
Received 17 May 2022, accepted 20 June 2022, date of publication 27 June 2022, date of current version 5 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3186347

A Genetic Algorithm-Based Approach to Support
Forming Multiple Scrum Project Teams
ALEXANDRE COSTA 1,2, FELIPE RAMOS 1,2, MIRKO PERKUSICH 2,
ADEMAR DE SOUSA NETO 2,3, LUIZ SILVA 2,3, FELIPE CUNHA 2,3, THIAGO RIQUE2,3,
HYGGO ALMEIDA 2,3, AND ANGELO PERKUSICH2,3, (Member, IEEE)
1Federal Institute of Paraíba, Santa Luzia 58.600-000, Brazil
2Virtus, Campina Grande 58.429-140 Brazil
3Electrical Engineering and Informatics Center, Federal University of Campina Grande, Campina Grande 58.429-900, Brazil

Corresponding author: Alexandre Costa (alexandrecostapb@gmail.com)

This work was supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance
Code 001.

ABSTRACT Forming effective teams is an essential but challenging task, especially for organizations
that carry out multiple projects simultaneously, a problem known as the Multiple Team Formation (MTF)
problem. The literature presents several solutions for the MTF problem, mostly modeling it as a search
problem. However, the existing solutions are not suitable for Scrum projects. We addressed this gap by
developing an approach composed of two main steps. First, we designed a Structured Task Model to support
creating developers’ profiles given their performance on past Scrum projects. Then, given a set of target
projects’ technology requirements and the available developers’ profiles, we developed a Genetic Algorithm
to form the teams for a set of target projects. We evaluated the proposed approach by comparing the teams
formed by our approach with the ones formed by project managers from one organization. Our approach
achieved 85% of precision when compared with the teams provided by the project managers who worked
on the same target projects. We also recorded an acceptance rate of up to 75%. The significant value of
precision achieved suggests that our approach can provide teams close to the project managers’ expectations.
In addition, our Structured Task Model offers a promising way to build technical profiles semi-automatically
for Scrum developers. In future work, we intend to investigate how to complement the developers’ profiles
by using other types of attributes and knowledge sources.

INDEX TERMS Intelligent software engineering, search-based software engineering, genetic algorithm,
multiple team formation problem.

I. INTRODUCTION
In the dynamic and competitive modern economic envi-
ronment, organizations are compelled to manage multiple
projects to generate revenue and maintain competitive advan-
tage [1]. In this context of carrying out multiple projects,
a challenge is to form teams, a problem known as theMultiple
Team Formation problem [2], which is NP-hard. Further,
since hiring and training are expensive [3], it is logical for
organizations to put significant efforts to ensure that the
return on investment is maximized by ensuring the best use of

The associate editor coordinating the review of this manuscript and

approving it for publication was Aasia Khanum .

the resources [4]. This problem has at least two perspectives:
forming a team for a new problem or changing teams during
project execution.

In this context, the decision-maker must analyze the
scope of each project, and the competences of the avail-
able human resources for forming teams. For new projects,
the decision-maker analyzes the project’s requirements and
the available resources, which might be previously allocated
to other projects. For existing projects, it is a continuous
process, since requirements and business demands change
constantly.

It might also be necessary to change teams during project
execution due to turnover or to reduce costs or risks. For

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 68981

https://orcid.org/0000-0002-2258-5201
https://orcid.org/0000-0002-0937-811X
https://orcid.org/0000-0002-9433-4962
https://orcid.org/0000-0002-1651-4159
https://orcid.org/0000-0001-5803-2636
https://orcid.org/0000-0001-6836-7560
https://orcid.org/0000-0002-2808-8169
https://orcid.org/0000-0002-2522-7637

A. Costa et al.: Genetic Algorithm-Based Approach to Support Forming Multiple Scrum Project Teams

instance, if a senior C++ developer is working in a project for
which the complex C++ features are already done, it might
be financially worth it for the company to swap the senior
C++ developer for a junior one, allocating the senior devel-
oper to a higher risk project. Conversely, consider that a
project, for some reason, gets into a high-risk state due to
issues with features related to augmented reality. In this case,
it might be necessary to allocate an augmented reality expert
for this project.

For both cases, the decision-maker relies on his exper-
tise, collaborates with his colleagues, and explores organi-
zational process assets (e.g., project’s lessons learned and
reports). Notice that, during this process, the decision-maker
may conclude that it is not possible to form the team with
the necessary competences and request hiring or training.
As previously discussed, the complexity related to solving
this problem increases exponentially, given the number of
projects and candidate members.

For organizations with a high rate of similarity between
projects, there is the potential for reusing knowledge from
past projects to assist in decision making. For instance,
Dantas et al. [5] analyzed the similarity between the features
of a target project and historical data to estimate effort, and
Ramos et al. [6] have done the same to infer non-functional
requirements. A similar approach is possible to address the
MTF problem if the company has detailed information about
the work done by each collaborator. For instance, consider
project A, which consists of ten requirements, which are
similar to the requirements of projects B and C. By analyzing
the work done in projects B and C, it is possible to infer
the technologies and types of features to be implemented for
project A.

A recent systematic mapping study on team formation
in software engineering [7] pointed out that several studies
address the MTF problem as a search problem, modeling
the competences of the human resources and the projects’
requirements, and solving it using several techniques such
as Genetic Algorithms (GAs), Simulated Annealing, and
Dynamic Programming, and others. The existing studies rely
on several types of knowledge sources to model the compe-
tences of human resources such as curriculum, social valida-
tion, and historical data. The ones that focus on historical data
rely on information related to traditional project management
tasks, which are estimated to last between 20 and 80 hours.

Over the past years, organizations started to apply Agile
Software Development (ASD) [8]–[11], which have become
mainstream [12] and have Scrum as its most popular
method [13]. For Scrum, the tasks are estimated to last one
day or less. Therefore, having a higher granularity related to
the registered work done by the developer, when comparing
to the traditional task. For instance, while a traditional task
might relate the developer to a programming language or
library, the taskmight relate him to the library’s function used.
Unfortunately, ASD relies mostly on tacit knowledge [14],
so, usually, the information registered for a Scrum task is not
enough to infer useful knowledge. This observation raises

the following research question: how to form teams, more
assertively, in the context of organizations that carry out
multiple projects, with a high rate of similarity between them,
using Scrum?

To address this question, we followed a two-steps
approach. First, we defined a procedure to support Scrum
projects by improving the usefulness of the persisted tech-
nical tasks on the project database. Such a procedure is based
on adding tags to the tasks, registering their scope, and related
technologies. This information is used to build a detailed
profile of the developers. Plus, with the support of a US-reuse
framework, such as the ones presented in Dantas et al. [5],
Ramos et al. [6], and Elamin and Osman [15], it enables to
predict the tasks to be developed in projects before their
execution, enabling to build detailed project profiles. Second,
the detailed developers’ and projects’ profiles are used as
input into a Genetic Algorithm, which searches for the best
global team formation for Scrum projects. Thus, supporting
decision-makers to infer the scope of Scrumprojects and form
teams more assertively.

This paper details our proposed algorithm and structured
model to describe Scrum tasks. Further, it reports the results
of validating the algorithm with a dataset of 1063 tasks
collected from 12 projects of one organization. Finally,
it presents the result of evaluating the algorithm with four
project managers (PMs) of the same organization.

The remainder of the paper is organized as follows.
Section II presents the related work on team formation.
Section III describes the approach to form multiple teams
for Scrum projects. Section IV details the process to validate
the proposed solution. Section V presents the process to
evaluate the proposed solution. Section VI shows the threats
to validity of the research. SectionVII presents the conclusion
and limitations of the research and future work.

II. RELATED WORK
Themultiple team formation problem is a well-know problem
in several and distinct domains such as soccer [16], online
games [17], robotic competitions [18], [19], on-demand taxi-
calling platforms [20], and others [21]–[25].

As mention before, the MTF problem is NP-hard and
is commonly modeled as a search and optimization prob-
lem. Silva and Costa [26] proposed a decision model
based on dynamic programming to form teams that can
minimize the duration of software development projects.
Gharote et al. [27] used a Scatter search algorithm to allocate
trainees to a software project to minimize retraining and
relocation costs. Crawford et al. [28] presented a Linear Pro-
gramming approximation algorithm to select a minimal-cost
team to complete a given set of tasks.

