure for realizing a fast and
stable self-organizing ability while maintaining an appro-
priate number of nodes. During a learning process, FTCA
adaptively generates topological structures by using nodes
and edges to efficiently extract information from a dataset.

In our previous study [14] inspired by GHNG [2], we have
introducedHierarchical FTCA (HFTCA) to improve the clus-
tering performance of FTCA [12]. Although HFTCA shows
superior clustering performance than GHSOM and GHNG,
HFTCA has a parameter (i.e., a similarity threshold) that
significantly affects its clustering performance. In general,
the optimal value of the similarity threshold depends on the
dataset, which is a common difficulty in the use of ART-based
clustering algorithms. Moreover, if an ART-based clustering
algorithm has a hierarchical structure, it is necessary to spec-
ify a similarity threshold at each layer in advance. In this
paper, to solve the above difficulty, we propose CIM-based
ART with Edge and Age (CAEA), which has a mechanism
to automatically estimate the similarity threshold from the
distribution of data points. In addition, we also propose Hier-
archical CAEA (HCAEA) for improving the clustering per-
formance of CAEA. Thanks to the continual learning ability
of CAEA, HCAEA is also capable of continual learning.

The contributions of this paper are summarized as follows:

(i) A new ART-based clustering algorithm, called CAEA,
is proposed by introducing a mechanism to automati-
cally estimate a similarity threshold from the distribution
of data points.

(ii) A new divisive hierarchical clustering algorithm, called
HCAEA, is proposed by integrating CAEA into a hier-
archical structure inspired by HFTCA.

(iii) Empirical studies show that HCAEA has comparable
clustering performance than recently-proposed state-of-
the-art hierarchical algorithms: GHNG, HFTCA, and
GH-EXIN.

The paper is organized as follows. Section II presents the
literature review for clustering algorithms and divisive hier-
archical clustering algorithms. Section IV describes details of
the proposed algorithm and its hierarchical approach, namely
CAEA and HCAEA. Section V presents simulation experi-
ments to evaluate the information extraction performance of
the proposed algorithms and the above-mentioned state-of-
the-art algorithms by using real-world datasets. Section VI

summarizes characteristics of each algorithm based on the
experimental results. Section VII concludes this paper.

II. LITERATURE REVIEW
A. CLUSTERING ALGORITHMS CAPABLE
OF CONTINUAL LEARNING
Clustering is one of the most widely used approaches for
extracting information from data. Gaussian Mixture Model
(GMM) [15] and k-means [16] are typical examples of clus-
tering algorithms. Although GMM and k-means are quite
simple and highly applicable, they have a common limitation
that the number of classes needs to be specified in advance.

One effective approach for solving the drawback of GMM
and k-means is growing self-organizing clustering such as
GNG [4] and Self-Organizing Incremental Neural Network
(SOINN) [17]. GNG and SOINN can adaptively generate
topological networks based on a distribution of data points.
However, since these algorithms permanently insert new
nodes into their networks for memorizing new informa-
tion, they have the potential to forget learned information
(i.e., catastrophic forgetting). This trade-off is called the
plasticity-stability dilemma [5].

Several clustering algorithms have been proposed to cope
with the plasticity-stability dilemma. As a GNG-based algo-
rithm, Grow When Required (GWR) [18] and gamma-
GWR [19] are successful algorithms which appropriately
calculate a similarity threshold to prevent an excessive
node creation. As a SOINN-based algorithm, SOINN+ [20]
and SOINN+ with ghost nodes (GSOINN+) [21] can
detect clusters of arbitrary shapes in noisy data streams
while avoiding catastrophic forgetting. Another successful
approach is ART-based clustering algorithms such as Fuzzy
ART [7], Bayes ART [8], and their variants [9], [10].
In general, ART-based clustering algorithms show superior
clustering performance than GNG-based and SOINN-based
algorithms [11], [12]. Moreover, because ART-based clus-
tering algorithms can theoretically realize sequential and
class-incremental learning without catastrophic forgetting,
a number of ART-based clustering algorithms and their
improvements have been proposed in both supervised learn-
ing [22]–[24] and unsupervised learning [7], [8], [25], [26].
One common drawback of ART-based clustering algorithms
that they need to specify a similarity threshold (i.e., a vigi-
lance parameter). In most cases, the similarity threshold has
a significant impact on their clustering performance while its
optimal value depends on the dataset.

B. DIVISIVE HIERARCHICAL CLUSTERING ALGORITHMS
There are two types of hierarchical approaches, i.e.,
an agglomerative approach and a divisive approach [27].
An agglomerative hierarchical clustering algorithm takes a
bottom-up approach where data points are first considered as
separate clusters and then merged into larger clusters based
on the similarity between clusters. A divisive hierarchical
clustering algorithm takes a top-down approach where all
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data points are considered as a cluster and then divided into
smaller clusters based on the dissimilarity between clusters.
In general, agglomerative hierarchical clustering algorithms
require the entire dataset because of its learning procedure.
Some well-known divisive hierarchical clustering algorithms
such as the bisecting k-means algorithm [28] do not have this
ability. That is, they need all data points in advance. Thus,
they are not suitable for continual learning whereas they show
high clustering performance. In contrast, divisive hierarchical
clustering algorithms can be used for continual learning by
adapting a cluster structure along with the change in the dis-
tribution of data points. Thanks to the above characteristics,
divisive hierarchical clustering algorithms have the potential
to realize continual learning.

