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ABSTRACT In order to improve the global search performance of the KomodoMlipir Algorithm, this paper
proposed two adaptive Komodo Mlipir Algorithms with variable fixed parameters (IKMA-1; IKMA-2).
Among them, IKMA-1 adaptively controls the parthenogenesis radius of female Komodo dragons to achieve
more efficient conversion of global search and local search. Second, IKMA-2 introduces adaptive weighting
factors to the ‘‘mlipir’’ movement formula of Komodo dragons to improve the local search performance.
Both IKMA-1 and IKMA-2were tested on 23 benchmark functions in CEC2013 and comparedwith the other
seven optimization algorithms. The Wilcoxon rank-sum test and Friedman rank test were used to compare
the performance of different algorithms. Furthermore, IKMA-1 and IKMA-2 are applied to two constrained
engineering optimization problems to verify the engineering applicability of the improved algorithm. The
results show that both IKMA-1 and IKMA-2 have better convergence accuracy than the initial KMA. In terms
of the benchmark function simulation results, IKMA-1 improves the performance by 17.58% compared
to KMA; IKMA-2 improves by 10.99%. Both IKMA-1 and IKMA-2 achieve better results than other
algorithms for engineering optimization problems, and IKMA-2 outperforms IKMA-1.

INDEX TERMS Komodo Mlipir Algorithm, variable fixed parameters, adaptive optimization, engineering
design optimization problems.

I. INTRODUCTION
Establishing models to deal with practical problems is an
essential means of current academic research, and how
to solve models faster and better depends on the actual
solution performance of various algorithms. An optimization
algorithm is an application technology based on mathematics
and used to solve various practical optimization problems.
At present, optimization algorithms can be mainly divided
into data processing algorithms, neural network algorithms,
and swarm intelligence algorithms [1]. Applied optimization
problems widely exist in many fields, such as signal
processing, production scheduling, medical applications,
image processing, and path planning.

However, since these optimization problems often involve
discrete, discontinuous, and uncertain factors, it is not
realistic to rely on a single algorithm to solve all optimization
problems in life [2]. Therefore, the innovation of new
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algorithms and the improvement of existing algorithms are
essential for solving practical optimization problems.

Looking back on the development of algorithms, due to the
shortcomings of some classical optimization methods, such
as the time-out of Newton’s method in the face of complex
mathematical processes, researchers are paying increasing
attention to optimization algorithms inspired by nature. These
algorithms include the genetic algorithm (GA) [3], differen-
tial evolution algorithm (DE) [4], immune algorithm (IA) [5],
ant colony algorithm (ACO) [6], particle swarm algorithm
(PSO) [7] and simulation annealing algorithm (SA) [8].
However, since the accuracy of these algorithms in solving
practical problems cannot meet the actual needs of the current
society, an increasing number of scholars have focused on
the improvement and application of population optimiza-
tion algorithms inspired by natural biological populations.
Examples include the firefly algorithm (FA) [9], Harris-
Hawk algorithm (HHO) [10], marine predator algorithm
(MPA) [11], and slime mold algorithm (SMA) [12], and
these swarm algorithms are used in practical problems. The
solution accuracy and speed are satisfactory.
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In addition, with the rapid development of hardware
technology, the data processing capability is becoming
increasingly more robust, and even very complex optimiza-
tion algorithms can still be solved quickly. Therefore, how
to develop or improve a new algorithm to obtain the global
optimal solutionmore quickly and accurately has become one
of the goals pursued by researchers [13]. The primary purpose
of this paper is to adaptively improve the Komodo Mlipir
Algorithm to better balance the development and exploration
performance of KMA and enhance its ability and accuracy to
solve practical optimization problems.

The main contributions of this study are as follows:
(1) The KomodoMlipir Algorithm is adaptively improved,

the two fixed parameters in the initial algorithm are replaced
by adaptive parameters, and the adaptive weight factor is
introduced for improvement. Then, two improved methods
are proposed for the Komodo Mlipir Algorithm (IKMA-1;
IKMA-2).

(2) The development and exploration performances of
KMA, IKMA-1, IKMA-2 and other comparative algorithms
were tested using the CEC2013 standard example, and the
test results were examined for differences using theWilcoxon
signed-rank test.

(3) The proponents of the Komodo Mlipir Algorithm
have not provided the verification of constrained engineering
optimization problems, so this paper applies KMA, IKMA-1
and IKMA-2 to two engineering optimization problems and
conducts supplementary research.

Compared with the KMA algorithm, IKMA-1 realizes
the adaptive control of the female Komodo dragon lizard
parthenogenetic radius α by introducing the search range
variable, which strengthens the conversion efficiency of the
algorithm’s global search and local optimization search.
Secondly, IKMA-2 changes the fixed parameters in the KMA
algorithm to adaptive parameters by introducing an adaptive
weight factor and further calculates the weight corresponding
to the fitness of each Komodo dragon individual. Thus, the
search space of the improved algorithm is expanded, and
there is a greater probability of obtaining a better algorithm
solution.

