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ABSTRACT Upcoming beyond fifth generation (5G) communications systems aim at further enhancing
key performance indicators and fully supporting brand-new use cases by embracing emerging techniques,
e.g., reconfigurable intelligent surface (RIS), integrated communication, localization, and sensing, and
mmWave/THz communications. The wireless intelligence empowered by state-of-the-art artificial intelli-
gence techniques has been widely considered at the transceivers, and now the paradigm is deemed to be
shifted to the smart control of radio propagation environment by virtue of RISs. In this paper, we argue that
to harness the full potential of RISs, localization and communication must be tightly coupled. This is in
sharp contrast to 5G and earlier generations, where localization was a minor additional service. To support
this, we first introduce the fundamentals of RIS mmWave channel modeling, followed by RIS channel state
information acquisition and link establishment. Then, we deal with the connection between localization and
communications, from a separate and joint perspective.

INDEX TERMS Channel modeling, millimeter wave, simultaneous localization and communications, radio

localization, reconfigurable intelligent surface.

I. INTRODUCTION

As the demand on the quality of services (QoSs) keeps
rapidly growing, upcoming beyond fifth generation (B5G)
systems are envisioned to meet more stringent require-
ments, which are beyond those enabled by the ultra-reliable
low-latency communication (URLLC), enhanced mobile
broadband (eMBB), and massive machine-type communica-
tions (MMTC) in the current 5G system. In addition, BSG
will also need to support diverse industry vertical appli-
cations, e.g., autonomous driving and industry 4.0. Hence,
more challenges are brought on physical layer (PHY) trans-
missions, multi-access, network design, and resource man-
agement technologies. A plethora of disruptive techniques,
e.g., holographic multiple-input multiple-output (MIMO),
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reconfigurable intelligent surface (RIS), artificial intel-
ligence (AI) enabled communications and networking,
mmWave/THz communications, and simultaneous localiza-
tion and communications (SLAC), are under active inves-
tigation to fulfil the targeted QoS requirements for B5G
[1]-[3]. SLAC is a special case of the wider field of integrated
sensing and communication (ISAC) [4]. In particular, SLAC
is limited to bi-static operation (communication and sensing
and localization of connected devices), while ISAC also con-
siders monostatic operation. While the focus of this paper is
limited to SLAC, RIS is also expected to play an important
role in ISAC, as shown in, e.g., [5]-[8].

In order to push data rates, interests towards high-
frequency bands, e.g., millimeter wave (mmWave) and even
THz, keep increasing [9], [10]. At these frequencies, the
transceivers need to be equipped with a large array of
antennas, often called as massive MIMO (mMIMO), to
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compensate for severe free-space path loss through substan-
tial beamforming gains. Due to the usage of high-resolution
analog-to-digital converters (ADCs), a vast amount of power
is consumed [11]. When the direct path between transmitter
and receiver is blocked, received power drops drastically,
adversely affecting QoS. Hence, there is a need for a low-
power technology that can overcome link blockages. The
introduction of RIS to perform analog beamforming towards
dedicated users [1], [12], [13] aims to address this need.
An RIS is a surface or often a thin covering of a surface
with controllable electromagnetic properties. The impedance
values of the RIS elements can be controlled so that it realizes
an array of phase shifters, thereby modifying the reflection
properties and redirecting the impinging wave. Other possible
ways to realize smart surfaces are by metasurfaces, groups of
strongly coupled meta-atoms, and holographic surfaces [14].
In addition to reflection, an RIS also has other operational
functionalities, e.g., diffraction, refraction, polarization, and
absorption, which together makes the intelligent control of
wireless propagation channels feasible with enhanced spec-
tral efficiency (SE), energy efficiency (EE), security, and
network coverage [1], [15].