In the software domain, there is a particular field that
deals with metaheuristic search-based optimization tech-
niques to provide automated and semi-automated solutions,
known as Search-Based Software Engineering (SBSE) [29].
SBSE techniques include Hill Climbing, Simulated Anneal-
ing, Genetic Algorithm, and others. However, GA stands out

68982 VOLUME 10, 2022

A. Costa et al.: Genetic Algorithm-Based Approach to Support Forming Multiple Scrum Project Teams

as the most popular choice. For instance, Costa et al. [30]
proposed an automated approach to form multiple teams in
Scrum projects using a single-objective GA. stylianou and
Andreou [31] presented a multi-objective GA to optimize
the project’s schedule and assigning the most experienced
developers to tasks.

Arunachalam et al. [32] used GA to form teamswith based
average team’s cost and productivity. Other studies using GA
to form teams can be found in [33], [34].

Besides the computational algorithm, studies in the liter-
ature use different types of attributes to allocate the team
members such as personality traits [35]–[37] and social inter-
actions [38]–[40]. For instance, Gilal et al. [36] developed
a rule-based model for software development team forma-
tion based on gender and personality traits. Latorre and
Suárez [40] presented a framework to allocate people to
projects from a socio-technical perspective,i.e., considering
the abilities a person uses to interact with other people.

Furthermore, the related work varies according to the
granularity information used to perform the allocation.
Ye et al. [41] proposed a team formation approach to rec-
ommend teammates for crowdsourcing developers. The
allocation is performed based on three factors: closeness
with teammates, expertise difference with teammates, exper-
tise gain through collaboration. Zhang et al. [42] proposed
a framework to form teams by maximizing members’ skills
gain and minimizing the communication costs among team-
mates. The allocation is based on requirements such as Secu-
rity, Multimedia, Management, Hardware, Networking, and
others. Costa et al. [30] proposed an approach to allocate
multiple developers into multiple teams using data from tag-
based profiles. However, the tags are applied to the projects,
not to the tasks. Tseng et al. [43] proposed an approach that
uses Fuzzy sets theory and Grey decision theory to form
multi-functional teams. The allocation depends on compe-
tences such as network technique, software design, database
design, quality control, hardware testing, and others. Strnad
and Guid [33] presents a decision support system for project
team formation. The team are formed using historical infor-
mation such as experience time in programming languages,
the number of projects in which the developer has previously
worked, priority and status of the projects, and others.

We believe our approach differs and complements state
of the art because we provide a systematic way to record
structured data that allows building more reliable profiles to
represent the developers’ technical competences. By doing
this, we can know the work done by the developers in specif
level.

III. PROPOSED SOLUTION
The proposed solution consists of an approach to support the
MTF process for Scrum projects. It is based on the allocation
of the organization’s available developers into multiple target
software projects, aiming at obtaining the best global team
formation. Our approach intends to assist PMs in forming
project teams by providing them with suggested teams in

which their members possess competences that match the
projects’ requirements at the maximum possible level.

Our solution is divided into two parts: (i) constructing the
developers’ profiles and (ii) using the profiles and projects’
requirements to form the teams. To construct the developers’
profiles with the level of detail aimed by our solution, we pro-
pose the structured task model, discussed in Section III-A.
To build this model, we followed the taxonomy for User Sto-
ries (USs) proposed by Dilorenzo et al. [44]. The taxonomy
enables the reuse of USs and their related assets. It adds link
semantics between USs, allowing the identification of similar
USs.

To form the teams, having as inputs the projects’ require-
ments and the developers’ profiles, we developed a Genetic
Algorithm, discussed in Section III-B. It outputs a global
team formation, i.e., optimal teams for each target project,
based on their requirements.

Despite the potential to be applied to other contexts,
we focused on projects that use Scrum, which was chosen
due to its popularity [13]. We consider that our solution can
be especially useful to a scenario with dozens or hundreds
of developers distributed in dozens of projects with a level
of similarity to enable the reuse of data from past projects to
predict the scope of future ones.

A. STRUCTURED TASK MODEL
An essential requirement to form Scrum teams is to know the
competences of the available developers, i.e., the developers’
profiles. There are several knowledge sources that can be
used to infer the developer’s profile, such as project database,
training resources, declaration, and assessment [45], [46].
We assume that the most trustworthy source is the project
database. Further, we assume that to bemore assertive regard-
ing the work to do and the developers’ profiles, it is necessary
to have high granularity regarding the work performed by
the developers. For instance, it is not enough to know if a
developer has worked with Java tasks, because it might have
been for Web, Desktop, or Mobile development.

Further, we assume that it is not enough to know if a devel-
oper worked with Java for Android development. We believe
that there is a need for more details regarding the performed
work. A valid example would be to know that a developer
worked with Java for Android using the Tesseract Engine1 for
Optical Character Recognition (OCR). With such a level of
detail, we could recommend this developer for a project that
focuses on developing an Android application having OCR
as a feature.

In Scrum, the smallest unit of work is the technical task.
Other than the source code and commits, they are the project
assets with more details regarding the work done by each
developer. Traditionally, they are written in natural language,
resulting in unstructured data and represented by small sen-
tences. The major drawback, from a knowledge-reuse driven
perspective, is that only the traditional description of tasks

1https://github.com/tesseract-ocr/tesseract

VOLUME 10, 2022 68983

A. Costa et al.: Genetic Algorithm-Based Approach to Support Forming Multiple Scrum Project Teams

is not enough to infer much about the work executed (e.g.,
technologies used). Consequently, the competences acquired
during the implementation remain tacit, hindering the poten-
tial of having a project database with enough information
to allow us to determine the developers’ competences at the
desired level.

To address this problem, we designed the Structured Task
Model (STM). It allows the developers’ to systematically add
useful data about the technologies used to implement tasks.
Such data is then used to build the technical profiles with the
required level of granularity. In this study, we opted to focus
on structuring the tasks and defining the level of information
necessary to allow us to form teams with the required level
of assertion, deferring exploring how to automatically extract
such information from commit messages and source code to
future work. Further, it is worthy of mentioning that such
an approach does not compromise agile values and princi-
ples. Applying such a technique must not be enforced to the
team, but negotiated with them. The managers must clarify
to the team that despite the effort on their part, compromising
the minimum of the project’s productivity, the organization
becomes potentially more productive.

Figure 1 shows the format of the structured task. It is
composed of two parts: (i) a standard task description, rep-
resenting the work to be done, and (ii) a set of technology
tags to represent the associated technologies. The processes
to generate that structured tasks are detailed as follows.

1) THE TASK LABELING PROCESS (TLP)
This process consists of assigning tags to tasks to contex-
tualize them regarding the technologies used during their
development. Scrum does not provide mechanisms to contex-
tualize these artifacts; thus, we use tags, which are element
descriptors that assist in classifying content. We designed
the TLP to have it applied when team members break down
the product backlog items into tasks (i.e., during the sprint
planning meeting and the sprint’s execution). The tasks can
be labeledwith technology tags while being created or closed.
Conceptually, technology includes tools, methods, and tech-
niques to accomplish the tasks. Figure 1 shows the technology
descriptors for contextualizing the tasks. Layer indicates the
architectural layer related to the task (e.g., frontend or back-
end); Programming language represents the programming
languages related to the task such as Java, C++, Python,
Ruby, and others; Framework may include Express, Django,
Rails, Spring, Angular, React, and others; API comprises
Google Maps, Facebook, Stripe, Twilio, Slack, and others.
Persistence can beMySQL, Oracle, SQLServer, PostgreSQL,
MongoDB, and others. Additionally, it is possible to add as
many tags as necessary to contextualize the task, such as
markup (e.g., HTML and XML) and style sheet languages
(e.g., CSS).

2) TASK CATEGORIZATION PROCESS (TCP)
Different projects usually have hundreds of tasks with the
same purpose, but often, these tasks are documented with

different descriptions. For instance, a developer who partic-
ipated in several projects might have tasks such as Develop
authentication page, Generate view for authentication, and
Build authentication page in his development history. These
tasks have the same goal, which is to create an interface
allowing the user to log in to the system. However, computa-
tional algorithms have difficulty in recognizing different text
sentences as the same [47], [48]. Natural Language Process-
ing approaches [49]–[51] have been proposed over the years.
However, they depend on the quality and completeness of the
information presented in the text. Therefore, the TCP aims
to categorize tasks according to their purpose. The defined
category adds link semantics to the tasks, enabling them to be
compared, and consequently, reused [15]. We further discuss
the process of reusing them in Section III-B. The application
of this process is analogous to the TLP, but instead of applying
tags to the task, the developer team must choose the most
appropriate standard task description to represent its purpose.

The team must apply the STM during the project’s devel-
opment cycles; thus, the proposed solution generates the
profiles over time. Project profiles are composed of sets of
structured tasks. Similarly, developer profiles consist of all
the structured tasks the developer implemented, considering
all the projects in which he was a member.

