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ABSTRACT Quality of predictive models is a critical factor. Many evaluation measures have been proposed
for binary and multi—class datasets. However, less attention has been paid to graphical representation of
the classification performance, where the ROC curve is extensively used for binary datasets but there is
no standard method accepted by the scientific community for multi—class datasets. In this work, a multi—
class classification performance (MCP) curve based on the Hellinger distance between true and prediction
probabilities of the classifier is introduced. The MCP curve shows the classification performance, contributes
to highlight the low or high confidence on correct predictions, and quantifies the quality by means of the

area under the curve.

INDEX TERMS Classification, machine learning, multi—class data, performance curve, predictive models,

ROC curve.

I. INTRODUCTION

Quality of decision is an important concept in machine learn-
ing, because it assesses the performance of a predictive model
in terms of comparison with reality. The simplest measure of
decision quality is the accuracy, i.e. the fraction of correct
decisions. While it seems obvious that high accuracy is good,
the truth is that it might be very misleading. Many medical
datasets report very few cases of positive cases (disease)
against negative cases (normal)—very common for rare dis-
eases. For example, if only 3% of patients in the dataset have
colorectal cancer, a predictive model that blindly provides
negative case would be correct 97% of the time.

Accuracy is, in general, useless in various contexts, par-
ticularly in biomedicine and psychology. Therefore, when
prevalence is not around 0.5 (balance between positive and
negative cases) the accuracy looses credibility as a measure
of quality. To redeem the issue there exist other measures
that can be useful to compare the performance of several
predictive models, since even when the accuracy is equal for
two models, their performances could be quite different —
one due to a low rate of false negative cases and the other
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to false positive cases. More sophisticated measures, like
the Matthews correlation coefficient [1], the K—category cor-
relation coefficient, Rx (less well-known generalization of
the two—class Matthews correlation coefficient) [2], Cohen’s
k [3], or the Fl—score [4] try to provide a better perspective.

The interpretation of false decisions (positive or negative)
could lead to complex situations, e.g. expensive medical
treatments for healthy patients (false positive) or absence of
treatment for seriously ill patients (false negative). Sensitivity
and specificity are two measures that appear to mitigate the
effect of an incorrect interpretation of accuracy. Sensitivity is
the ratio between the true positive decisions and the number
of positive cases; specificity is the ratio between the true
negative decisions and the number of negative cases. Both
are perfectly combined in a very useful graphical measure:
the Receiver —or Relative— Operation Characteristic (ROC)
curve.

The ROC curve [5]-[7] represents the relation between the
false positive rate (FPR) and the true positive rate (TPR), and
illustrates the diagnostic ability of a binary classifier as its
discrimination threshold is varied from the confusion matrix.
FPR and TPR are calculated from sensitivity and specificity
(FPR = 1 — specfficity and TPR = sensitivity). The curve
shows a solid idea of the behavior of a classifier, and allows to
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compare several classifiers in one image for the same dataset.
Also, it has been proven that the area under the ROC curve is
an excellent measure of classification performance [8], as it
conveys more information than many scoring metrics by visu-
alizing the performance of the classifier by a curve instead of
providing a single scalar value. Most importantly, the ROC
curve, unlike the accuracy, only depends on the FPR and TPR,
which are independent of imbalance, i.e. of class distribution.
Given its easy interpretation and usefulness for comparative
analysis, the ROC curve has been used in myriads of diverse
applications [9]-[12], sometimes with questionable statistical
confidence [13]. However, its binary character has substan-
tially limited its use to strictly dichotomous decision contexts.

The ROC curve presents many interesting properties, but
also an important shortcoming: it can only be applied to
two—class (binary) datasets. In case of multi—class datasets
(more than two labels for the nominal target variable), there
is no solution that aggregates and summarizes the classifier
behavior for all the classes together (e.g. 3—classes: early
and advanced disease, and normal cases). The most com-
mon approach is to represent the class of interest (positive)
against the others (negative), but it does not contribute to
understand the global performance of the classifier (also,
information is always lost in the reduction of a problem to
a dichotomy). If all the classes are important, the smoothed
solution named macro—average is to average all the ROC
curves (one—versus—rest for each class), but this compro-
mises its natural insensitivity to class skew. On the con-
trary, the micro—average approach takes into account the
proportion of every class (aggregating the contributions of
all classes), given more importance to larger classes and,
therefore, assigning greater values when the largest class
performs better (i.e. it is dominated by the more frequent
class). In short, macro—average gives equal importance to
each class, and micro—average to each sample. Obviously,
in case of equal number of samples for each class, then both
macro— and micro—average ROC curves will result in exactly
the same score. However, when the imbalance is significant,
both approaches lead to very different curves with refutable
interpretations.