The rest of this paper is organized as follows: Section II
presents the main categories and development overviews of
intelligent optimization algorithms. Section III presents the
mathematical description of the Komodo Mlipir algorithm
and its adaptive variants, as well as the pseudocode of the
algorithm. Then, in Section IV, the simulation calculation of
KMA, IKMA-1, and IKMA-2 is carried out, and the differ-
ence between the calculation results and other algorithms is
compared. Finally, Section V discusses the main conclusions
and limitations of this study.

II. RELATED WORKS
Intelligent optimization algorithms are mainly divided into
evolutionary algorithms, swarm intelligence optimization
algorithms, and physical law algorithms [14]. Table 1 lists
the related research on evolutionary algorithms and swarm

intelligence optimization algorithms, including original algo-
rithms and improved algorithm variants in recent years. The
KomodoMlipir Algorithm studied in this paper belongs to the
swarm intelligence optimization algorithm [15]. However,
it also has the characteristics of crossover mutation of
the genetic algorithm, which has the characteristics of fast
convergence speed and high precision.

A. EVOLUTIONARY ALGORITHMS
Traditional evolutionary algorithms mainly include genetic
algorithms and differential evolution algorithms. However,
due to the continuous complexity of optimization problems,
the solution accuracy of traditional evolutionary algorithms
cannot be satisfied, so variants based on evolutionary
algorithms are produced. For example, the implementation
of crossover, mutation, and selection operators due to genetic
algorithm has many parameter limitations, such as crossover
rate and mutation rate, and the choice of these parameters
seriously affects the quality of the solution. Therefore,
using an adaptive genetic operator to select an appropriate
number of individuals with high fitness as parents and
mutate the remaining individuals can reasonably achieve
the purpose of balancing exploration and utilization [16].
In addition, redesigning three operators (sorting group
selection, direction-based crossover, and typical mutation) to
encode the genetic algorithm with real numbers [17] can also
achieve calculation results similar to the adaptive improved
genetic algorithm.

Compared with the genetic algorithm, the differential
evolution algorithm has a stagnation phenomenon, making
the algorithm stop prematurely and fall into the optimal local
solution prematurely. In the existing research, the strategy of
adaptive improvement is effective [18]. By updating parame-
ters adaptively through individual similarity and evolutionary
state and designing evolutionary backtracking strategies to
control population diversity, evolutionary algorithms can be
well prevented from falling into premature results [19].

B. SWARM INTELLIGENCE ALGORITHM
Current swarm intelligence algorithms are usually inspired
by human intelligence, natural phenomena, biological group
sociality, and other phenomena. They have attracted in-depth
research by many scholars because of their diversity,
robustness, and self-organization [20]. Academia generally
defines swarm intelligence as ‘‘algorithms inspired by nature,
such as human intelligence, biological swarm sociality, or the
laws of natural phenomena, involving the emerging collective
behavior of multiple interacting agents that follow some
simple rules [21].’’

For most swarm intelligence algorithms, it is found
that there are some necessary connections between the
algorithms, that is, the interaction between groups or the
similarity of evolutionary operators, such as the traditional
ant colony algorithm and particle swarm algorithm. However,
with the increasing complexity of optimization problems,
the simplification of coding and the precision and speed
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of the calculation results have gradually become the focus
of researchers [22], so the demand for innovative and
improved algorithms has arisen. For example, the search
accuracy achieved by the Harris-Hawk optimization (HHO)
algorithm is satisfactory in the application of scheduling
problems [23]. However, there is still room for improvement
in the simplification of coding. In addition, the arctanh
function of the slime mold algorithm [12] will generate a
series of warnings/errors in the coding process of the actual
problem, and the use of the control formula in the sine cosine
algorithm can make up for this defect well. It is outstanding
in solving the EED problem [24].

C. LIMITATIONS AND IMPROVEMENTS OF THE KOMODO
MLIPIR ALGORITHM
The original algorithm mainly explored in this paper is the
Komodo Mlipir Algorithm, which was proposed by [15]
in 2021. The swarm intelligence optimization algorithm
is proposed by simulating the behavior between Komodo
dragon lizard populations on Komodo Island. By simulating
the ‘‘mlipir’’ gait behavior of large male Komodo dragon
lizards and small Komodo dragon lizards, the algorithm itself
has a higher probability of sampling in the global scope,
and the population number is updated in real-time to achieve
global adaptive control for the optimal solution. It can be
found from the actual calculation example that the Komodo
Mlipir Algorithm has the advantages of easy implementation,
and high solution quality.