In order to perform continual learning in a divisive hierar-
chical clustering algorithm, it is necessary to have the ability
to adaptively extract information and generate a hierarchi-
cal structure in response to sequentially given data points.
GHSOM [1] utilizes a growing SOM which can grows in
the vertical and horizontal directions based on the distribu-
tion of data points. One drawback of GHSOM is raised by
a SOM architecture, that is, it is difficult for GHSOM to
represent multiple data distributions in a single SOM net-
work. GHNG [2] has successfully resolved the drawback
of GHSOM by using GNG instead of SOM. One difficulty
of GHNG is a large number of parameters. Growing Hier-
archical EXcitatory+INhibitory (GH-EXIN) [29] requires
only a few parameters while maintaining comparable per-
formance to GHNG. In general, however, GNG-based clus-
tering algorithms suffer from excessive node generation
and high sensitivity to the presentation order of input data
points. Moreover, the plasticity-stability dilemma [5], i.e.,
the trade-off between catastrophic forgetting and continual
learning of new information, is another unavoidable prob-
lem. Applying an ART-based clustering algorithm as a basis
of divisive hierarchical clustering is a promising approach
because it can theoretically avoid the plasticity-stability
dilemma. HFTCA [14] showed the superior clustering per-
formance compared to GHSOM, GHNG, and GH-EXIN
while maintaining a high information compression ratio.
Although HFTCA is the state-of-the-art of ART-based divi-
sive hierarchical clustering algorithm, HFTCA requires care-
ful parameterization at each hierarchy in order to maintain
good clustering performance.

III. PRELIMINARY KNOWLEDGE
This section presents preliminary knowledge for a similarity
measurement and a kernel density estimator that are used in
the proposed algorithm.

A. CORRENTROPY AND CORRENTROPY-INDUCED
METRIC
Correntropy [13] provides a generalized similarity measure
between two arbitrary data points x = (x1, x2, . . . , xd ) and

y = (y1, y2, . . . , yd ) as follows:

C(x, y) = E [κσ (x, y)] , (1)

where E [·] is the expectation operation, and κσ (·) denotes a
positive definite kernel with a bandwidth σ . The correntropy
can be estimated as follows:

Ĉ(x, y) =
1
d

d∑
i=1

κσ (xi, yi) . (2)

In this paper, we use the following Gaussian kernel in the
correntropy:

κσ (xi, yi) = exp

[
−
(xi − yi)2

2σ 2

]
. (3)

A nonlinear metric called CIM is derived from the corren-
tropy [13]. The CIM quantifies the similarity between two
data points x and y as follows:

CIM (x, y, σ ) =
[
1− Ĉ(x, y)

] 1
2
. (4)

Here, thanks to the Gaussian kernel without a coefficient
1

√
2πσ

as defined in (3), a range of the CIM is limited to [0, 1].

In general, the Euclidean distance suffers from the curse
of dimensionality. However, the CIM reduces this drawback
thanks to the correntropy which calculates the similarity
between two arbitrary data points by using a kernel function.
Moreover, it has also been shown that the CIM with the
Gaussian kernel has a high outlier rejection capability [13].

B. KERNEL DENSITY ESTIMATOR
In general, a bandwidth of a kernel function σ can be esti-
mated based on a kernel density estimator [30], which is
defined as follows:

6 = U (Fν)0N
−

1
2ν+d , (5)

U (Fν) =

(
πd/22d+ν−1(ν!)2R(F)d

νκ2ν (F)
[
(2ν)!! + (d − 1)(ν!!)2

]) 1
2ν+d

, (6)

where 0 denotes a rescale operator (d-dimensional vector)
which is defined by a standard deviation of attribute values of
each attribute among N training data points. ν is the order of
the kernel. R(F) is a roughness function. κν(F) is the moment
of the kernel. The details of the derivation of (5) can be found
in [30].

IV. PROPOSED ALGORITHM
In this section, first CAEA is explained in detail. Next, a hier-
archical approach of CAEA, namely HCAEA, is introduced.
Table 1 summarizes the main notations used in this paper.