The area under the ROC curve (AU(ROC)) is a robust
evaluation measure [14]. Itis equivalent to the probability that
arandomly chosen positive sample will be rated higher than a
negative sample, and it is useful to compare classifiers when
no one dominates the others [15]. There exist approaches
for the AU(ROC) in the context of multi—class classification,
based on averaging pairwise comparison of classes [16] or
on the use of K—dimensional space to compute the volume
of the ROC surface [17]-[19], being K the number of class
labels. However, none of these approaches provide a graphi-
cal representation.

This paper presents an intuitive method to calculate the
classification performance in the multi—class context, i.e. for
datasets whose target variable contains any number of class
labels. The approach provides a two—dimensional classifica-
tion performance curve (MCP curve) to visualize the behavior
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of predictive models and subsequently, as a scalar measure of
quality, the area under the MCP curve (AU(MCP)). Unlike
most approaches for binary datasets, it is not based on the
confusion matrix but on the prediction probabilities generated
by the classifier for the K class labels.

The paper is organized as follows: after introducing the
research context, Sec. Il presents the mathematical foun-
dations based on probability distributions that lead to the
definition of the MCP curve; Sec. III shows, based on the
results of two classifiers for multi—class data, how the MCP
curve can graphically compare classifier performances, what
is not possible with ROC curves; finally, Sec. IV discusses
the most important conclusions and future work.

Il. MULTI-CLASS CLASSIFICATION PERFORMANCE

LetD = {ejle = x,y),x e X" ye Y,i=1,2,...,n} be
a dataset with n samples, which belong to a m—dimensional
feature space and have a corresponding outcome y in the
space Y. When |Y| = 2 we say that it is a 2—class (binary)
classification problem; otherwise, when |Y| > 2, we say that
it is a multi—class classification problem.

For simplicity, let us assume that Y = {1,2,..., K} (set
of class labels). The true probability of sample ¢;, denoted
by t(e;), can be encoded as a K—dimensional one—hot vector,
which all the values are 0 except for one 1 at the position k,
that satisfies y; = k (following the indicator function, for all
k, t(ej)r = ly,=x), being k € Y. Obviously, there will only
be K different true probability vectors. The prediction proba-
bility of sample e;, denoted by p(e;), is also a K—dimensional
vector, whose values are provided by the classifier as output
probabilities of belonging to class k € Y.

In order to observe the quality of the classifier predic-
tion, a distance function between the two discrete proba-
bility distributions must be applied to each sample. Let d
be a distance function between two distributions ¢ and p,
such as d : [0,11¥ x [0, 11X — [0, 1] (certainly, the
true probability could be expressed in the space {0, 1}X,
but it is generalized to [0, 1]¥ with the intention of including
uncertainty in later work). The interest lies in calculating the
distance d for each sample e € D, i.e. d(t(e;), p(e;)) for
all i = 1,2,...,n. The distance value is very important
because it informs about how far the prediction is from the
true observation for each sample. Values close to 0 mean
that the prediction is good, and values close to 1 mean that
the prediction substantially differs from the observed class.
The value ¢; = 1 — d(t(e;), p(e;)) can be interpreted as the
probability that the classifier correctly assigns the observed
class label to the test sample e; (certainty).

The Hellinger distance [20], [21], is a metric oriented to
probability distributions. Let P = [p1,...,pkx] and Q =
[g1, ..., gk] be two discrete probability distributions. The
Hellinger distance is defined as:

(Vi — V)’ (1)

1

1 K
H(P,Q)ZE

J
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The choice of the Hellinger distance is due to its interesting
properties: a) it is symmetric; b) bounded (defined in [0,1]
thanks to the factor «/LE); ¢) convex with respect to both P and
Q; and d) it satisfies the triangle inequality. As a consequence,
it is recently attracting considerable amount of attention in
many scientific fields [22]-[30].