In this study, we model the developers’ competences as
knowledge and skills. Knowledge is information obtained
through sensory input (i.e., it refers to learning concepts,
principles, and information related to a particular subject).
We represent the developer’s knowledge using technology
tags. On the other hand, skills are the proficiencies acquired
through training and practice, i.e., they refer to the abil-
ity to apply knowledge to specific contexts. We repre-
sent the developer’s skills using standard task descriptions.
We believe that tags can register what the developer knows
(knowledge). Whenever he implements a task, we assume
that, at some level, he knows the associated technologies.
Although, by using only tags, it is not possible to discover
on what this knowledge has been applied. Thus, we use the
standard task descriptions (skills).

B. MULTIPLE TEAM FORMATION
To initiate the MTF process, the organization must define the
target sprints from target projects. For a new project, it could
be all the sprints. However, if the project is already under
execution and management sees the need for changes due to
turnover, risk, or cost management, it could be a set of the
remaining sprints.

As discussed in Section III-A, we aimed to allocate mem-
bers to projects considering detailed competences about the
types of tasks to be executed and technologies to be applied,
maximizing the coverage of the projects’ needs. Hence, our
approach builds the developers’ and projects’ profiles based
on the STM (see Section III-A). It is worthy of mentioning
that such an approach does not hinder the Just In Time (JIT)
requirements nature of agile projects.We assumed the context

68984 VOLUME 10, 2022

A. Costa et al.: Genetic Algorithm-Based Approach to Support Forming Multiple Scrum Project Teams

FIGURE 1. Format of the structured tasks.

of an organization that has enough similar projects enabling
the reuse of requirements and related assets.

In agile projects, including Scrum, the most popular
notation to document business requirements is the User
Story [52]. Using an approach such as the ones pre-
sented in Dantas et al. [5], Ramos et al. [6], and Elamin and
Osman [15] to add link semantics between US enable infer-
ring the similarity between them; thus, facilitating the reuse
of US for new projects. Since most agile tools automatically
construct traceability between US and tasks (i.e., a one-to-
many relationship), it is possible to reuse tasks having the US
as the index.

Let USA be a set of User Stories considered for project
A USA = {u1, u2, . . . , un}, which were reused from past
projects. Given that each ui is associated with a set of tasks
Ti following the STM, we could use Ti to define the needs
for project A before its execution. The same reasoning can be
transferred to the case in which the project is already under
execution, but needs to change the project team.

Further, to allocate developers to each project, it is neces-
sary to define their knowledge and skills. For this purpose,
our approach relies on data from past projects using the STM
(Section III-A). Afterward, we represent the compatibility of
each developer to each project using a competence matrix
(Section III-B3). We use a GA to provide global team for-
mation (Section III-B4). We detail each of these steps in the
subsections presented in what follows.

1) DEVELOPER KNOWLEDGE QUANTIFICATION
The developer’s profile is composed of tags that represent
his knowledge about technologies he worked in the past.
To quantify this knowledge, we created Feature Vectors (FVs)
based on specific sprints of the target projects. FVs are k size
vectors formed by numerical values that represent the char-
acteristics of target objects. This data structure is a popular
representation in the Machine Learning area [53]. Figure 2
shows the standard structure of the FVs used in this study.
Each tag key is associated to a technology tag (e.g., Tesseract
Engine, Java, and Android). The FVs have values in the range
[0, 1] at each index.

As previously discussed, our approach forms teams based
on specific sprints of each target project. Let A be a set of

FIGURE 2. Structure of a feature vector.

target projects A = {a1, a2, . . . , am}, where ai represents the
set of sprints considered for each target project, and D be the
set of available developers D = {d1, d2, . . . , dk}, where di
represents the profile for the ith developer. Given the reuse of
tasks discussed previously, we can infer the tasks Xai for each
ai ∈ A.
Let Xai = {xai1 , xai2 , . . . ,ain } be the set of tasks for a

project ai. For each task xai , we have a task FV (FVxai) and
a set FVxaidj

containing an FV for each developer dj ∈ D

representing his knowledge for the task xai , which is defined
given his profile (discussed later). FVxaidj

allows calculating

the similarity calculation between a developer dj and the task
xai in terms of the technology tags. For FVxai , we have a
tag key for each technology associated with the project and,
by default, we set the tag values to one (1).

To define each FVxaidj
for every ai ∈ A, we analyze

the profile for each dj ∈ D. Therefore, we define |X | ∗
|D| FVs mapping each developer dj to each target task xai
for each project ai ∈ A. Each FVxaidj

contains the same

number of tag keys as FVxai , because our goal is to calcu-
late the competence of each developer with regards to the
technologies needed for task xai . To define the tag values
for FVxaidj

, we count how many tasks has the developer dj
implemented that were associated for each tag key contained
in FVxai . For instance, assume that the task xai includes
the technologies Android, Java, Tesseract, and XML and
the developer dj had implemented, respectively, 30, 45,
5, and 3 tasks for each of the listed technologies. There-
fore, FVxaidj

could be represented by the tuples FVxaidj
=

{(‘‘Android’’, 30), (‘‘Java’’, 45), (‘‘Tesseract’’, 5),
(‘‘XML’’, 30)}.
Notice that, initially, the filled values are not within the

desired range of [0, 1]. We normalize them given Equation 1,

VOLUME 10, 2022 68985

A. Costa et al.: Genetic Algorithm-Based Approach to Support Forming Multiple Scrum Project Teams

where xij is the number of tasks of the ith technology (i.e.,
key) implemented by developer dj, max(i) is the maximum
number of tasks associated with the ith key implemented by
a developer considering all dj ∈ D, and zij is the normal-
ized value for the ith key and jth developer. For instance,
consider that for the key ‘‘Android’’, the maximum value is
of 150 related to developer da. In other words, considering
that the key ‘‘Android’’ as the rth key, xra = 150. Thus,
by applying Equation 1, zra = 1. For a developer db who
have developer 30 ‘‘Android’’ tasks, we have zrb = 0.2.

zij =
xij

max(i)
(1)

Finally, it is necessary to indicate the match between a
developer dj and a task xj. For this purpose, we calculate the
similarity between the vectors FVxaidj

and FVxai given the

Manhattan similarity metric (Equation 2), where u and v are
the target vectors and k is their size. This metric is derived
from Manhattan Distance, in which the maximum distance
between two vectors depends on their size. For instance,
the distance between two five-size vectors, when the first is
composed only of zeroes and the second only of ones, the
distance is 5 (five). Similarly, if the vectors are size 10 (ten),
the distance is 10 (ten). Since the FVs can have different
sizes, depending on the structured task, we decided to use
the Manhattan similarity, which provides values in the range
[0, 1], regardless of size. Moreover, we chose this metric
because it provided the best results in our experiments (see
Section IV).

Manhattan similarity = 1−

∑k
i=1 |u[i]− v[i]|

k
(2)

2) DEVELOPER SKILL QUANTIFICATION
Apart from the developer’s knowledge, we also use his skills
for forming teams. To quantify the developer’s skills, we used
the number of times he implemented a given structured task
with a specific standard description. Since the tasks are cate-
gorized, it is possible to retrieve and reuse them independent
of the project. As in the previous step, we normalized the
values of the standard task descriptions for each developer,
and the process is performed analogously.

3) COMPETENCE MATRIX
To map the technical competence between developer dj ∈ D
and project ai ∈ A, we calculated a Competence Matrix
(MCM). The MCM is a NxM matrix, in which the n lines rep-
resent the developers available for allocation; the m columns
represent the target projects, and the elements Cij corre-
spond to the developer’s competence concerning the tar-
get project. Each element of the matrix MCM is calculated
from Equation 3, which provides a weighted score based
on the quantified knowledge and skills for each developer
dj ∈ D. To prevent getting zero values from the equation
when a developer does not have specific knowledge or skills,
we summed ones (1s) in each part of the numerator (separated

by themultiplication sign). The components of Equation 3 are
described in what follows.

MCM =

C11 C12 C13 . . . C1m
C21 C22 C23 . . . C2m
...

...
...

. . .
...

Cn1 Cn2 Cn3 . . . Cnm

Ci,j =

∑n
k=1((1+ sim(FVxaidj

,FVxai))× (1+ I(d,tk)))

n
(3)

i represents the ith developer and i = {1, 2, 3, . . . , n}; j
represents the jth target project and j = {1, 2, 3, . . . ,m};
sim(FVxaidj

,FVxai) is the similarity score between a developer

FV and a task FV; I(d,tk) represents the number of times the
developer implemented a structured task with a determined
standard description k; and n is the number of structure tasks
of the sprint of the target project.