A. CIM-BASED ART WITH EDGE AND AGE
We use the following notations: A set of training data points
is X = {x1, x2, . . . , xn, . . .} where xn = (xn1, xn2, . . . , xnd )
is a d-dimensional feature vector. A set of prototype nodes
in CAEA at the time of the presentation of a data point xn
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TABLE 1. Summary of notations.

is Y = {y1, y2, . . . , yK } (K ∈ Z+) where a node yk =
(yk1, yk2, . . . , ykd ) has the same dimension as xn. Further-
more, each node yk has an individual bandwidth σ for the
CIM, i.e., S = {σ1, σ2, . . . , σK }.
The learning procedure of CAEA is divided into four parts:

1) initialization process for nodes and a bandwidth of a kernel
function in the CIM, 2) winner node selection, 3) vigilance
test, and 4) node learning and edge construction. Each of them
is explained in the following subsections.

1) INITIALIZATION PROCESS FOR NODES AND A
BANDWIDTH OF A KERNEL FUNCTION IN THE CIM
In the case that CAEA does not have any nodes, i.e., a set
of prototype node Y = ∅, the 1st to λ/2th training data
points Xinit = {x1, x2, . . . xλ/2} directly become prototype
nodes, i.e., Yinit = {y1, y2, . . . , yλ/2}, where λ ∈ Z+ is a
predefined parameter of CAEA. Note that λ must be greater
than or equal to 2, and if λ/2 is not an integer, it is rounded
to the nearest integer. This parameter is also used for a node
deletion process.

In an ART-based clustering algorithm, a vigilance param-
eter (i.e., a similarity threshold) plays an important role in
a self-organizing process. Typically, the similarity threshold
is data-dependent and specified by hand. On the other hand,
CAEA uses the minimum pairwise CIM value between each
of nodes in Yinit = {y1, y2, . . . , yλ/2}, and the average of pair-
wise CIM values is used as the similarity threshold Vthreshold,
i.e.,

Vthreshold =
1
λ/2

λ/2∑
i=1

min
j6=i

[
CIM

(
yi, yj, σ )

)]
, (7)

where σ is a bandwidth for a kernel function in the CIM.
Here, σ is calculated by using (5) and (6). In this paper,

we set N = λ/2, and we utilize the Gaussian kernel for
the CIM. Therefore in (6), ν = 2, R(F) = (2

√
π )−1, and

κ2ν (F) = 1 are derived. As a result, we obtain:

6 =

(
4

2+ d

) 1
4+d

0 (λ/2)−
1

4+d . (8)

In (8), 6 contains the bandwidth of each attribute. In this
paper, the median of 6 is selected as a representative band-
width of the Gaussian kernel in the CIM, i.e.,

σ = median (6) . (9)

In CAEA, the initial prototype nodes Yinit = {y1, y2, . . . ,
yλ/2} have a common bandwidth of the Gaussian kernel in
the CIM, i.e., Sinit = {σ1, σ2, . . . , σλ/2}. When a new node
yK+1 is generated from xn, a bandwidth σK+1 is estimated
from the past λ/2 data points, i.e., {xn−λ/2, . . . , xn−2, xn−1}
by using (5) and (6). As a result, each new node has a different
bandwidth σ depending on the distribution of training data
points. Although the similarity threshold Vthreshold depends
on the distribution of the initial λ/2 training data points,
we regard that an adaptive Vthreshold estimation is realized
by assigning a different bandwidth σ , which affects the CIM
value, for each node in response to the changes in the data
distribution.

2) WINNER NODE SELECTION
Once a data point xn is presented to CAEAwith the prototype
node set Y = {y1, y2, . . . , yK }, two nodes which have a
similar state to the data point xn are selected, namely, winner
nodes yk1 and yk2 . The winner nodes are determined based on
the state of the CIM as follows:

k1 = arg min
yi∈Y

[CIM (xn, yi,mean(S))] , (10)

k2 = arg min
yi∈Y\{yk1 }

[CIM (xn, yi,mean(S))] , (11)

where k1 and k2 denote the indexes of the 1st and 2nd winner
nodes, i.e., yk1 and yk2 , respectively. S is a bandwidth of the
Gaussian kernel in the CIM for each node.

VOLUME 10, 2022 68045



N. Masuyama et al.: ART-Based Topological Clustering With a Divisive Hierarchical Structure

3) VIGILANCE TEST
Similarities between the data point xn and the 1st and 2nd
winner nodes are defined as follows:

Vk1 = CIM
(
xn, yk1 ,mean(S)

)
, (12)

Vk2 = CIM
(
xn, yk2 ,mean(S)

)
. (13)

The vigilance test classifies the relationship between a
data point and a node into three cases by using a predefined
similarity threshold Vthreshold, i.e.,
• Case I
The similarity between the data point xn and the 1st win-
ner node yk1 is larger (i.e., less similar) than Vthreshold,
namely:

Vthreshold < Vk1 < Vk2 . (14)

• Case II
The similarity between the data point xn and the 1st
winner node yk1 is smaller (i.e., more similar) than
Vthreshold, and the similarity between the data point xn
and the 2nd winner node yk2 is larger (i.e., less similar)
than Vthreshold, namely:

Vk1 ≤ Vthreshold < Vk2 . (15)

• Case III
The similarities between the data point xn and the 1st and
2nd winner nodes are both smaller (i.e., more similar)
than Vthreshold, namely:

Vk1 ≤ Vk2 ≤ Vthreshold. (16)

4) NODE LEARNING AND EDGE CONSTRUCTION
Depending on the result of the vigilance test, a different
operation is performed.