The discrete a—divergence [31] defines a family of func-
tions as follows:

Y (apj + (1 —a)g; — p}*fi}‘“)

Du(PI|Q) = i

@

a e R\ {0, 1}

The a—divergence has some important properties: a) non—
negative; b) convex with respect to both P and Q; ¢) it is
0 if and only if P = Q. In addition, there is a very inter-
esting relationship between the Hellinger distance and the
Kullback-Leibler divergence [32] through the o—divergence.

The special cases of « = 0 and ¢ = 1 are related to the
Kullback-Leibler divergence (KL):

lim D (P||Q) = KL(Q|IP). lim Do (P||Q) = KL(P||Q)

3
The case of @ = % is related to the Hellinger distance:
al 2
Di(PlQ) =2 (VPi — V%) “

j=1

Hence the Hellinger distance H(P, Q) = %(Dl/z)]/2 canbe
expressed as a o—divergence, and its square is related to the
midpoint between KL(Q||P) and KL(P||Q) taking Dy (P||Q)
as a reference, although unlike KL—divergence, H(P, Q) is a
mathematically valid metric. H(P, Q) can also be expressed
as a function of the symmetric Bhattacharyya coefficient
(BC) [33] (also known as fidelity), which can be derived from
the Chernoff a—coefficient [31]:

H(P,Q)=+1—-BC(P,0Q) &)

where

K
BC(P,Q)=)_ /P4

J=1

If the distance between the true probability #(e;) and the
prediction probability p(e;) of a sample e; is close to 0, then
the classifier is making a good prediction for e;; otherwise,
when it is close to 1, the prediction is bad. Good or bad
predictions are not necessarily correct and incorrect, respec-
tively. The distance is a quality measure of the classification
performance, so it would be possible to provide at the same
time a not small distance associated with a correct prediction
(e.g. for a 3—class problem, when t = [1,0,0] and p =
[0.4,0.3,0.3], H(t, p) = 0.606 and the prediction is correct).
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The boundary for a correct prediction for a K—class classi-
fication problem is given by the expression:

H<6=(0-—K%/2 (6)

that means all the correct predictions must satisfy the expres-
sion (it is necessary but not sufficient condition).

Let ¢; = 1 — H(t(e;), p(e;)) be the performance of the
classification model with sample e;. The measure ¢; is equiv-
alent to the probability of correctly classifying the sample
e;. Therefore, if ¢; < 1 — 6 then sample e; will not be
correctly classified. However, the opposite is not true, that
is, even when ¢; > 1 — 6 there will be some samples
that will not be correctly classified (e.g. when ¢t = [1, 0, 0]
and p = [0.4,0.5,0.1] the prediction is not correct), thus
establishing a theoretical bound for incorrect classifications
(error rate). In fact, this is a very interesting aspect, because
two classifiers both with accuracy = 1 (no errors), could
vary their aggregated mean distance H, so the performance
would be very different in terms of prediction certainty (equal
in accuracy, but not in confidence).

Mathematically, a sequence S is an ordered collection of
objects, (Sy),en- The set © of values ¢; calculated for all
the test samples can be increasingly ordered, producing a
sequence ® = (¢, ..., ¢,). The sequence Q of points

. n
((%, ga{)) - can be plotted as a line connecting the points,
1=

and it will provide a curve within the unit square. The
AU(MCP) can also be obtained as a quantification of the
classifier performance, comparable to AU(ROC) (trapezoidal
areas between every two consecutive points), although in this
case for multi—class datasets.

The MCP curve algorithm design (see Alg. 1) prioritizes
interpretability over efficiency. In case of k—fold cross—
validation, it would be necessary to join all the k sequences
®; and then (merge)sort the final sequence, before generating
the points of 2. The complexity of the algorithm is O(n log n)
and it is independent on the complexity of the classifier.

The AU(MCP) is easily computed as follows:

1 - (1) + @&
AUMCP) = — (Z (i) — (M)) @)
i=1

where n = |®'|. As Vi ®'(i) € [0, 1], since H(t(e;), p(e;)) €
[0, 1], then AU(MCP) € [0, 1].