4) ALLOCATION USING GENETIC ALGORITHM
Given that we have the MCM matrix, the next step is to
allocate the developers to the projects. Let T be a map-
ping (i.e., an allocation) of a developer dj to ai given by
T : D → A. Hence, T is the set of formed teams T =
{(t1, a1), (t2, a2), . . . , (tm, am)}, where tj contains a set of
developers allocated to the project aj. Our goal is to define
T such that each team of the developers ti mapped to each
project ai maximizes the possible knowledge for each ai ∈ A.

For this purpose, we modeled the problem as a search and
optimization one. According to Harman et al. [29], Random
search, Hill Climbing, Simulated Annealing, and Genetic
Algorithm are search techniques widely used to solve soft-
ware engineering problems. By analyzing such techniques,
we concluded that GA has a good fit due to (i) its robust-
ness for local optima, (i) flexibility to define domain-driven
heuristics (i.e., fitness functions), and suitability to solve
multi-objective search problems [54]–[56]. For this last point,
even though we modeled the problem only to maximize the
technical competences for each project, it would be easier to
extend to, for instance, also minimize costs.

The proposed solution uses a permutation chromosome
that allows representing the solutions through the combi-
nation of elements. Figure 3 presents an example of the
structure. The indexes represent the spots to be filled for the
organization’s projects. Each index corresponds to a gene
that can assume an integer value that represents a developer
identifier. For instance, Figure 3 (a) shows the chromosome
structure for a organization with three target projects and
12 available developers. The indexes of 0 to 4 represent the
spots to be filled for the Project A. Similarly, we have the
indexes of 5 to 7 for the Project B and 8 to 11 Project C . Each
gene can assume an integer value from 1 to 12, which rep-
resent unique identifiers for developers. Figure 3 (b) shows
a a candidate solution. In this case, we have Project A =
05, 02, 09, 11, 01; that is, the team of this project would

68986 VOLUME 10, 2022

A. Costa et al.: Genetic Algorithm-Based Approach to Support Forming Multiple Scrum Project Teams

FIGURE 3. Example of a chromosome structure.

be formed by developers whose ids correspond to the set
numbers. Analogously, we have that Project B = 08, 04, 07
and Project C = 12, 03, 10, 06.

5) FITNESS FUNCTIONS
The fitness function is a fundamental GAmechanism because
it measures how close a candidate solution is to an optimal
one [57]. When this function is not representative, good and
bad solutions are considered similar, which can result in dis-
carding an optimal solution during the algorithm execution.
In this study, we propose two fitness functions to form agile
teams.

Our first fitness function, f1(X) (Equation 4), is called
Redundancy Allocation. In software development, the con-
cept of redundancy reflects a level of overlap or excess
capacity in expertise, which is essential for effective collab-
oration and coordinated action [58]. Scrum teams must be
cross-functional, i.e., the team must possess all the compe-
tences necessary to carry out the work without depending on
others who are not part of the team. Therefore, redundant
competences among team members allow them to perform
(parts of) each other’s jobs and replace each other as circum-
stances demand [59]. Thus, we designed f1(X) to search for
cross-functional teams with redundancy competences. Math-
ematically, it calculates the average technical competence of
the developers in the candidate solution, aiming to find those
who have the highest score as possible. Thus, the greater
the number of competences possessed by the developer that
is demanded by the target project, the higher his technical
competence score will be.

f1(X) =

∑n
i=1 C(di, pi)

n
(4)

In f1(X), X is the chromosome to be evaluated; n is the
number of genes of the chromosome; i is the gene position
in the chromosome structure; and C(di, pi) is the technical
competence (Section III-B3) between the developer in index
i and the project in same index.

Our second fitness function is the Specialized Alloca-
tion, which is represented by f2(X) (Equation 5). It allows
for focusing on the knowledge related to specific technolo-
gies. The main difference from f1(X) is with regards to the

developer knowledge quantification step (see Section III-B1).
By default, during the generation of developer and task FVs,
all tags may assume values (after the normalization process)
from the range [0, 1]. However, in this case, the PM can
define specific weights for the tags to represent specialized
knowledge. For instance, a PM may desire a cross-functional
team in which some tasks require knowledge in Angular,
Typescript, HTML/CSS, andMySQL. However, hemaywant
specialized knowledge of Typescript and MySQL. Thus,
he can define a multiplication factor to increase the weight
of the chosen tags. In this case, each corresponding tag
value in developer and task FVs will no longer be in the
range [0, 1]. Instead, it will assume the new range [0, x5].
This modification impacts the similarity calculation between
FVs; thus, developers who possess knowledge related to the
weighted tags will have a higher technical competence score
(C ′(Di,Pi)). It is important to highlight that, even though
f2(X) emphasizes the knowledge related to specific technolo-
gies, it still considers the remain tags of the structured tasks,
preserving the cross-functional characteristic.

f2(X) =

∑n
i=1 C

′(Di,Pi)
n

(5)

IV. VALIDATION
This section presents details regarding the validation of the
proposed solution. Section IV-A details the construction of
the dataset used to validate our approach. Section IV-B
describes the process to define the parameter settings of the
solution. Finally, Section IV-C presents the scenarios used to
validate our solution.

A. DATASET CONSTRUCTION
To build the dataset, we collected data from a Brazilian
software organization. The organization granted access to
its repositories, and we were able to collect data from
specific software projects. As a result, we gathered data
from 12 Scrum projects executed between 2015 and 2018.
On average, each project was composed of eight sprints,
28 user stories, and 124 tasks. All sprints lasted for fifteen
days. The overall dataset is composed of 1496 tasks, which
were mapped into 1063 structured tasks, implemented by
52 different developers. Also, for confidentiality reasons, the
projects’ and developers’ names were anonymized. Table 1
presents details about the dataset.

1) APPLICATION OF THE STRUCTURED TASK MODEL
After collecting the data, we applied the STM (Section III-A)
to structure the tasks.We designed the STM to be applied dur-
ing the development cycle of the projects. However, we could
not accomplish this because we used data from past projects.
Before starting to apply the model, we elicited the technolo-
gies of all projects to generate a tag repository for easing
assigning tags. By establishing predefined tags, we pre-
vented from having two different tags to represent the same
technology.

VOLUME 10, 2022 68987

A. Costa et al.: Genetic Algorithm-Based Approach to Support Forming Multiple Scrum Project Teams

TABLE 1. Dataset statistics.

We applied STM following two phases. First, we con-
ducted the TLP (Section III-A) with the original project
teams. All teams were composed of half or more members
from their original formation. Before starting, we explained
the process for each team separately. It is essential to men-
tion that during this process, we instructed the developers
to search for the tags in our repository, and if they did not
find any suitable options, they could define new tags. In the
end, the new tags were checked, adjusted, and added to the
repository. Overall, 45 distinct tags were used to represent
the projects’ technologies. Out of the 12 projects, eight (P01,
P02, P03, P08, P09, P10, P11 and P12) were focused on
developingweb products, two (P4 andP05) focused on devel-
opingmobile (Android) products, and the remaining (P06 and
P07) developed hybrids products (web and mobile).

We performed the TCP (Section III-A) during the second
phase. For this purpose, we used the companies’ standard
task descriptions, which are made available in our supple-
mentary material. These descriptions represent only technical
tasks, i.e., tasks created to develop a product feature. We did
not map tasks that represent bug fixes, tests, studies, and
others. The process of creating the standard task descriptions
is out of the scope of this paper.

To apply the TCP, we presented the descriptions to the
teams and instructed them to map each original task of the
project into a corresponding standard task description. Fig-
ure 4 presents the number of structured tasks in comparison
to the number of original tasks of each project. Out of the
1496 original tasks of the dataset (Section IV-A), the teams
managed to map 1063 tasks into structured tasks.

B. PARAMETER SETTINGS
The performance of the GAs depends on their parameter
configurations. However, there is no standard configuration
that can provide optimal results regardless of the domain.
There are recommended values in the literature that can serve
as a start point, but an optimal configuration can only be
determined through experimentation. Thus, we performed
an empirical study to select the optimal setting for the GA
parameters and the distance measure. Besides, we validated
the fitness functions of the GA. Table 2 shows the tested

FIGURE 4. Original tasks and structured tasks of each project.

parameters which represent common choices in the related
works. There were 1728 different configurations to be tested.

The proposed solution uses a permutation chromosome
that demands specific methods for crossover and mutation.
We used the Jenetics library [60] as the base for the imple-
mentation of the GA. Jenetics is a popular tool for devel-
oping Evolutionary Algorithms and Genetic Programming
solutions.