However, in the study of the example results of Komodo
dragons, it can be found that the Komodo Mlipir Algo-
rithm sometimes overestimates the output results when
calculating the multimodal functions, which makes the
algorithm stop early and makes the solution results deviate
from the global optimum. Moreover, when exploring the
movement behavior of small male Komodo dragons, it can
be found that the original Komodo Mlipir Algorithm lacks
adaptive control of parameters during parthenogenesis and
is challenging to adapt to population changes. Therefore,
improving the adaptive ability of the Komodo Mlipir
Algorithm can better balance the ratio of development and
exploration.

In addition, [15] also mentioned in the article that the
‘‘mlipir’’ activity probability in KMA is a fixed parameter
value with a random distribution of [0, 1], which lacks
adaptive balance ability, and the ‘‘mlipir’’ activity parameter
affects the Komodo dragon. The interaction between indi-
viduals and the appropriate ‘‘mlipir’’ parameter can better
control the ratio of the algorithm between the local search
and the global search and then obtain the simulation results
faster.

In the related literature on adaptive improvement, [30]
adopted a dual adaptive weight strategy to optimize the
whale optimization algorithm. They optimized the fixed
linear inertia weight into a nonlinear local optimality function
to balance the algorithm’s global and local optimization.
Reference [31] proposed an enhanced adaptive differential

evolution algorithm by matching the appropriate fitness for
each individual and sorting the fitness according to the
crossover rate to maintain the population’s diversity and
strengthen the algorithm’s global optimization ability. There-
fore, inspired by the relevant literature, this study proposes
an improved adaptive Komodo Mlipir Algorithm IKMA
(IKMA-1 and IKMA-2) with variable fixed parameters.
IKMA-1 realizes the adaptive control of the female Komodo
dragon’s parthenogenetic radius by introducing the search
range variable. IKMA-2 introduces the adaptive weight factor
to the Komodo dragon’s ‘‘mlipir’’ movement formula. The
improvement enhances the original algorithm’s adaptability,
realizes the adaptive search of the search space, strengthens
the global optimization ability of the original algorithm,
and reduces the possibility of falling into the local optimal
solution.

III. METHODOLOGY
This chapter mainly introduces the Komodo Mlipir
Algorithm (KMA) and the improved methods used in
this paper.

A. KOMODO MLIPIR ALGORITHM
1) KOMODO DRAGON BEHAVIOR
Komodo dragons mainly refer to the dragon living on
Komodo Island. The original KMA algorithm is an advanced
algorithm proposed by simulating the unique foraging and
breeding behavior of Komodo dragons.

For Komodo dragon populations, female Komodo dragons
can produce offspring by mating with large adult males or
by parthenogenesis. At the same time, small male Komodo
dragons lack the ability to hunt prey and will eat by seeking
out leftovers left by larger males. However, this behavior risks
being eaten by large males, so they should keep their distance
and look for opportunities to quickly approach the leftovers
and eat when large males leave. We refer to this behavior as
‘‘mlipir’’ behavior, which is ‘‘walking on the edge to avoid
danger’’ or ‘‘moving carefully along the side of the road,
unnoticed by anyone, and successfully reaching a purpose
safely.’’

2) DEMARCATION OF POPULATIONS
The population of Komodo individuals can be divided
into three groups: high-quality large males, medium-quality
females, and low-quality small male individuals. The corre-
sponding division is shown in Equations (2.1) and (2.2); a
population of n Komodo dragons can be divided into q large
male individuals, one female individual, and s small Komodo
dragon individuals.

q = |(p− 1) n| (2.1)

s = n− q (2.2)

where the parameter p is a random value in the interval (0, 1),
the value is usually taken as 0.5 to prevent the s and q values
from converging to zero.
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TABLE 1. A summary of some intelligent optimization algorithms and their variants, including their source of inspiration, key features of the algorithms,
and the year they were proposed.

3) LARGE MALE KOMODO DRAGON BEHAVIOR
According to a simple rule introduced in this study, larger
males interact through attraction or distraction. Large males
of low quality should be attracted to high-quality males, and
the following two equations can be used to define the moving
behavior of a large male Komodo dragon ki and produce a
new position k ′i .

wij =

{
r1
(
kj − ki

)
, if f

(
kj
)
< f (ki) or r1 < 0.5

r1
(
kj − ki

)
, otherwise

(2.3)

k ′i = ki +
∑q

j=1
wij, where j 6= i (2.4)

where f (ki) and f
(
kj
)
are the fitness of the ith and jth large

male Komodo dragons, respectively, with ki representing the
ith large male Komodo dragon; r1 and r2 are both random
values between [0, 1]; and q represents the number of large
male Komodo dragons. As a high-quality large male Komodo
dragon will be attracted or distracted by a low-quality large
male Komodo dragon, then the low-quality male Komodo
dragon will be arranged to perform local optimality seeking.
In contrast, the high-quality male Komodo dragon will also
perform local optimality seeking or global optimality seeking
behavior with a probability of 0.5, which indirectly ensures
that the probability of local optimization is greater than that
of global optimization.
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FIGURE 1. Females mating with optimal males. (With a normally
distributed probability of 0.5, the female mates with the winner big male,
and then, the female is updated by the best offspring.)