As €2 contains all the points of the MCP curve, increas-
ingly ordered by ¢, the first o points would not likely be
greater than 1 — 6, which means these samples are not
correctly classified. From the point « all the rest might be
correctly classified, although not with the same confidence,
as the values of ¢ would range in [1 — 6, 1]. However,
if BC(t(e;), p(e;)) > 0.5 then sample e; is correctly classified,
which defines another threshold for H values:

1-v05 ®)

Therefore, if ¢ < 1 — 6 then the sample is incorrectly
classified; if ¢ > 1 — § then the sample is correctly clas-
sified; and if ¢ € [1 — 6,1 — §] then the behavior of the

H>§=
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TABLE 1. Confusion matrix, (left) and precision, sensitivity and specificity (right) from drug consumption dataset (target: heroin) for Naive-Bayes (NB)

(1a) and random forests (RF) (1b).

Predicted
3 4 5 6 Prec. Sens. Spec.

0 1086 6 91.67 67.66 64.64

=
>

0 20 0.00 0.00 99.56

(SR
N}
IS
*
S

)
)

True

1

0 4 0 57 15.38 2.13 99.39
2 0 44 0.00 0.00 99.84
2

)

S

1 16 6.67 833 98.50

¢
¢
0 1 0 2 0 12 0.00 0.00 99.84
¢

i 0 0 0 0 12 1.87 92.31 66.29

(a) NB (Accuracy= 0.585; Cohen’s k = 0.100).

Algorithm 1 MCP Curve
Require:
D, Dy : Datasets for learner (1) and predictor ()
C': Classifier
d: Distance function
Ensure:
Q: Sequence of points of the MCP curve

Q<0 > Empty sequence (MCP curve)
D« {} > Empty set (Certainty)
M <« C(D,) > M : Model
p < M(Dy) > p: Prediction probability matrix

for ¢; € D;; do

@ < 1 —d(t(e;), p(e;)) > t: True probability vector

OP—DdPoy > @: Insertion at the end
end for
@’ <« Sort(d) > Increasing order
foriin{1,...,|®’|} do

Q<0 (% <I>’(i)) > @'(i): ¢ at position i in @’
end for

classifier is uncertain. As the MCP curve is a monotonically
increasing function, the prediction performance will depend
on the shapes of the function within the three possible regions
(incorrect, uncertain and correct) defined by the two points
(¢, 1 — @) and (B, 1 — §). Thus, given these two points,
we could observe many different performance behaviors for
the same confusion matrix, in which is based most of the
classification performance measures. The promising scenario
opened by the MCP curve requires further analysis and study
of the properties in relation to the most commonly used met-
rics in the scientific literature, since prediction probabilities
have much more potential than the confusion matrix (counters
from the one-hot vector provided by a discrete mapping
function over the probabilities: g : [0, 11X — {0, 1}X).

Ill. EXPERIMENTS
The Drug Consumption dataset [34] contains records for

1,885 respondents, and 12 attributes: neuroticism, extraver-
sion, openness to experience, agreeableness, conscientious-
ness, impulsivity, sensation seeking, level of education, age,
gender, country of residence and ethnicity. All input attributes
were originally categorical and were quantified by the authors
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Predicted
Class 0 1 2 3 4 5 6 Prec. Sens. Spec.

0 1601 1 2 0 1 i 0 85.30 99.75 1.43

66 2 i 0 66.67 2.94 99.94

94 0 ) 0 0.00 0.00 99.89

True 64 0

) 0

15 0 0 1 0 ) 0

C
(
[¢

) 1 0 0 0 50.00 1.54 99.95
C
C ) 0.00 100.00
[¢

1

2

3 (

4 24 0 .00 0.00 99.95
5 C

6 [t

13 0 0 0 0 i 0 i 0.00 100.00

(b) RF (Accuracy= 0.851; Cohen’s k = 0.019).

to be considered as real-valued, by using ordinal and nominal
feature quantification techniques (polychoric correlation and
non-linear categorical principal component analysis, respec-
tively). In addition, participants were questioned concerning
their use of 18 legal and illegal drugs (alcohol, amphetamines,
amyl nitrite, benzodiazepine, cannabis, chocolate, cocaine,
caffeine, crack, ecstasy, heroin, ketamine, legal highs, LSD,
methadone, mushrooms, nicotine and volatile substance
abuse and one fictitious drug —Semeron— which was intro-
duced to identify over—claimers). For each drug they have to
select one of the answers: never used the drug (CLO), used
it over a decade ago (CL1), or in the last decade (CL2), year
(CL3), month (CL4), week (CLS), or day (CL6). Therefore,
the dataset contains eighteen 7—class classification problems.