Regarding the distance measure, we chose to evaluate the
Euclidean, Manhattan, Canberra, and Chebyshev distances,
since they are popular metrics to calculate the proximity
between two points. These metrics are implemented in the
Apache Commons Mathematics 2 library, which is a tool
made up of mathematical and statistical components written
in Java language.

C. VALIDATION SCENARIOS
We created seven scenarios to validate the proposed solution.
These scenarios are based on data from four projects (P01,
P03, P04 and P05). Two of them were web projects (P01 and
P03), and the others were mobile projects (P04 and P05). The
developersD11,D49,D14,D42,D51,D52 worked in project
P01, and D17, D35, D47 worked in project P4. For each
scenario, we defined the data of P01 and P04 as training data
to generate the developers’ profiles and the data of P03 and
P05 as testing data to generate the target projects’ profiles.

Additionally, we defined an expected output represented
by an optimal team formation for each scenario. We selected
the team members based on the analyses of the available
developers’ profiles and the target projects’ profiles. We pro-
vided in the supplementary material a graphical view of the
profiles and a further description of the validation scenarios.
Table 3 shows the expected outputs which were assessed
using Precision (Equation 6). We calculated the Precision
from the number of relevant members of the team (defined by
the authors) who are also recommended by the proposed solu-
tion and divided it by the number of recommended members.

2http://commons.apache.org/proper/commons-math/

68988 VOLUME 10, 2022

A. Costa et al.: Genetic Algorithm-Based Approach to Support Forming Multiple Scrum Project Teams

TABLE 2. Tested parameters.

TABLE 3. Expected outputs for the validation scenarios.

TABLE 4. Parameter settings of the proposed solution.

In scenarios 01V , 02V , 03V , and 04V , we used the Redun-
dancy Allocation to provide the teams. In scenarios 05V ,
06V , and 07V , we used the Specialized Allocation.

Precision =
|{Rel. members} ∩ {Rec. members}|

|{Rec. members}|
(6)

Since GA is not deterministic, i.e., different executions of
the algorithm can provide different results, we decided to
execute each configuration 30 times per scenario. The Central
Limit Theorem (CLT) states that the distribution of sample
means approximates a normal distribution, as the sample
size increases, regardless of that variable’s distribution in
the population. This fact holds especially true for sample
sizes greater or equal to 30. Table 3 shows the percentage of
configurations that reached maximum Precision, which was
the majority of them. Thus, to choose the best one, we had to
select another metric, the runtime execution. Table 4 presents
the parameter settings of our solution.

V. EVALUATION
This section presents the evaluation of the proposed solution.
Section V-A describes the evaluation method. Section V-B
presents and discusses the evaluation results. As mentioned

before, we applied a genetic algorithm to support the mul-
tiple team formation process. Therefore, the objective of the
evaluation was to determine if the proposed solution provides
teams capable of matching the PMs’ expectations.

A. EVALUATION METHOD
We evaluated our approach with the assistance of four PMs
of the organization, who have participated in projects that are
part of the dataset. We interviewed the PM and constructed
their professional profiles based on their years of experience
and the number of projects in which they worked. Table 5
shows the PMs’ profiles.

The evaluation was carried out in two phases. First,
we delivered for each PM, 15 randomly chosen developer
profiles, and another one representing the project in which
he managed. A graphical view of the profiles is available in
the supplementary material. All target projects’ profiles were
based on their first sprint.

Then, we asked the PMs to form teams composed of five
developers, considering only the available developers’ techni-
cal competences. This phase was divided into two scenarios.
In Scenario 01E, we oriented the PMs to form their teams
using the Redundancy Allocation. In Scenario 02E, they had
to choose their members based on the Expert Allocation.
To avoid biases, the PMs were not aware of the identities
of the developers. By knowing who the stakeholders were,
they could fail to consider only the technical competences,
and they could end up selecting the team members using
subjective aspects, which would compromise the evaluation.

In this phase, the PMs could choose the members without
worrying about sharing organization’s resources (develop-
ers). The sizes of the formed teams were chosen according to
the sizes of the original project teams. We decided to restrict
the number of available developers to three times the size of
the teams, since the main goal was to verify if the proposed
solution could provide teams similar to those provided by the
PMs.

In the second phase of the evaluation, the managers were
presented to the same project profiles. However, there were
52 developers available for allocation. In this case, the organi-
zation’s resources had to be shared, i.e., a developer could not
be part of two teams simultaneously. The aim was to simulate
a multiple team formation scenario where PMs had to nego-
tiate with each other to form their teams. Then, we presented

VOLUME 10, 2022 68989

A. Costa et al.: Genetic Algorithm-Based Approach to Support Forming Multiple Scrum Project Teams

TABLE 5. Project managers’ profiles.

TABLE 6. Evaluation results of the first phase.

the teams provided by the proposed solution to verify if the
PMs were willing to accept the recommendation.

Afterward, we sent a questionnaire to each PM to collect
feedback about the teams provided by the proposed solution.
They had to indicate, regarding the scenarios in which the
proposed solution was not able to achieve maximum Preci-
sion, using a Likert scale (Strongly Agree, Agree, Neutral,
Disagree, Strongly Disagree), if they would agree with the
recommendation of members that diverged from their origi-
nal choice. Also, we asked the PMs to justify their reasons.

B. EVALUATION RESULTS
Table 6 presents the results of the first phase of the evaluation.
We compared the teams provided by the PMs and the ones
provided by the proposed solution, using Precision. We high-
lighted (bold) the divergences between the members.

Regarding PM01, there was a divergence in Scenario 02E
with the developers D01 and D23. PM01 analyzed D23’s
profile and considered him also an appropriate choice for
the team. Besides, the manager said that he would agree
to replace D01 with D23. There was another divergence
in Scenario 02E with PM02. The manager agreed with the
recommendation since he considers that D42 and D12 have
similar competences.

Regarding PM03, there were divergences in both Scenar-
ios (01E and 02E). In the first scenario, themanager disagreed
with the recommendation of D10, because D37 has specific
competences for the target project. For instance, D37 knows
Cytoscape, which is a library used in most tasks of the

TABLE 7. Conflict rates registered during multiple team formation
process.

project. The manager complemented that D10 does not have
enough experience related to the main tasks of the projects.
About Scenario 02E,PM03 agreedwith the recommendation.
Despite selecting D46, who has more overall knowledge, the
manager said that the knowledge ofD18 is especially required
by the project.

There were divergences with PM04 in the two Scenarios.
In Scenario 01E, the manager agreed with the suggestions,
since D52 has all the necessary competences for the project,
the manager selected D01 for the project because the devel-
oper has more knowledge about Node than D11. D52 would
be able to do front-end tasks, along with D43 and D23, while
D01 would do back-end tasks. Despite this, the manager
also considered D11 as a valid option, since the developer
would also be able to fulfill the back-end tasks with Node and
MongoDB satisfactorily. In scenario 02E, PM04 disagreed
with the suggestion, stating that he would not trade D01 for
D07 since the latter has fewer skills and only on front-end
tasks.

As a result, the proposed solution achieved 85% of Pre-
cision. Besides, we registered a 67% of acceptance in the
scenarios that there were divergences, i.e., scenarios that the
PMs agreed with the recommendation.

Table 7 shows the conflict rates during the multiple team
formation process in Scenario 03E. For instance, a 100% of
conflict rate means that two managers chose the same team
members for their projects. In this scenario, the proposed
solution achieved 75% of acceptance.

VI. THREATS TO VALIDITY
This section analyzes the threats that may affect the results
of this study. We used the classification provided by
Wohlin et al. [61].

• Threat to internal validity: The Structured Task model
was designed to be used during the ongoing development

68990 VOLUME 10, 2022

A. Costa et al.: Genetic Algorithm-Based Approach to Support Forming Multiple Scrum Project Teams

cycle of the projects. However, some projects were
already finished by the time we applied the model.
Thus, we had to retrieve this data from the organiza-
tion’s repository. Not applying the model in the proper
period may result in tasks not accurately labeled since
the original team may not be available anymore, and
the ones who are may not completely remember the
technologies associated with a specific task. To mitigate
this threat, we adopted a peer-reviewed process, in which
each developer labeled his tasks, and another member
from the same team reviewed the applied tags. In case
of disagreement, the entire team discussed the classifi-
cation.

• Threat to external validity: Software organizations
develop products to several platforms, e.g., embedded,
desktop, mobile, and web. However, our dataset is com-
posed of mobile and web projects only, which not
embrace the characteristics of all platforms, and con-
sequently, compromise the generalization of our find-
ings. To mitigate such a threat, we intend to enlarge the
dataset, seeking to add projects from different platforms,
domains, and technologies. Besides, we plan to include
developers with more diversified competences.