If xn is classified as Case I by the vigilance test
(i.e., (14) is satisfied), a new node yK+1 = xn is added to the
prototype node set Y = {y1, y2, . . . , yK }. A bandwidth σK+1
for node yK+1 is calculated by (9). In addition, the number of
data points that have been accumulated by the node yK+1 is
initialized asMK+1 = 1.
If xn is classified as Case II by the vigilance test (i.e., (15)

is satisfied), first, the age of each edge connected to the first
winner node yk1 is updated as follows:

a(k1,j)← a(k1,j) + 1
(
∀j ∈ Nk1

)
, (17)

where Nk1 is a set of nodes that are connected to yk1 by an
edge. After updating the age of each of those edges, an edge
whose age is greater than a predefined threshold amax is
deleted. Then, yk1 is updated as follows:

yk1 ← yk1 +
1
Mk1

(
xn − yk1

)
. (18)

When updating the node, the difference between xn and yn
is divided byMk1 . Thus, the largerMk1 becomes, the smaller
the node position changes. This is based on the idea that the
information around a node, where data points are frequently
given, is important and should be held by the node.

In Case II, a counter M for the number of data points that
have been accumulated by yk1 is also updated as follows:

Mk1 ← Mk1 + 1. (19)

If xn is classified as Case III by the vigilance test (i.e., (16)
is satisfied), the same operations as Case II (i.e., (17), (18),
and (19)) are performed. In addition, the neighbor nodes of
yk1 are updated as follows:

yj← yj +
1

10Mj

(
xn − yj

) (
∀j ∈ Nk1

)
. (20)

Equation (20) has the same concept as (18), but it should
be less affected by the data point than yk1 because it is the
neighbor node of yk1 . Thus, the value is multiplied by 1/10.
In Case III, moreover, if there is no edge between yk1 and

yk2 , a new edge is generated and its age is initialized as
follows:

a(k1,k2)← 0. (21)

In the case that there is an edge between nodes yk1 and yk2 ,
its age is also reset by (21).

Apart from the above operations in Cases I-III, as a noise
reduction purpose, the nodes without edges are deleted every
time λ training data points are given.

The learning procedure of CAEA is summarized in
Algorithm 1. Note that the prediction procedure of CAEA
is that an unknown data point is assigned to the class of its
nearest neighbor node.

B. HIERARCHICAL APPROACH FOR CAEA
The procedure for creating the hierarchical structure of
HCAEA is as follows. First, CAEA is trained with a set
of training data points X = {x1, x2, . . . , xn} to generate
a topological network (nodes and edges) in the first layer.
Supposing that Y = {y1, y2, . . . , yK } is generated. Here,
we preserve training data points that affect each node yk
during training process. As a result, we can define a new set
of K training data point sets X ′ = {X1,X2, . . . ,XK } for the
second layer, where X ′ satisfies Xk 6= ∅,

⋃
Xk∈X ′ Xk = X ,

and ∀A,B ∈ X ′A 6= B H⇒ A ∩ B = ∅. In the second
layer, CAEA is independently trained by using each subset
Xk (k = 1, 2, . . . ,K ) of training data points. Thismechanism
is used in a hierarchical manner for the training of CAEA.
That is, CAEA in the (h+1)th layer is independently trained
by using subsets of training data points, each of which is
defined by the corresponding node in the hth layer. The above
procedure is repeated until an additional layer is no longer
created by CAEA. That is, when the number of nodes (i.e.,K )
becomes two in the hth layer, it is too small to represent the
distribution of data points. As a result, the training for creating
the (h+1)th layer is not performed.

The learning procedure of HCAEA is summarized in
Algorithm 2. Note that the prediction procedure of HCAEA
is similar to CAEA. One difference from CAEA is that an
unknown data point is assigned to the class of its nearest
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Algorithm 1: Learning Algorithm of CAEA
Input:
a set of training data points: X = {x1, x2, . . . , xn, . . .}
where xn = (xn1, xn2, . . . , xnd ) (xl ∈ <d ),
the interval for computing σ and deleting an isolated
node: λ,
and the threshold of an age of edge: amax.
Output:
the CAEA model.

model contents
a set of generated nodes: Y = {y1, y2, . . . , yK }(
K ∈ Z+

)
,

a set of bandwidths for a kernel function:
S = {σ1, σ2, . . . , σK }
a set of counters:M = {M1,M2, . . . ,MK },
the matrix of edge connections: e,
and the matrix of edge age: a.

1 function LearningCAEA(X , λ, amax)
2 forall l ∈ 1, 2, . . . ,L do
3 if K < λ/2 then
4 Create the new node as yK+1 = xl .
5 Calculate the bandwidth for a kernel

function σK+1 by (8) and (9).
6 if K = λ/2 then
7 Calculate the vigilance parameter

Vthreshold by (7).