Two well-known classifiers were used: Naive—Bayes (NB)
and Random Forests (RF). All the experiments were validated
by means of stratified 10-fold cross—validation.

Basic statistics for NB (default parameters) and RF (gain
ratio as splitting criterion for decision trees, no pruning and
500 trees) are illustrated in Tables la and 1b, respectively
(results for accuracy and the Cohen’s « are also included).
The difficulty of classification is remarkable, mainly due to
the imbalance of the target variable. Values for precision
and sensitivity are notably low for all the classes except
for CLO, which represents about 85% of data([CLO, 85.1%],
[CL1, 3.6%], [CL2, 5%], [CL3, 3.5%], [CL4, 1.3%], [CL5,
0.8%], [CL6, 0.7%]). However, the interest lies in classes
with high number (CL4-CL6), as they indicate recent drug
consumption. Accuracy, as overall measure, reveals a much
better performance of RF (0.851) over NB (0.585). However,
RF is assigning most test cases to the majority class (CLO),
which is completely useless. On the other hand, the Cohen’s ¥
(measure of agreement between what it is relatively observed
and what it would be expected by chance) does show the
unsatisfactory behavior of NB (0.100) and, more importantly,
of RF (0.019), as opposed to accuracy [35].

Considering the ROC curves, which in principle should
visually show the behavior of each class with respect to the
others, the interpretation becomes inconsistent and inconclu-
sive. For NB (Fig. 1a), the behavior ranges from the worst
(CL2) to the best (CL6) over a wide range. However, the
accuracy for CL6 is minimal (1.87% in Tab. la). For RF
(Fig. 1b), the behavior is more stable, with lower variance, but

VOLUME 10, 2022



J. S. Aguilar-Ruiz, M. Michalak: Multiclass Classification Performance Curve

IEEE Access

CLO (AUC = 0.743)
CL1 (AUC = 0.826)
CL2 (AUC = 0566)
CL3 (AUC = 0.668)
CL4 (AUC = 0.770)
CL5 (AUC = 0612)
CL6 (AUC = 0.862)

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
(b) One—versus—all ROC curves for RF.

(a) One—versus—all ROC curves for NB.

1r

09

0.8

0.7 +

0.6 -

05

04

CLO (AUC = 0.777)

CL1 (AUC = 0.835) 03r
CL2 (AUC = 0.741)
CL3 (AUC = 0.769) 0.2F
CL4 (AUC = 0.760)

CL5 (AUC = 0.708) 01l
CL6 (AUC = 0.823)

NB (AUC = 0.515)
RF (AUC = 0.667)

% 01 02 03 04 05 05 07 08 09 1
(c) The MCP curve for NB and RF.

FIGURE 1. Graphs for drug consumption dataset (target: heroin) by using two classifiers: Naive-Bayes (1a) and random forests (1b). The MCP curve
(1¢) jointly shows the performance of both classifiers (1 — 6 = 0.21 and 1 — § = 0.46). The areas under the curves (AUC) are also shown.

still offers good performance for CL6 (AU (ROC) = 0.823),
although its precision is null. In sum, both accuracy and ROC
curves (as well as the area under the curve), offer quality
indicators that tend to overestimate the real performance of
the classifiers.

The curves depicted in Fig. 1c shows the multi—class
classification performance (MCP) curve of Naive Bayes and
Random Forests classifiers on the Drug Consumption dataset
for the target heroin. The best case would be when all the
distances are zero, so the ¢ values would be 1, and the curve
would be a flat line equivalent to the constant function y = 1
(AUMCP) would be 1). The worst case would be when all
the distances are 1, i.e. the true and prediction probabilities
are maximally distant, and the curve would be a flat line
equivalent to the constant function y = 0 (AU(MCP) would
be 0). Therefore, the visual interpretation of the MCP curves
is quite similar to the ROC curve. The goal of this image is to
show that both the shape of and the AU(MCP) consistently
illustrate the classification performance of both predictive
models (NB and RF).