FIGURE 2. New offspring after parthenogenesis. (With a normally
distributed probability of 0.5, the female undergoes parthenogenesis to
generate an offspring, and then, the female is updated if the offspring is
better than itself.)

4) REPRODUCTIVE BEHAVIOR OF FEMALE
KOMODO GIANT DRAGONS
As shown in Fig. 1, in the original KMA design, female
Komodo dragons were identified as medium-quality Komodo
dragons, which also had the ability to search for supe-
riority. If females chose to engage in local optimization
activities, they would produce offspring by mating with
the highest-quality male Komodo dragons, which would
engage in global optimization activities through the for-
aging behavior of offspring Komodo dragons. In addition,
parthenogenesis is also adopted by some female individuals,
thus ensuring the diversity of solutions. The mating behavior
of a female Komodo dragon is represented by the following
formula: {

k ′il = rl · kil + (1− rl) kjl
k ′jl = rl · kjl + (1− rl) kil

(2.5)

where kil and kjl represent the ith male Komodo dragon
and the jth female Komodo dragon individual in the lth
dimension, respectively; meanwhile, k ′il and k

′
jl represent the

two offspring individuals in the kth dimension, respectively,
where rl is a random number in the lth dimension that lies
within the interval [0, 1] showing a normal distribution.

Meanwhile, the process of parthenogenesis is represented
by the following formula, which is achieved by appending a
small value to each female dimension, where the small value
is randomly generated using a symmetric normal distribution,

and Figure 2 shows the process of parthenogenesis.

(k i1, ki2, · · · , kim) → (k ′i1, k
′

i2, · · · , k
′
im) (2.6)

k ′ij = kij + (2r − 1)α
∣∣ubj − lbj∣∣ (2.7)

where ubj and lbj are the lower and upper bounds of the
jth dimension, respectively, and ki1, ki2, · · · , kim are the
m-dimensional elements of the k-individual located within
[ubj, lbj]; r is a random value of normal distribution; and α
represents the radius of parthenogenesis, which is set to 0.1,
that is, new solutions generated by the offspring can be carried
out with a search radius of 10% in the search space.

5) MOVEMENT BEHAVIOR OF SMALL KOMODO DRAGON
As small Komodo dragons are attracted to the leftovers of
large male Komodo dragons, two types of behavior exist for
small Komodo dragons to survive: (1) seek out the leftovers
left by large Komodo dragons whenever possible and (2)
adopt a ‘‘mlipir’’ behavioral strategy to feed. Thus, there
are two scenarios: first, a small Komodo dragon conducts
‘‘mlipir’’ activities around a large Komodo dragon to
explore a wide area, and second, a small Komodo dragon
moves straight toward the leftovers to achieve optimal local
exploration. The probability of a small Komodo dragon
adopting the ‘‘mlipir’’ activity is a random value of [0, 1].
The formula for the movement of the ith Komodo dragon
following the jth Komodo dragon is shown below:

wij =

{∑m

l=1
r1
(
kjl − kil

)
, if r2 < d

0, otherwise
(2.8)

k ′i = ki +
∑q

j=1
wij, where j 6= i (2.9)

where r1 is a random number normally distributed in the
interval [0, 1] and represents the speed of movement of
the small Komodo dragon; r2 defines the dimension to be
followed by the small Komodo dragon; m represents the
dimension; kil and kjl represent the ith small male Komodo
dragon in the lth dimension and the jth large male Komodo
dragon, respectively; q represents the number of large male
Komodo dragons; and l is a randomly selected dimension.

If two small Komodo dragons and two large male Komodo
dragons are assumed to exist, then nine foraging behaviors
of small Komodo dragons exist. If the movement behavior of
small male Komodo dragons is counted separately, 18 forms
of movement exist, and 12 are carried out in a wide search
space, which fully ensures that the probability of global
search is higher than the probability of local search.

6) POPULATION UPDATE
Since the population size n determines whether there are
enough individuals for global optimization exploration, the
original KMA proposes an adaptive method to control the
population size. The formulas are as follows:

n′ =

{
n− a, if δf1 > 0 and δf2 > 0
n+ a, if δf1 = 0 and δf2 = 0

(2.10)

δf1 =
|f1 − f2|

f1
; δf2 =

|f2 − f3|
f2

(2.11)
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Algorithm 1 Pseudo-Code for IKMA-1
Input: Dimension; PopSize; MaxNumEva
Output: Global optimum solution kbest
Initialization: Set n, p, and d as the population of Komodo
individuals, the portion of big males, and the ‘‘mlipir’’
rate, respectively;
Initialization of n individuals with m dimensions
while Stopping Criterion = false do
for Calculate the fitness of all Komodo individuals do
Rank all Komodo individuals;