• Threat to construct validity: The final configuration of
the proposed solution resulted from the experimentation
of similarity metrics and GA parameters. We perceive
there are other alternatives besides the experimented
ones, although increasing the factors’ levels would expo-
nentially increase the number of possible configurations,
making the experiment more costly. To mitigate this
threat, we opted for most recurrent metrics and parame-
ters in the literature, since, in general, they provide better
results.

• Threat to conclusion validity: Although the proposed
solution was evaluated in several scenarios, which were
created from real-world data and with expert support,
it is possible that they do not reflect all the characteristics
of a real-world environment. To mitigate this threat,
we intend to improve our solution, so in the future,
we will conduct a case study.

VII. CONCLUSION AND FUTURE WORK
This paper presents a genetic algorithm approach for multiple
team formation in Scrum projects. Our solution introduce a
systematic way to record structured data to build technical
profiles during the development cycles of the projects. Addi-
tionally, our solution use the built profiles as input for the GA
to search for the best global team formation in Scrum projects.

The proposed solution optimizes the MTF process by
allowing the project managers to decide the formation of
their teams with more reliability. Within this context, our
solution could also provide training and hiring warnings. For
instance, it would be possible to add constraints to the GA’s
fitness functions to allocate only the developers who reached
a minimum score. If the size of the suggested team is not the

expected one, it would be a sign that the organization needs
to train its human resources or hire new ones.

To validate the proposed solution, we created seven sim-
ulated scenarios using the historical data from a reposi-
tory of a Brazilian software organization. For each scenario,
we defined an expected output, and the teams provided by
the proposed solution were assessed using Precision. This
procedure allowed us to determine an optimal parameter
setting for the solution and to assess the fitness functions of
the GA.

The evaluation process was divided into two phases. In the
first, project managers who have worked in projects that are
part of the dataset, formed teams for two different scenarios.
Afterward, their teamswere compared with the ones provided
by our solution for the same scenarios. As a result, our solu-
tion achieved 85% of Precision. In the second phase, the PMs
had to share the resources to form their teams. As a result, the
proposed solution assisted them in reaching a consensus with
an acceptance rate of 75%.

Our study has some limitations discussed as follows. The
proposed approach uses the data from the ongoing projects
of the organization to build the technical profiles. Naturally,
in a starting scenario in which no previous project data is
available, the proposed solution would suffer the cold start
problem [62]. It would be possible to overcome this limita-
tion by using external knowledge sources. Another limitation
refers to the complexity of the tasks. We assume that tasks
with the same standard text description and tags require the
same effort, and consequently, are threaded as the same. To be
more assertively, it would be necessary to registry the effort
to implement the task. However, effort estimation of technical
tasks is not a common practice in ASD.

As future work, we intend to continue the research and
improve the proposed solution to minimize some limitations.
We will investigate the possibility of using other project
assets to enhance the developers’ profiles. For instance, code
snippets from task commits could be used to infer the quality
of the developer’s work. Additionally, external knowledge
sources such as code repositories (GitHub and Bitbucket),
social network (LinkedIn), and online communities (Stack
Overflow and Quora) could be used to improve the profiles.
Furthermore, we intend to investigate the costs and benefits
of adding other types of attributes (personality traits, social
interactions, interpersonal factors, and others) to complement
the developers’ profiles.

REFERENCES
[1] K. Araszkiewicz, ‘‘Application of critical chain management in construc-

tion projects schedules in amulti-project environment: A case study,’’Proc.
Eng., vol. 182, pp. 33–41, Jan. 2017.

[2] J. H. Gutiérrez, C. A. Astudillo, P. Ballesteros-Pérez, D. Mora-Melià, and
A. Candia-Véjar, ‘‘The multiple team formation problem using sociome-
try,’’ Comput. Oper. Res., vol. 75, pp. 150–162, Nov. 2016.

[3] M. Blatter, S. Muehlemann, S. Schenker, and S. C. Wolter, ‘‘Hiring costs
for skilledworkers and the supply of firm-provided training,’’Oxford Econ.
Papers, vol. 68, no. 1, pp. 238–257, Jan. 2016, doi: 10.1093/oep/gpv050.

[4] A. Roy, S. Sural, A. K. Majumdar, J. Vaidya, and V. Atluri, ‘‘On optimal
employee assignment in constrained role-based access control systems,’’
ACM Trans. Manage. Inf. Syst., vol. 7, no. 4, pp. 1–24, Jan. 2017.

VOLUME 10, 2022 68991

http://dx.doi.org/10.1093/oep/gpv050

A. Costa et al.: Genetic Algorithm-Based Approach to Support Forming Multiple Scrum Project Teams

[5] E. Dantas, A. Costa, M. Vinicius, M. Perkusich, H. Almeida, and
A. Perkusich, ‘‘An effort estimation support tool for agile software devel-
opment: An empirical evaluation,’’ in Proc. Int. Conf. Softw. Eng. Knowl.
Eng., Jul. 2019, pp. 82–87.

[6] F. Ramos, A. Pedro, M. Cesar, A. Costa, M. Perkusich, H. Almeida,
and A. Perkusich, ‘‘Evaluating software developers’ acceptance of a tool
for supporting agile non-functional requirement elicitation,’’ in Proc. Int.
Conf. Softw. Eng. Knowl. Eng., Jul. 2019, pp. 26–31.

[7] A. Costa, F. Ramos, M. Perkusich, E. Dantas, E. Dilorenzo, F. Chagas,
A. Meireles, D. Albuquerque, L. Silva, H. Almeida, and A. Perkusich,
‘‘Team formation in software engineering: A systematic mapping study,’’
IEEE Access, vol. 8, pp. 145687–145712, 2020.

[8] M. F. Abrar, M. S. Khan, S. Ali, U. Ali, M. F. Majeed, A. Ali, B. Amin,
and N. Rasheed, ‘‘Motivators for large-scale agile adoption from manage-
ment perspective: A systematic literature review,’’ IEEE Access, vol. 7,
pp. 22660–22674, 2019.

[9] P. Jain, A. Sharma, and L. Ahuja, ‘‘The impact of agile software develop-
ment process on the quality of software product,’’ in Proc. 7th Int. Conf.
Rel., INFOCOM Technol. Optim. (Trends Future Directions) (ICRITO),
Aug. 2018, pp. 812–815.

[10] S. Gupta and D. Gouttam, ‘‘Towards changing the paradigm of
software development in software industries: An emergence of agile
software development,’’ in Proc. IEEE Int. Conf. Smart Technol. Man-
age. Comput., Commun., Controls, Energy Mater. (ICSTM), Aug. 2017,
pp. 18–21.

[11] H. Cornide-Reyes, F. Riquelme, R. Noel, R. Villarroel, C. Cechinel,
P. Letelier, and R. Munoz, ‘‘Key skills to work with agile frameworks
in software engineering: Chilean perspectives,’’ IEEE Access, vol. 9,
pp. 84724–84738, 2021.

[12] R. Hoda, N. Salleh, and J. Grundy, ‘‘The rise and evolution of agile
software development,’’ IEEE Softw., vol. 35, no. 5, pp. 58–63, Sep. 2018.

[13] VersionOne. (2019). 13th Annual State of Agile Development
Survey Results. Accessed: Jan. 7, 2019. [Online]. Available:
https://www.stateofagile.com/#ufh-i-521251909-13th-annual-state-
of-agile-re%port/473508

[14] B. Boehm and R. Turner, Balancing Agility and Discipline: A Guide for
the Perplexed, Portable Documents. Reading, MA, USA: Addison-Wesley,
2003.

[15] R. Elamin and R. Osman, ‘‘Towards requirements reuse by implementing
traceability in agile development,’’ in Proc. IEEE 41st Annu. Comput.
Softw. Appl. Conf. (COMPSAC), Jul. 2017, pp. 431–436.

[16] Y. Wu, X. Xie, J. Wang, D. Deng, H. Liang, H. Zhang, W. Chen, and
S. Cheng, ‘‘Forvizor: Visualizing spatio-temporal team formations in
soccer,’’ IEEE Trans. Vis. Comput. Graphics, vol. 25, no. 1, pp. 65–75,
Jan. 2019.

[17] E. Alhazmi, S. Horawalavithana, J. Skvoretz, J. Blackburn, and
A. Iamnitchi, ‘‘An empirical study on team formation in online games,’’
in Proc. IEEE/ACM Int. Conf. Adv. Social Netw. Anal. Mining, Jul. 2017,
pp. 431–438.

[18] K. He, Z. Liang, T. Cui, Z. Ke, Z. Liu, Q. Zhao, and F. Fang, ‘‘Forma-
tion optimization of RoboCup3D soccer robots using Delaunay triangu-
lation network,’’ in Proc. Chin. Control Decis. Conf. (CCDC), Jun. 2018,
pp. 224–229.