RF reaches quickly the values 1 — 8 = 0.21 (for x =
0.12) and 1 — § = 0.46 (for x = 0.16), which means
that 12% and 84% of samples are incorrectly and correctly
classified, respectively, and only 4% of uncertainty. For NB,
x = 0.33 and x = 0.43, respectively, which means 33%
and 57%, and 10% of uncertainty. These values are directly
related to the accuracy (NMB = 0.585 and RF = 0.851)
shown in Tabs. 1a and 1b. As for the values of AUMCP)
(NB = 0.515 and RF = 0.667), they are more conservative
than the values of accuracy, which is consistent with the very
low precision and sensitivity values for six out of seven class
labels. The most relevant aspect is that it is observed in the
MCP curve the low confidence of predictions for correctly
classified cases, as both classifiers only provide probabilities
close to 1 for just a few sample cases. In contrast, the ROC
curves (Figs. 1a and 1b) reach high TPR values very soon
(when FPR = 0.5, values of TPR are over 0.8 for RF).
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Considering the accuracy and ROC results for RF, it could
be concluded that they are satisfactory, although they are
certainly not reliable. The MCP curve does not only show the
classification performance, but also contributes to highlight
the low or high confidence on correct predictions.

There exists a structural difference between ROC and
MCP curves: the ROC curve always starts at (0, 0) and ends
at (1, 1), because it is consequence of setting the decision
threshold at 1 and 0, respectively. However, the MCP curve
could start at any point (0, ¢,,;,) and ends at any point
(1, @max), being @i and @, the minimum and maximum
values of distance between the true and the prediction proba-
bilities of samples, respectively. For instance, if none sample
e; gets a perfect prediction, with d; = 0, then ¢; < 1, and
will not reach the upper-right corner of the unit square. This
feature is also interesting when comparing the performance
of classifiers.

IV. CONCLUSION
Multi—class classification is a very common and important

problem. Many quality measures, most of them based on the
confusion matrix, exist to assess classification performance
for binary data sets. The ROC curve stands out from the others
in that it provides a graphical representation of classifier per-
formance, and also a quantification of its quality (AU(ROC)).
However, it is not possible for it to provide a unique represen-
tation for multi—class datasets. Several approaches have been
formulated, like micro—average and macro—average ROC
curves, which cannot provide sufficient information in metric
multi—class classification efficiency in any scenarios. The
MCP curve arises as an alternative to fill this gap in the
context of multi—class classification.

The confusion matrix is based on prediction probabilities.
All the values of this matrix are calculated by the arg max
function from the probabilities (class with the largest pre-
dicted probability). Therefore, real numbers (probabilities)
are transformed into a one-hot vector for each test instance
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before updating the confusion matrix. The MCP curve works
directly with prediction probabilities, avoiding a loss of infor-
mation (with respect to classification performance) caused by
the transformation into the confusion matrix.

Understanding the confidence of predictions is an impor-
tant issue, because it lends mathematical continuity to
discrete decisions. To calculate the MCP curve, the classic
correct or incorrect classification is replaced by probabilities,
which enriches the interpretation of results and allow enhance
the behavior of predictive models. For example, for a 4—class
problem, a medical decision would not be as reliable when
the probability for the majority class is 1 as it would be
when it is 0.51 (both correct). In well-known measures like
accuracy, the Matthews correlation coefficient or Fl—score,
the decision is made by voting without analyzing the out-
come of prediction probabilities for each class. Therefore,
from the perspective of reliability, for a given dataset, several
classifiers yielding exactly the same confusion matrix might
provide different MCP curves, which contributes to a deeper
insight into the prediction performance of each classifier.

As stated, the ROC curve is very useful to graphically com-
pare the prediction performance of classifiers when datasets
are binary (2—class), but it is not applicable to multi—class
datasets. The MCP curve offers to the research community
a novel mathematical tool for the comparative analysis of
classifiers when dealing with multi—class datasets.

Finally, the use of prediction probabilities instead of the
confusion matrix opens new research directions to deepen
prediction performance measures, like the MCP curve. Future
work will focus on investigating the impact of prediction
probabilities on performance metrics for classifiers.
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