Based on their ranks and the portion p, split the
population into three groups: q highest-quality big males,
1 middle-quality female, and s low-quality small
males using Eq. (2.1) and Eq. (2.2);

end for
for Each big male do

Move it using Eq. (2.4), and keep the q highest-
quality big males to survive in the next generation;
Update the female by either mating the winner big
male using Eq. (2.5) or doing parthenogenesis using
Eq. (2.6) and Eq. (2.7); control the parthenogenesis
radius by Eq.(3.1);

end for
for Each small male do

Move it using Eq. (2.8) and Eq. (2.9), and keep all
their new positions to survive in the next generation;
Update the population size n using Eq. (2.10);

end for
end while

return Select the highest-quality Komodo from the three groups
as the best-so-far solution kbest

The size of the population is adjusted by the fitness
between generations. If the fitness of two consecutive
generations is optimized, the population size is reduced
by removing the relevant individuals; if the fitness is
not optimized, new individuals are generated to increase
the population size to increase the probability of global
optimization. Here, a is the number of population adjustments
and δf1 and δf2 represent the differences between the ith- and
(i− 1)th-generation individuals.

B. IMPROVED ADAPTIVE KOMODO MLIPIR ALGORITHMS
1) IKMA-1 WITH AN ADAPTIVE THE PARTHENOGENESIS
RADIUS
In the process of optimizing the Komodo Mlipir Algorithm,
we refer to the search range update formula of the eagle
perching optimization algorithm [32] as follows:

z = z ∗ (eta+ 1) (3.1)

where z represents the population search range variable,
which ensures that the hawk roosting optimization algorithm
can achieve conversion between global search and local
optimization search. In this paper, z is used to replace
the radius α of female parthenogenesis in the original
KMA to adaptively control the search radius of small-
and medium-sized Komodo dragons in parthenogenesis. The
initial setting is z = 0.3, where eta represents the shrinkage
search variable, and the original (eta + 1) ∈ [0, 1]. In this

Algorithm 2 Pseudo-Code for IKMA-2
Input: Dimension; PopSize; MaxNumEva
Output: Global optimum solution kbest
Initialization: Set n, p, and d as the population of Komodo
individuals, the portion of big males, and the mlipir rate,
respectively;
Initialization of n individuals with m dimensions
while Stopping Criterion = false do
for Calculate the fitness of all Komodo individuals do
Rank all Komodo individuals;

Based on their ranks and the portion p, split the
population into three groups: q highest-quality big males,
1 middle-quality female, and s low-quality small
males using Eq. (2.1) and Eq. (2.2);

end for
for Each big male do

Move it using Eq. (2.4), and keep the q highest-
quality big males to survive in the next generation;
Update the female by either mating the winner big
male using Eq. (2.5) or doing parthenogenesis using
Eq. (2.6) and Eq. (2.7);

end for
for Each small male do

Move it using Eq. (3.4) and Eq. (2.9), and keep all
their new positions to survive in the next generation;
Update the population size n using Eq. (2.10);

end for
end while

return Select the highest-quality Komodo from the three groups
as the best-so-far solution kbest

paper, the eta parameter has been adjusted, and the specific
eta calculation is as follows:

eta =

{
0 if δf1 > 0 and δf2 > 0
s
n
, if δf1 = 0 and δf2 = 0

(3.2)

where s is the number of small male Komodo dragons;
n is the number of Komodo dragon populations; and δf1
and δf2 represent the differences between the ith- and
(i− 1)th-generation individuals.
The pseudo-code of the Adaptive Komodo Algorithm

(IKMA-1) for variable parthenogenesis with fixed parameters
is shown in Algorithm 1.

2) IKMA-2 WITH ADAPTIVE WEIGHTING FACTORS
In optimizing the Komodo Mlipir Algorithm, this paper
introduces an adaptive weight factor [33], changes the fixed
parameters in the original algorithm to adaptive parameters,
and calculates the weight corresponding to the fitness of each
Komodo dragon individual. The expression for the adaptive
weight factor is:

∝=

∣∣∣∣ Fworst − Fil
Fworst − Fbest

∣∣∣∣ (3.3)

where Fworst and Fbest represent the fitness values of the
worst and best individuals in this iteration respectively; and
Fil represents the fitness value of the ith individual in the lth
dimension.
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Equation (2.8) is changed to the following formula:

wij =

{∑m

l=1
r1(∝1kjl− ∝2 kil), if r2 < d

0, otherwise
(3.4)

The weight of an individual is determined by the size of the
individual’s own fitness; the higher the individual’s fitness
is, the greater the weight, and the stronger the reliability in
Komodo dragon populations. r1 still represents the rate of
movement of an individual to increase the randomness of the
local search of the algorithm.