[19] L. Feola and V. Trianni, ‘‘Adaptive strategies for team formation in
minimalist robot swarms,’’ IEEE Robot. Autom. Lett., vol. 7, no. 2,
pp. 4079–4085, Apr. 2022.

[20] L. Zhang, T. Song, Y. Tong, Z. Zhou, D. Li, W. Ai, L. Zhang, G. Wu,
Y. Liu, and J. Ye, ‘‘Recommendation-based team formation for on-demand
taxi-calling platforms,’’ in Proc. 28th ACM Int. Conf. Inf. Knowl. Manage.,
Nov. 2019, pp. 59–68, doi: 10.1145/3357384.3357869.

[21] L. Liang, X. Cheng, and T. Ikenaga, ‘‘Team formation mapping and
sequential ball motion state based event recognition for automatic data
volley,’’ in Proc. 16th Int. Conf. Mach. Vis. Appl. (MVA), May 2019,
pp. 1–4.

[22] G. Barnabò, A. Fazzone, S. Leonardi, and C. Schwiegelshohn, ‘‘Algo-
rithms for fair team formation in online labour marketplaces,’’ in Proc.
Companion Proc. World Wide Web Conf., May 2019, pp. 484–490, doi:
10.1145/3308560.3317587.

[23] V.M, S. Salimath, A. S. Shettar, and G. Bhadri, ‘‘A study of team formation
strategies and their impact on individual Student learning using educational
data mining (EDM),’’ in Proc. IEEE 10th Int. Conf. Technol. Educ. (T4E),
Dec. 2018, pp. 182–185.

[24] S. A. Licorish, M. Galster, G. M. Kapitsaki, and A. Tahir, ‘‘Understanding
students’ software development projects: Effort, performance, satisfaction,
skills and their relation to the adequacy of outcomes developed,’’ J. Syst.
Softw., vol. 186, Apr. 2022, Art. no. 111156.

[25] V. Isomöttönen and E. Ritvos, ‘‘Digging into group establishment: Inter-
vention design and evaluation,’’ J. Syst. Softw., vol. 178, Aug. 2021,
Art. no. 110974.

[26] L. C. Silva and A. P. C. S. Costa, ‘‘Decision model for allocating human
resources in information system projects,’’ Int. J. Project Manage., vol. 31,
no. 1, pp. 100–108, Jan. 2013.

[27] M. Gharote, R. Patil, and S. Lodha, ‘‘Scatter search for trainees to soft-
ware project requirements stable allocation,’’ J. Heuristics, vol. 23, no. 4,
pp. 257–283, Aug. 2017.

[28] C. Crawford, Z. Rahaman, and S. Sen, ‘‘Evaluating the efficiency of robust
team formation algorithms,’’ in Proc. Int. Conf. Auto. Agents Multiagent
Syst., Cham, Switzerland: Springer, 2016, pp. 14–29.

[29] M. Harman, S. A. Mansouri, and Y. Zhang, ‘‘Search-based software
engineering: Trends, techniques and applications,’’ ACM Comput. Surv.,
vol. 45, no. 1, p. 11, 2012.

[30] A. Costa, F. Ramos,M. Perkusich, A. Freire, H. Almeida, andA. Perkusich,
‘‘A search-based software engineering approach to support multiple team
formation for scrum projects,’’ in Proc. Int. Conf. Softw. Eng. Knowl. Eng.,
Jul. 2018, pp. 1–6.

[31] C. Stylianou and A. S. Andreou, ‘‘A multi-objective genetic algorithm for
intelligent software project scheduling and team staffing,’’ Intell. Decis.
Technol., vol. 7, no. 1, pp. 59–80, Jan. 2013.

[32] A. Arunachalam, N. P. Nagarajan, V. Mohan, M. Reddy, and
C. Arumugam, ‘‘Resolving team selection in agile development using
NSGA-II algorithm,’’ CSI Trans. ICT, vol. 4, nos. 2–4, pp. 83–86,
Dec. 2016, doi: 10.1007/s40012-016-0105-0.

[33] D. Strnad and N. Guid, ‘‘A fuzzy-genetic decision support system for
project team formation,’’Appl. Soft Comput., vol. 10, no. 4, pp. 1178–1187,
Sep. 2010.

[34] V. S. Baghel and S. D. Bhavani, ‘‘Multiple team formation using an
evolutionary approach,’’ in Proc. 11th Int. Conf. Contemp. Comput. (IC),
Aug. 2018, pp. 1–6.

[35] A. R. Gilal, J. Jaafar, S. Basri, M. Omar, and M. Z. Tunio, ‘‘Making
programmer suitable for team-leader: Software team composition based on
personality types,’’ in Proc. Int. Symp. Math. Sci. Comput. Res. (iSMSC),
May 2015, pp. 78–82.

[36] A. R. Gilal, J. Jaafar, M. Omar, S. Basri, and A. Waqas, ‘‘A rule-based
model for software development team composition: Team leader role with
personality types and gender classification,’’ Inf. Softw. Technol., vol. 74,
pp. 105–113, Jun. 2016.

[37] S. Licorish, A. Philpott, and S. G. MacDonell, ‘‘Supporting agile
team composition: A prototype tool for identifying personality
(In)compatibilities,’’ in Proc. Workshop Cooperat. Hum. Aspects
Softw. Eng. (ICSE), May 2009, pp. 66–73.

[38] J. Huang, Z. Lv, Y. Zhou, H. Li, H. Sun, and X. Jia, ‘‘Forming grouped
teams with efficient collaboration in social networks,’’ Comput. J., vol. 60,
pp. 1545–1560, Nov. 2016.

[39] A. Majumder, S. Datta, and K. V. M. Naidu, ‘‘Capacitated team formation
problem on social networks,’’ in Proc. 18th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining (KDD), 2012, pp. 1005–1013.

[40] R. Latorre and J. Suárez, ‘‘Measuring social networks when forming
information system project teams,’’ J. Syst. Softw., vol. 134, pp. 304–323,
Dec. 2017.

[41] L. Ye, H. Sun, X. Wang, and J. Wang, ‘‘Personalized teammate rec-
ommendation for crowdsourced software developers,’’ in Proc. 33rd
ACM/IEEE Int. Conf. Automated Softw. Eng., Sep. 2018, pp. 808–813, doi:
10.1145/3238147.3240472.

[42] J. Zhang, P. S. Yu, and Y. Lv, ‘‘Enterprise employee training via project
team formation,’’ in Proc. 10th ACM Int. Conf. Web Search Data Mining,
Feb. 2017, pp. 3–12.

[43] T.-L. Tseng, C.-C. Huang, H.-W. Chu, and R. R. Gung, ‘‘Novel approach to
multi-functional project team formation,’’ Int. J. Project Manage., vol. 22,
no. 2, pp. 147–159, Feb. 2004.

[44] E. Dilorenzo, E. Dantas, M. Perkusich, F. Ramos, A. Costa,
D. Albuquerque, H. Almeida, and A. Perkusich, ‘‘Enabling the reuse
of software development assets through a taxonomy for user stories,’’
IEEE Access, vol. 8, pp. 107285–107300, 2020.

[45] R. Shankarmani, S. S. Mantha, V. Babu, D. Mehta, K. Khatri, and
P. Kaushil, ‘‘A decision support system utilizing a semantic agent,’’ in
Proc. IEEE Int. Conf. Softw. Eng. Service Sci., Jul. 2010, pp. 442–447.

68992 VOLUME 10, 2022

http://dx.doi.org/10.1145/3357384.3357869
http://dx.doi.org/10.1145/3308560.3317587
http://dx.doi.org/10.1007/s40012-016-0105-0
http://dx.doi.org/10.1145/3238147.3240472

A. Costa et al.: Genetic Algorithm-Based Approach to Support Forming Multiple Scrum Project Teams

[46] M. Fazel-Zarandi and M. S. Fox, ‘‘An ontology for skill and competency
management,’’ in Proc. FOIS, 2012, pp. 89–102.

[47] I. K. Raharjana, D. Siahaan, and C. Fatichah, ‘‘User stories and natural
language processing: A systematic literature review,’’ IEEE Access, vol. 9,
pp. 53811–53826, 2021.

[48] A. R. Amna and G. Poels, ‘‘Systematic literature mapping of user story
research,’’ IEEE Access, vol. 10, pp. 51723–51746, 2022.

[49] D. Wang, J. Su, and H. Yu, ‘‘Feature extraction and analysis of natural
language processing for deep learning english language,’’ IEEE Access,
vol. 8, pp. 46335–46345, 2020.