8 else
9 Search the indexes of winner nodes k1 and

k2 by (10) and (11), respectively.
10 Update the edge age a(k1,j) by (17).
11 if a(k1,j) > amax then
12 Delete the edge.

13 if Vk1 > Vthreshold then
14 Create the new node as yK+1 = xl .
15 Calculate the bandwidth for a kernel

function σk+1 by (8) and (9).
16 else
17 Update the state of yk1 by (18).
18 if Vk2 ≤ Vthreshold then
19 Update the state of neighbor nodes

yj by (20).
20 Create a new edge e(k1,k2) between

yk1 and yk2 .

21 if the number of data point inputs l is multiple
of a topology adjustment cycle λ then

22 forall k ∈ 1, 2, . . . ,K do
23 if yk does not have any edge then
24 Remove yk from Y .

25 return the CAEA model.

neighbor node which does not have a child node in the
generated tree-like structure.

Algorithm 2: Learning Algorithm of HCAEA
Input:
a set of training data points: X = {x1, x2, . . . , xn, . . .}
where xn = (xn1, xn2, . . . , xnd ) (xl ∈ <d ),
the interval for computing σ and deleting an isolated
node: λ,
and the threshold of an age of edge: amax.
Output:
the HCAEA model.

model contents
a set of training data points for the next layer:
X ′ = {X1,X2, . . . ,XK } (Xk 6= ∅,⋃

Xk∈X ′ Xk = X , and
∀A,B ∈ X ′A 6= B H⇒ A ∩ B = ∅),
a set of generated nodes:
Y = {y1, y2, . . . , yK }

(
K ∈ Z+

)
,

a set of bandwidths for a kernel function:
S = {σ1, σ2, . . . , σK }
a set of counters:M = {M1,M2, . . . ,MK },
the matrix of edge connections: e,
the matrix of age of edge: a,
and a set of child models: C = {c1, c2, . . . , cK }.

1 function LearningHCAEA(X , λ, amax)
2 HCAEA model = LearningCAEA(X , λ, amax).
3 if K ≥ 2 then
4 forall k ∈ 1, 2, . . . ,K do
5 Extract a set of data points Xk that have

accumulated by the node yk as the training
data points for the next layer.

6 ck = LearningHCAEA(Xk , λ, amax).

7 Update the HCAEA model.
8 else
9 return.

10 return the HCAEA model.

V. SIMULATION EXPERIMENTS
This section presents quantitative comparisons focusing on
the information extraction performance of CAEA, HCAEA,
GHNG [2], GH-EXIN [29], and HFTCA [14] based on the
classification performance. In general, the evaluation of the
clustering performance is subjective if a dataset does not
have label information (i.e., each pattern in the dataset has
no class label). In this paper, therefore, we use datasets with
label information and perform classification tasks by using
a clustering result as a classifier. This approach allows us
to indirectly evaluate the clustering performance, that is, the
performance of approximating the data distribution.

The source code of GHNG,1 GH-EXIN,2 and HFTCA 3

are provided by the authors of the related papers.

1http://www.lcc.uma.es/ ejpalomo/software.html
2https://github.com/pietrobarbiero/ghexin
3https://github.com/Masuyama-lab/HFTCA
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A. DATASETS
We utilize five synthetic datasets and nine real-world datasets
selected from the commonly used clustering benchmarks [31]
and public repositories [32], [33]. Table 2 summarizes statis-
tics of the datasets.

TABLE 2. Statistics of datasets for classification tasks.

B. PARAMETER SPECIFICATIONS
CAEA, HCAEA, GHNG [2], GH-EXIN [29], and
HFTCA [14] have their own parameters, which influence
their clustering performance. This section presents parameter
specifications of each algorithm in detail.

Table 3 summarizes parameter settings of each algo-
rithm. In each algorithm, one parameter which has a large
impact on the clustering performance is specified by grid
search while the other parameters are specified as follows:
In GHNG, the parameter τ is unique and rest of them are
the same as GNG. Therefore, we use the commonly used
GNG parameter settings in GHNG. In GH-EXIN, some
parameters are the same as GNG while mincard and Hperc
are unique ones. mincard and Hperc are specified in [29].
In HFTCA, a topology construction cycle λ is the same as
in [14].

During grid search in our experiments, the training data
points in each dataset are presented to each algorithm only
once without pre-processing. In addition, each training data
point is input under a stationary environment, i.e., the train-
ing data points are randomly selected from the entire data.
For each parameter specification, we repeat the evalua-
tion 20 times (i.e., 2 × 10-fold cross validation) with a
different random seed for obtaining consistent averaging
results.

Table 4 summarizes parameters which are specified by grid
search. Using the parameter specifications in Tables 3 and 4,
each algorithm shows the highest Normalized Mutual Infor-
mation (NMI) [34] score for each dataset under a stationary
environment. Note that a symbol ‘‘−’’ in HFTCA means that
the layer is not generated.