The pseudo-code for the improved adaptive Komodo
Mlipir Algorithm (IKMA-2) is shown in Algorithm 2.

IV. SIMULATION RESULTS
A. CEC2013 BENCHMARK FUNCTIONS
In this section, IKMA is tested and compared with other
algorithms by using 23 benchmark functions (Tables 2 and
3) from the CEC2013 [34]. The fitness function values’
average and standard deviation (STD) are used as evaluation
metrics to compare the algorithms’ merits. The description
of the parameters for the CEC2013 benchmark algorithm is
presented in Table 2 and Table 3. F1-F7 are single-modal
benchmark functions that can effectively test the algorithm’s
convergence rate and local searchability and only one
global optimal solution. F8-F13 are multimodal benchmark
functions with multiple locally optimal solutions and one
optimal global solution, which can effectively test the global
search ability of the algorithm. F14-F23 are composite
benchmark functions that can effectively try the algorithm
exploitation ability and the balance search between the
algorithm’s performance [35].

B. EXPERIMENTAL RESULTS OF BENCHMARK FUNCTIONS
In this paper, the algorithms used for comparison include
HHO, AOA, TSA, GWO, SMA, ESMA, KMA, IKMA-1,
and IKMA-2. The test environment was MATLAB 2020b,
and the hardware environment was a laptop computer with
2.5GHz, Intel(R) Core i5-7200U processor and 4GB RAM.
Twenty independent operations were performed for each
algorithm to overcome randomness, and the measured results
and convergence curves are shown in Table 4 and Figure 3.

The fitness test results of IKMA-1, IKMA-2, and other
algorithms are shown in Table 4, in which the bold
experimental data are the best results of all comparative data.
Firstly, the test results of the unimodal benchmark functions
F1-F7 are discussed. For IKMA-1 and IKMA-2, the F1-F4
and F6 benchmark functions can achieve the optimal value,
showing excellent global convergence performance. While
for the benchmark function F5, IKMA-1 is slightly worse
than HHO, SMA, and ESMA, the test results are still better
than the original algorithm KMA; for F7, IKMA-1 is slightly
inferior to AOA but better than IKMA-2, and both have
similar performance.

Secondly, for the multi-peaked benchmark functions
F8-F13. The F8-F11 functions, IKMA-1, and IKMA-2

achieve optimal global convergence and have excellent
standard deviation performance. In contrast, for the F12 and
F13 benchmark functions, IKMA-1 is second to HHO, and
IKMA-2 is second to IKMA-1, with similar performance.

Finally, the composite benchmark functions F14-F23.
F14-F16, IKMA-1 and IKMA-2 both achieve the best global
convergence results among all the comparison algorithms,
tied for first place, and the performance both are significantly
better than KMA. In addition, for F17-F19, IKMA-1 and
KMA are equivalent; the comparison results of F20-F23
benchmark functions can be seen that the optimization
performance of IKMA-1 and IKMA-2 is similar to that of
KMA, SMA, and ESMA. But IKMA- 1 on the F20-F22
function, with more stable variance results. By changing the
fixed parameters to improve the Komodo Mlipir Algorithm,
the balance exploration ability and global optimization ability
of the original KMA can be significantly improved.

C. WILCOXON RANK-SUM TEST AND FRIEDMAN
RANKING TEST
To compare the performance differences between the algo-
rithms more intuitively, as suggested by [37], we need to per-
form a nonparametric Wilcoxon rank-sum test [36] between
the results to determine whether the calculation results
of IKMA and other compared algorithms are statistically
significant. This study used theWilcoxon rank-sum test at the
p = 0.05 significance level to verify the difference in the test
results. Finally, the Friedman ranking test [38] is performed
on all algorithms. This test aims to more intuitively show the
performance differences of the algorithm calculation results.
The results of the Wilcoxon rank-sum test are shown in
Table 5.

As shown in Table 5, IKMA-1 differs significantly from
most other algorithms in most cases. Still, in the cases of
F1, F3, F9, F10, F11, and F18, IKMA-1 and SMA measure
the same results, i.e., they have similar optimization-seeking
performance. For the test results of the two algorithms,
IKMA-1 and KMA, eleven benchmark functions with the
same results, all achieving the ideal global optimal result.
While for the F5, F7, F8, F12, F13, F19, and F21 benchmark
functions, the test results do not accept the original hypothesis
at p = 0.05, i.e., the optimization performance of IKMA-1
and KMA is significantly different. Unfortunately, for the
F16, F17, F22, and F23 benchmark functions, the original
hypothesis is not rejected at p= 0.05, and therefore IKMA-2
performs similarly to the original KMA.

In addition, for the test results of the two improved
algorithms, IKMA-1 and IKMA-2, only for F17, F22, and
F23 benchmark functions, the original hypothesis is not
rejected at p = 0.05, i.e., there is no significant difference
in the performance of the two improved algorithms, and the
searchability is similar.