[50] T. Al-Moslmi, M. Gallofre Ocana, A. L. Opdahl, and C. Veres, ‘‘Named
entity extraction for knowledge graphs: A literature overview,’’ IEEE
Access, vol. 8, pp. 32862–32881, 2020.

[51] S. Singh and A. Mahmood, ‘‘The NLP cookbook: Modern recipes for
transformer based deep learning architectures,’’ IEEE Access, vol. 9,
pp. 68675–68702, 2021.

[52] G. Lucassen, M. Robeer, F. Dalpiaz, J. M. E. M. van der Werf,
and S. Brinkkemper, ‘‘Extracting conceptual models from user stories
with visual narrator,’’ Requirements Eng., vol. 22, no. 3, pp. 339–358,
Sep. 2017.

[53] M. Zanoni, F. A. Fontana, and F. Stella, ‘‘On applying machine learn-
ing techniques for design pattern detection,’’ J. Syst. Softw., vol. 103,
pp. 102–117, May 2015. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0164121215000217

[54] A. Delgoshaei, A. Ali, M. K. A. Ariffin, and C. Gomes, ‘‘A multi-period
scheduling of dynamic cellular manufacturing systems in the presence of
cost uncertainty,’’ Comput. Ind. Eng., vol. 100, pp. 110–132, Oct. 2016.

[55] S. Kardani-Moghaddam, F. Khodadadi, R. Entezari-Maleki, and
A. Movaghar, ‘‘A hybrid genetic algorithm and variable neighborhood
search for task scheduling problem in grid environment,’’ Proc. Eng.,
vol. 29, pp. 3808–3814, Jan. 2012.

[56] A. Delgoshaei, M. K. M. Ariffin, B. T. H. T. B. Baharudin, and Z. Leman,
‘‘Minimizing makespan of a resource-constrained scheduling problem: A
hybrid greedy and genetic algorithms,’’ Int. J. Ind. Eng. Comput., vol. 6,
no. 4, pp. 503–520, 2015.

[57] J. Liu, X.-G. Luo, X.-M. Zhang, F. Zhang, and B.-N. Li, ‘‘Job scheduling
model for cloud computing based on multi-objective genetic algorithm,’’
Int. J. Comput. Sci., vol. 10, no. 1, p. 134, 2013.

[58] T. E. Fægri, T. Dybå, and T. Dingsøyr, ‘‘Introducing knowledge redun-
dancy practice in software development: Experiences with job rotation
in support work,’’ Inf. Softw. Technol., vol. 52, no. 10, pp. 1118–1132,
Oct. 2010.

[59] N. B. Moe, T. Dingsøyr, and E. A. Røyrvik, ‘‘Putting agile teamwork to the
test—An preliminary instrument for empirically assessing and improving
agile software development,’’ in Proc. Int. Conf. Agile Processes Extreme
Program. Softw. Eng. Cham, Switzerland: Springer, 2009, pp. 114–123.

[60] F. Wilhelmsttter, ‘‘Jenetics–Java genetic algorithm,’’ Jenetics, Vienna,
Austria, Tech. Rep., 2012.

[61] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and A. Wessln,
Experimentation in Software Engineering. Cham, Switzerland: Springer,
2012.

[62] X. N. Lam, T. Vu, T. D. Le, and A. D. Duong, ‘‘Addressing cold-
start problem in recommendation systems,’’ in Proc. 2nd Int. Conf.
Ubiquitous Inf. Manage. Commun. (ICUIMC), 2008, pp. 208–211, doi:
10.1145/1352793.1352837.

ALEXANDRE COSTA received the M.Sc. and
Ph.D. degrees in computer science from the
Federal University of Campina Grande, Paraiba,
Brazil, in 2014 and 2019, respectively. He has been
a Professor with the Federal Institute of Paraiba,
since 2020. Further, he is also a Researcher with
the Intelligent Software Engineering Research
Group, Virtus, which is a Research, Development,
and Innovation Center in Information Technol-
ogy. His current research interest includes artificial

intelligence applied to software engineering to solve complex problems.
In the software engineering field, the main topics of interest are soft-
ware project management, agile software development, resource allocation
focused on team formation for software development, and others.

FELIPE RAMOS received the M.Sc. and Ph.D.
degrees in computer science from the Federal Uni-
versity of Campina Grande, Paraiba, Brazil, in
2012 and 2019, respectively. He is currently a
Professor with the Federal Institute of Paraiba.
Further, he is a member of the Intelligent Software
Engineering Research Group, Virtus, which is a
Research, Development, and Innovation Center
in Information Technology. His current research
interests include artificial intelligence applied to

software engineering to solve complex problems, agile software develop-
ment, and requirement engineering focused on supporting the elicitation of
non-functional requirements on scrum-based projects.

MIRKO PERKUSICH received the Ph.D. degree
in computer science. He is currently the Research
Manager at Virtus, leading the Intelligent Software
Engineering Research Group. His current research
interests include applying intelligent techniques,
including recommender systems, to solve complex
software engineering problems.

ADEMAR DE SOUSA NETO is currently pur-
suing the Ph.D. degree with the Virtus Research.
He is also a Researcher in software engineering at
Virtus Research. In particular, seeking to improve
the software engineering process using intelligent
approaches, including artificial intelligence and
big data.

LUIZ SILVA received theM.Sc. degree in computer
science from the Federal University of Campina
Grande, Brazil, in 2019. His research interests
include machine learning and application of intel-
ligent techniques to solve software engineering
problems.

FELIPE CUNHA is currently pursuing the Ph.D.
degree with the Federal University of Campina
Grande. Further, he is also a member of the
Intelligent Software Engineering Research Group,
Virtus, which is a Research, Development, and
Innovation Center in Information Technology. His
current research interest includes artificial intelli-
gence applied to software engineering.

VOLUME 10, 2022 68993

http://dx.doi.org/10.1145/1352793.1352837

A. Costa et al.: Genetic Algorithm-Based Approach to Support Forming Multiple Scrum Project Teams

THIAGO RIQUE is currently pursuing the Ph.D.
degree with the Federal University of Campina
Grande. He is also a Professor with the Federal
Institute of Paraiba. Further, he is a member of the
Intelligent Software Engineering Research Group,
Virtus, which is a Research, Development, and
Innovation Center in Information Technology.

HYGGO ALMEIDA received the M.Sc. degree in
computer science and the Ph.D. degree in elec-
trical engineering from the Federal University of
Campina Grande, in 2004 and 2007, respectively.
He is currently the Head of the Intelligent Soft-
ware Engineering Group, and the Founder and the
Director of Operations with the Virtus Innovation
Center (VIRTUS/UFCG). He is also a Researcher
with the Embedded and Pervasive Computing Lab-
oratory (Embed-ded/UFCG). He has been a Pro-

fessor with the Computer and Systems Department, Federal University of
Campina Grande (UFCG), since 2006. He is also an Executive Director
of the EMBRAPII Unit, CEEI-UFCG, with more than 150 RDI projects
developed in cooperation with industrial companies within the area of infor-
mation, communication and automation technologies. He has over 15 years
of teaching experience in the university and training courses for industry in
the context of software engineering. He has more than 200 papers published,
and 37 master’s thesis and 13 doctoral dissertations advised. His current
research interest includes applying intelligent techniques to solve complex
software engineering problems.

ANGELO PERKUSICH (Member, IEEE) received
the master’s and Ph.D. degrees in electrical engi-
neering from the Federal University of Paraíba,
in 1987 and 1994, respectively. He was a Vis-
iting Researcher with the Department of Com-
puter Science, University of Pittsburgh, PA, USA,
from 1992 to 1993, and developed research activ-
ities on software engineering and formal meth-
ods. He has been a Professor with the Electrical
Engineering Department (DEE), Federal Univer-

sity of Campina Grande (UFCG), since 2002. He is currently the Principal
Investigator of research projects financed by public institutions, such as
FINEP (Brazilian Agency for Research and Studies) and CNPq (Brazilian
National Research Council), and private companies. He is the Founder
and the Director of the Virtus Innovation Center and the Embedded and
Pervasive Computing Laboratory. The focus on research projects is on formal
methods, embedded systems, mobile pervasive and ubiquitous computing,
and software engineering. He has over 30 years of teaching experience in
the university and training courses for industry in the context of software
for real-time systems, software engineering, embedded systems, computer
networks, and formal methods. His research interests include embedded
systems, software engineering, mobile pervasive computing, and formal
methods, with more than 300 papers published, and 80 master’s thesis and
21 doctoral dissertations advised.

68994 VOLUME 10, 2022