C. CLASSIFICATION TASKS
1) CONDITIONS
In order to demonstrate the information extraction perfor-
mance of CAEA and HCAEA, we conduct classification
tasks not only in a stationary environment but also in a non-
stationary environment. In the stationary environment, the
training data points are randomly selected from the entire
dataset. In the non-stationary environment, the training data
points are randomly selected from a specific class in the
dataset, and the class is shifted sequentially.

Similar to grid search, we repeat the evaluation 20 times
with no pre-processed training data points and a different
random seed. The same parameter specifications are used
in the stationary and non-stationary environments for each
algorithm as explained in Tables 3 and 4. The classification
performance is evaluated by Accuracy, NMI [34], Adjusted
Rand Index (ARI) [35], and macro-F1.

As a statistical analysis, the Friedman test and Nemenyi
post-hoc analysis [36] are utilized. The Friedman test is used
to test the null hypothesis that all algorithms perform equally.
If the null hypothesis is rejected, the Nemenyi post-hoc analy-
sis is then conducted. The Nemenyi post-hoc analysis is used
for all pairwise comparisons based on the ranks of results
over all the evaluation metrics for all datasets. Here, the null
hypothesis is rejected at the significance level of 0.05 both
in the Friedman test and the Nemenyi post-hoc analysis. All
computations are carried out on Matlab 2020a with 2.2GHz
Xeon Gold 6238R processor and 768GB RAM.

2) STATIONARY ENVIRONMENT
Table 5 shows the results of the classification performance
in the stationary environment. The best value in each metric
is indicated by bold. The standard deviation is indicated in
parentheses. N/A indicates that an algorithm could not build a
predictivemodel. As an overall trend, GH-EXIN andHCAEA
show better performance than CAEA, GHNG and HFTCA.
Here, the null hypothesis is rejected on the Friedman test over
all the evaluation metrics and datasets. Thus, we apply the
Nemenyi post-hoc analysis. Fig. 1 shows a critical difference
diagram based on the classification performance including
all the evaluation metrics and datasets. Better performance
is shown by lower average ranks, i.e., on the right side
of a critical distance diagram. In theory, different methods
within a critical distance (i.e., a red line) do not have a
statistically significance difference [36]. In Fig. 1, GH-EXIN
shows the best performance but there is no statistically sig-
nificant difference from HCAEA. Comparing HCAEA and
CAEA, although there is no statistically significant differ-
ence, HCAEA shows a lower rank. This suggests that a divi-
sive hierarchical structure of HCAEA has a positive impact
on the classification/clustering performance.

Table 6 shows the number of generated nodes by each
algorithm in the stationary environment. As a general ten-
dency, GH-EXIN generates a large number of nodes and
GHNG generates a small number of nodes. The number of
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TABLE 3. Parameter settings of each algorithm for classification tasks.

TABLE 4. Parameters specified by grid search for classification tasks.

FIGURE 1. Critical difference diagram of classification tasks in the
stationary environment.

nodes in HCAEA is larger than that of CAEA because of
its hierarchical structure. Note that the number of layers of
HCAEA is automatically specified by the algorithm. In this
experiment, HCAEA generates a single layer for COIL20,
Isolet, Sonar, TOX171, and Wine datasets. These datasets

have a small number of training data points compared to the
number of attributes. From the above observations, it can
be concluded that HCAEA can adaptively and automatically
specify the sufficient number of nodes and layers for extract-
ing information.

Table 7 summarizes the results of training time in the
stationary environment. In general, GHNG is faster than all
the other algorithms because the number of generated nodes
is smaller than the others. RegardingGH-EXIN, the computa-
tion speed depends on the number of attributes in the dataset.
Namely, GH-EXIN is fast when the number of attributes is
small while it is slow when the number of attributes is large.
The computational efficiency of HCAEA and CAEA depends
on the number of generated nodes. In short, the computation
speed is slow when the number of generated nodes is large,
and vice versa.
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TABLE 5. Results of the classification performance in the stationary environment.
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TABLE 6. Results of the number of leaf nodes in the stationary environment.

TABLE 7. Results of training time on CPU [sec] in the stationary environment.

3) NON-STATIONARY ENVIRONMENT
In the case of the non-stationary environment, a contin-
ual learning ability is required to maintain the classifica-
tion/clustering performance because the training data points
are randomly selected from a specific class of the dataset, and
the class is shifted sequentially.

In general, whether an environment is stationary or
non-stationary is unknown and dynamic. In other words,
an algorithm should have characteristics that do not dete-
riorate its classification/clustering performance in any envi-
ronment. For this reason, the parameter specifications in the
non-stationary environment are the same as in the stationary
environment, i.e., Tables 3 and 4.