Discussing the Wilcoxon rank-sum test results alone lacks
intuition, so the Friedman ranking test was introduced for
visual ranking. Furthermore, separate scales are performed
according to different test function types, and finally, the
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TABLE 2. Single-modal benchmark functions.

average scale of all functions is given. As shown in
Table 6, for single-peak and multi-peak test functions F1-
F13, IKMA-1 has an average ranking of 3.1538, ahead of
all the other algorithms IKMA-2 ranks second after IKMA-1.
It can be seen that for single-peak as well as multi-peak test
functions, IKMA-1 has a better global optimization ability.

D. WALL-CLOCK TIME ANALYSIS
In this part of the experiments, we compared KMA,
IKMA-1, and IKMA-2 with the six participants to perform
the experiments on the 13 benchmarks mentioned above.
The time-consuming calculation [39] was performed by all
participants independently running each function ten times
and recording the results in Table 7. From the data in the
table, it can be seen that the calculation of KMA, IKMA-1,
and IKMA-2 in this study requires a relatively long time
because the algorithm itself requires more computing power
for crossover, mutation, and selection operations. However,
IKMA can still outperform other algorithms in some cases,
such as F1, F6, F11, F17, F19, and F23. It is also easy to
calculate the time complexity of the KMA iterative process as
O(nm+nc+ logn), where n,m, c, and logn are the number of
individuals in the population, the dimension, the calculation
of the objective function and the ordering of fitness values,
respectively. Overall, due to the limitations of KMA, IKMA
takes longer but still has a huge effectiveness advantage,
so the time results are expected.

E. EXPERIMENTS ON ENGINEERING DESIGN
OPTIMIZATION PROBLEMS
The ultimate goal of algorithm design is to solve practical
problems. Although the superiority of the adaptive optimiza-
tion Komodo Mlipir Algorithm has been illustrated through
the above benchmark functions, we still need to consider
whether the algorithm has limitations in solving practical

problems. For more practical problems, there will be many
equality and inequality constraints. These constraints will
cause the algorithm solution to be divided into feasible and
infeasible solutions. To facilitate writing code that deals
with infeasible solutions, this paper adopts the death penalty
method. However, this will lose some of the valuable solution
space obtained by the algorithm. In the following part of
the article, we conduct experiments on two engineering
design optimization problems, and a comparison with the
current advanced algorithms is provided. Two engineering
design optimization problems are the welded beam structure
problem and the pressure vessel problem.

1) THE WELDED BEAM STRUCTURE PROBLEM
The Welded Beam Structural Problem (WBD) is a function
minimization optimization problem in which the optimiza-
tion algorithm is designed to reduce the manufacturing cost
of the design. The optimization problem can be described as
finding four design variables: Length (l), height (t), thickness
(b), and weld thickness of beam bars(h); and they need to
satisfy constraints such as shear stress (τ ), bending stress
(θ ), beam bending load (Pc), end deviation (δ) and boundary
conditions. The cost of manufacturing the welded beam
is minimized, so the welded beam structure problem is a
typical nonlinear programming problem. The mathematical
description of the WBD problem is as follows:

Consider: X = [x1 x2 x3 x4] = [h l t b]
Objective function:

F(X ) = 1.10471x21x2 + 0.04811x3x4(14.0+ x2)

Subject to:

g1(X ) = τ (X )− τmax ≤ 0

g2(X ) = σ (X )− σmax ≤ 0

g3(X ) = δ(X )− δmax ≤ 0
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TABLE 3. Multimodal benchmark function.

g4(X ) = x1 − x4 ≤ 0

g5(X ) = P− Pc(X ) ≤ 0

g6(X ) = 0.125− x1 ≤ 0

g7(X ) = 1.10471x21 + 0.04811x3x4(14.0+ x2)− 5.0 ≤ 0

where:

τ (Ex) =

√
(τ ′)2 + 2τ ′τ ′′

x2
2R
+ (τ ′′)2

τ ′ =
P

√
2 x1x2

, τ ′′ =
MR
J
, M = P(L+

x2
2
)

R =

√
x22
4
+ (

x1 + x3
2

)2

J = 2{
√
2 x1x2[

x22
4
+ (

x1 + x3
2

)2]}

σ (Ex) =
6PL

x4x23
, δ(Ex) =

6PL3

Ex23x4

PC (Ex) =
4.013E

√
x23x

6
4

36

L2
(1−

x3
2L

√
E
4G

)
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TABLE 4. Comparison results with other algorithms on the CEC 2013 benchmark function.

67892 VOLUME 10, 2022



Q. Liu, X. Zhang: Improved Adaptive Komodo Mlipir Algorithm

TABLE 5. Comparison results on Wilcoxon rank sum test with algorithms.

TABLE 6. Comparison results on Friedman’s ranking test with traditional algorithms.

TABLE 7. Wall-clock time costs of IKMA and other candidates on benchmark functions.
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FIGURE 3. Convergence curves of the eight optimization algorithms which are used in our experiments. F1-F7 are single-modal benchmark functions;
F8-F13 are multimodal benchmark functions; F14-F23 composite benchmark functions.

Variable ranges:

P = 6000lb; L = 14in.; σmax = 30000psi;

E = 3× 106psi;

G = 12× 106psi; τmax = 13600psi; δmax = 0.25in.

In this section, IKMA is compared with SMA [12],
MFO [40], GSA, WOA [42], BOA [43], GWO [44], BA [45]
and Simplex [46]. From the data in Table 8, It can be seen
that both IKMA-1 and IKMA-2 have superior convergence
values to KMA, and IKMA-2 gives slightly better results than
IKMA-1.

2) THE PRESSURE VESSEL DESIGN PROBLEM
The pressure vessel design problem (PVD) objective is
to minimize the total cost f(x) while meeting production
needs. The four design variables are shell thickness Ts
(x3), head thickness Th (x4), internal radius R(x1) and
vessel length L (x2 excluding head), where Ts and Th
are integer multiples of 0.625 and R and L are con-
tinuous variables. The specific mathematical model is as
follows:

Consider:

X = [x1 x2 x3 x4] = [Ts Th R L]
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TABLE 8. Results of welded beam structure problem compared with
other competitors.

TABLE 9. Results of pressure vessel design problem compared with other
competitors.

Objective function:

(X )min = 0.6224x1x3x4 + 1.7781x3x21 + 3.1661x4x21
+ 19.84x3x21

Subject to:

g1(X ) = −x1 + 0.0193x3 ≤ 0

g2(X ) = −x3 + 0.00954x3 ≤ 0

g3(X ) = −πx4x23 −
4
3
πx33 + 1296000 ≤ 0

g4(X ) = x4 − 240 ≤ 0

Variable ranges:

0 ≤ x1 ≤ 99, 0 ≤ x2 ≤ 99, 10 ≤ x3 ≤ 200,

10 ≤ x4 ≤ 200

In this section, IKMA is compared with SMA [12], HHO
[10], PSO [41], [47], MFO [40], CSS [48], GWO, HPSO
and Branch-bound [50]. As can be seen from Table 9,

the convergence value of IKMA-2 is the best, followed by
IKMA-1, showing the excellent searchable of KMA.

V. CONCLUSION
In this paper, two adaptive Komodo Mlipir Algorithms
(IKMA-1 and IKMA-2) with variable fixed parameters are
proposed. IKMA-1 uses the population search range variable
to control the parthenogenesis of female Komodo dragons
and the reproductive radius and then adaptively control the
search space of small Komodo dragons. IKMA-2 introduces
an adaptive weight factor to improve Formula (3.8), which
strengthens the local search ability of the algorithm. To verify
the effectiveness of the IKMA, 23 benchmark functions
and two engineering design optimization problems are
tested, and a comparison with other optimization algorithms
is conducted. The results fully demonstrate the superior
performance of IKMA. The following conclusions can be
drawn from the experimental results:

(1) The IKMA is superior to the original KMA in solving
continuity problems, especially for the unimodal benchmark
function. Compared with KMA and other optimization
algorithms, IKMA has a stronger global optimization ability
and stable convergence speed.

(2) By adaptively controlling the fixed-value partheno-
genesis radius, the flexible transformation of the original
KMA in global search and local search can be enhanced,
and the comprehensive performance of the algorithm can be
effectively improved.

(3) For the constrained engineering design optimization
problem, IKMA-2 has a better global optimal solution than
IKMA-1, indicating that IKMA-2 has better exploration
capability than IKMA-1.

Although the research results in this paper confirm the
feasibility of adaptive optimization with variable fixed
parameters, there are still some limitations in the research
process. First, the test results of the benchmark function
are not further calculated from multiple dimensions, and
the influence of dimension changes on the algorithm
simulation results is lacking. Second, although the method
of using the death penalty in the solution of the constrained
engineering optimization problem reduces the search space
of the algorithm, it discards the possibility of finding
a better solution. Finally, it is not convincing to use
engineering optimization problems to test the applicability
of the improved algorithm; thus, using actual optimization
problems (scheduling problems, path planning problems,
medical applications, etc.) to further test the ability of IKMA
and KMA to solve discrete problems will be the next research
step.

In addition, future researchers can adaptively optimize
these two fixed parameters from another perspective. For
example, when a learning mechanism is introduced, the
idea of adaptive control algorithm parameters will have
better results. In addition, the author of the Komodo Mlipir
Algorithm also mentioned in the article that the fixed
parameters of large male individuals can be improved.
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These are effective research ideas, but they need further
verification by researchers in the future.
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