Table 8 shows the results of the classification performance
in the non-stationary environment. The best value in each
metric is indicated by bold for each dataset. The standard
deviation is indicated in parentheses. N/A indicates that an
algorithm could not build a predictive model. Similar to
the results in the stationary environment, the classification
performance of GH-EXIN and HCAEA is generally better

than CAEA, GHNG and HFTCA. Here, the null hypothesis
is rejected on the Friedman test over all the evaluation metrics
and datasets. Thus, we apply the Nemenyi post-hoc analysis.
Fig. 2 shows a critical difference diagram based on the clas-
sification performance including all the evaluation metrics
and datasets. Similar to the results in the stationary environ-
ment, GH-EXIN shows the best performance but there is no
statistically significant difference from HCAEA. Regarding
HCAEA and CAEA, there is a statistically significant differ-
ence between these two algorithms. This result indicates that
HCAEA has the stable and superior information extraction
performance than CAEA in the non-stationary environments.

Table 9 shows the number of generated nodes by each algo-
rithm in the non-stationary environment. The general trend is
the same as in the stationary environment, where GH-EXIN
has a large number of generated nodes and GHNG has a
small number of them. Regarding HCAEA, this algorithm
generates a single layer for COIL20, Isolet, Sonar, TOX171,
and Wine datasets, which are the same as in the stationary
environment.
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TABLE 8. Results of the classification performance in the non-stationary environment.
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TABLE 9. Results of the number of leaf nodes in the non-stationary environment.

TABLE 10. Results of training time on CPU [sec] in the non-stationary environment.

FIGURE 2. Critical difference diagram of classification tasks in the
non-stationary environment.

Table 10 summarizes the results of training time in the non-
stationary environment. The general trend of the computation
speed is also the same as in the stationary environment.
Namely, GHNG is faster, the computation speed of GH-EXIN
depends on the number of attributes, and the computation
speed of HCAEA and CAEA depends on the number of
generated nodes.

D. PARAMETER SENSITIVITY
Fig. 3 shows box plots with all the results of NMI obtained by
grid search in Section V-B for each dataset in the stationary
environment. Depending on the values of the parameters

in the grid range, each algorithm shows high/low NMI.
By observing the variations of NMI, the sensitivity of an
algorithm to each parameter specification can be evaluated.

Although the median of NMI is different, as a general
tendency, the interquartile ranges are similar for each algo-
rithm on each dataset except for small datasets (e.g., Jain and
Wine) and high-dimensional datasets (e.g., COIL20 and Iso-
let). In regard to the parameters specified by grid search (see
Table 4), those values for GHNG, GH-EXIN, andHFTCA are
selected from the entire grid range. In contrast, the parameters
of CAEA and HCAEA are mostly selected from a certain
range, i.e., {24, 26, 28, 30}, although the candidate of grid
values are {10, 12, . . . , 30}. This observation suggests that
CAEA and HCAEA can apply the same parameter setting to
a wide variety of datasets.

E. COMPUTATIONAL COMPLEXITY
This section presents the computational complexity of
CAEA, HCAEA, and comparison algorithms. Specifically,
CAEA and HCAEA are analyzed in detail.
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FIGURE 3. Box plot with NMI obtained by grid search in the stationary environment.

Here, assuming n is the number of data points, λ is an
interval for adapting σ , d is a dimension of a data point and
a node, and K is the number of generated nodes. In CAEA,
the computational complexity of each process is as follows:
Computing a bandwidth of a kernel function in the CIM is
O( n

λ
d) (line 5 in Alg. 1). Computing the CIM isO(nd λ2 ) (line

7 inAlg. 1), and for sorting the result of the CIM isO(λ2 log
λ
2 )

(line 7 in Alg. 1). Similarly, for computing the CIM in line
9 is O(ndK ) and for sorting the result of the CIM in line 9 is
O(K logK ). In general, λ � n and K � n. Thus, the total
computational complexity of CAEA is O(nd(λ+ K )).
In HCAEA, assuming that the number of data points in the

ml th partition of the lth layer of HCAEA is nlml , then the
computational complexity is O(

nlml
λ
d + nlmld

λ
2 +

λ
2 log

λ
2 +

nlmldKlml +Klml logKlml ). Here, Klml is the number of gener-
ated nodes in theml th partition of the lth layer. Thus, the total
computational complexity from the 2nd to the Lth layer is
O(
∑L

l=2
∑ml

i=1(
nli
λ
d+nlid λ2+

λ
2 log

λ
2+nlidKli+Kli logKli)).

In general, λ � n and K � n. As a result, the total
computational complexity of HCAEA is O(nd(λ + K ) +∑L

l=2
∑ml

i=1 nlid(λ+ ml)).
A self-organizing process of GHNG uses GNG but its

hierarchical approach is similar to HCAEA. The computa-
tional complexity of GNG is O(nK ). Thus, the total com-
putational complexity from the 2nd to the Lth layer is
O(
∑L

l=2
∑ml

i=1 nliKli). As a result, the total computational
complexity of GHNG is O(nK +

∑L
l=2

∑ml
i=1 nliKli).

Regarding GH-EXIN, its computational complexity is ana-
lyzed asO(bJn logb n) [29] where b is the average branching
factor, J is the average number of epochs, and n is the number
of data points. Note that further information can be found
in [29].

A learning algorithm and a hierarchical approach of
HFTCA is the same with HCAEA except for a calculation

of the vigilance parameter. The computational complexity of
the calculation of the vigilance parameter can be ignored here.
Thus, the computational complexity of HFTCA isO(nd(λ+
K )+

∑L
l=2

∑ml
i=1 nlid(λ+ ml)).

The computational complexity for each algorithm is sum-
marized in Table 11.

TABLE 11. Summary of computational complexity.

VI. DISCUSSION
This section summarizes the characteristics of each algorithm
based on the results in Sections V-C2 and V-C3 for empha-
sizing properties of HCAEA and CAEA.

In regard to GHNG, the computation speed is faster than
all the other algorithms. However, the information extraction
performance is inferior to the others. One possible reason for
its poor performance is that a network generated by GNG
does not adequately approximate the distribution of the data
points in each dataset. This drawback can be resolved by
increasing the number of training epochs, but this is a major
disadvantage in terms of the concept of continual learning.

GH-EXIN maintains the superior information extraction
performance both in the stationary and non-stationary envi-
ronments. However, GH-EXIN tends to generate a large
number of nodes, and the computation speed of GH-EXIN
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depends on the number of attributes in the dataset. Although
GH-EXIN shows superior information extraction perfor-
mance, the above characteristics become disadvantages when
the algorithm is applied to a real-world dataset with a
large number of attributes. The common disadvantage of the
GNG-based algorithms (i.e., GHNG and GH-EXIN), is that
there are a lot of parameters to be specified in advance
(see Table 3). Moreover, the specified parameter values are
significantly for different datasets (see Table 4).
Regarding HFTCA, its information extraction perfor-

mance is similar to GHNG, and inferior to GH-EXIN, CAEA,
and HCAEA. In addition, the vigilance parameter V , which
is a predefined parameter, has to be specified to each layer
in advance. If the value of the vigilance parameter V is not
properly defined, the algorithm cannot generate a sufficient
number of nodes to approximate the distribution of data
points. Specifically, as shown in Section IV-C, since TOX171
is a high-dimensional data with a small number of data points,
HFTCA could not build the predictive model because gener-
ated nodes are deleted as isolated nodes before the network
(i.e., edge connections) is fully constructed. This problem
may be avoided by giving training data points multiple times
until the network is sufficiently constructed.

CAEA maintains better information extraction perfor-
mance than GHNG and HFTCA both in the stationary and
non-stationary environments. Moreover, CAEA and HCAEA
can apply the same parameter setting to a wide variety of
datasets. One disadvantage of HCAEA and CAEA is that
these algorithms tends to have poor classification perfor-
mance over comparison algorithms on datasets with a large
number of classes (i.e., COIL20, Isolet, and OptDigits). This
is because that CAEA (and also HCAEA) estimates the sim-
ilarity threshold V and a bandwidth σ for a kernel function
from a very small number of training data points compared
to whole data points, the similarity threshold V and the band-
width σ are not suitable for the distribution of data points if
the number of classes is large. This problem could be solved
by adapting a large value of λ. As shown in Figs. 1 and 2,
a unique drawback of CAEA is that the information extraction
performance is significantly different between the stationary
and non-stationary environments. By introducing a hierar-
chical structure to CAEA, HCAEA successfully solves the
disadvantage of CAEA. In general, HCAEA shows better
information extraction performance than CAEA and compa-
rable performance to GH-EXINwithout the specification of a
large number of parameters. One problem of HCAEA is that
the algorithm tends to generate excessive nodes in the case
of Iris and Pathbased datasets. However, this problem can be
solved by implementing a mechanism to delete unnecessary
nodes in HCAEA.

VII. CONCLUSION
This paper proposed an ART-based topological clustering
algorithm, called CAEA. CAEA automatically estimates a
similarity threshold, i.e., a vigilance parameter, from the
distributions of data points. In addition, a divisive hierarchical

clustering algorithm capable of continual learning, called
HCAEA, was also proposed by applying a hierarchial struc-
ture to CAEA. The experimental results showed that the
hierarchical structure of HCAEA improves the information
extraction performance while solving the disadvantage of
CAEA, i.e., the information extraction performance is sig-
nificantly different between the stationary and non-stationary
environments. Moreover, it has been shown that HCAEA
has various advantages (i.e. a small number of parameters,
an automated mechanism for hierarchical structure design)
and comparable clustering performance to recently-proposed
state-of-the-art hierarchical clustering algorithms.

In this paper, we focused only on the avoidance of catas-
trophic forgetting in order to achieve stable continual learn-
ing. However, dealing with concept drift, i.e., the change of
the concepts in the learned information, is also important for
maintaining a continual learning ability [37]. Therefore, as a
future research topic, we will consider dealing with concept
drift in HCAEA in order to extend the functionality of the
algorithm.
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