RISs have several characteristics that distinguish them
from typical analog arrays. For instance, RISs usually possess
a large aperture and a massive number of elements, so the
users are likely in the near field. Also, mutual coupling
exists among the RIS elements when sub-half-wavelength
inter-element spacing is considered [14]. To keep the cost
down, a passive RIS (with no radio frequency (RF) chains)
is usually made of inexpensive components with severe hard-
ware limitations. Hence, when combined with high channel
losses and many channel coefficients to be estimated, channel
estimation (CE) becomes extremely challenging, and may
lead to prohibitive training overhead. On the other hand,
directional high-gain antennas and a small number of mul-
tipath components lead to a sparse geometric channel with
lower delay spread and higher coherence bandwidth, which
should be exploited during CE. Due to the low-rate change
of the geometric parameters (user location and orientation),
it becomes natural and necessary to harness location infor-
mation to reduce CE overheads and predict link blockages.
Furthermore, an RIS provides a low-cost means to localize
users as it is an additional location reference that enables
time and angle measurements [16]. Hence, the RIS itself
provides the localization solution to solve the communication
challenges. Two exemplary scenarios are unmanned aerial
vehicle (UAV) and autonomous driving systems, depicted in
Fig. 1, where data transfer between the base station (BS) and
mobile station (MS) and radio localization can be simultane-
ously enabled by RISs.! While there have been a large num-
ber of magazines and technical papers on the benefits of RIS
for communication and localization separately, their intimate
connection via SLAC has been largely ignored. In addition,

1Here, we focus on the outdoor scenario. In general, the study can also be
applied to the indoor scenario, where the type of users differs.
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localization and sensing play a more and more important
role in future cellular networks. The study in this paper is
closely aligned with the recent emerging techniques, ISAC
and (cellular) network as a sensor. However, sensing is a
much broader concept. Thus, we have a special focus on
localization, and offer some insights between localization and
communications.

In this paper, we provide an overview of the key research
directions closely related to the realization of SLAC in RIS
mmWave systems: RIS channel modeling and parameter
estimation, and RIS-aided localization and communications.
We first briefly review the salient properties of RIS channels
and then describe different approaches to CE (based on com-
pressive sensing (CS) and data-driven deep learning (DL)).
Then, in contrast to the majority of the reported works on
energy- and spectrum-efficient RIS-aided communications,
we specially focus on the connection between localization
and communications, as well as SLAC with RISs.

II. RIS CHANNELS: MODELING AND ESTIMATION

In this section, we give an overview of the high frequency
channel modeling of RISs, as well as the related challenges.
Then, we show how to exploit the sparse and geometric nature
of the channel when establishing links for communications
and localization.

A. RIS mmWave CHANNEL MODELING

Compared to low frequency systems, the mmWave and THz
band channels tend to be simpler, but suffer more from
non-line-of-sight (NLoS) propagation losses and hardware
challenges (phase noise, nonlinearity) [10]. The simplicity
of the mmWave channel is due to small number of multi-
path components, in the addition to the line-of-sight (LoS)
path [9]. With ongoing development of mmWave and THz,
spatio-temporal channel models comprising angle of arrival
(AoA), angle of departure (AoD), time-of-arrival (ToA),
delay spread, and distribution of the NLoS paths, the sig-
nal processing techniques can be adapted to sparse channel
conditions. RISs have mainly gained interest as a means to
overcome the large losses at high frequencies by control-
ling the radio propagation environment [12]-[14]. Similarly,
under optimized phase control, they can provide additional
measurements of AoA, AoD, ToA, independent of the uncon-
trolled multipath, thus enabling or boosting localization and
sensing capabilities [16].

1) MATHEMATICAL MODEL

An illustration of a system with an RIS is given in Fig. 2,
where the BS and MS are equipped with multiple antennas
connecting to both phase shifters and power amplifiers while
the RIS has multiple elements made of phase shifters only.
The shapes of the antenna (element) array can be uniform
linear array (ULA), uniform planar array (UPA), uniform
rectangular array (URA), and even uniform circular arrays
(UCA). In the system, some components affect the end-to-
end BS-MS MIMO channel matrix. These include amplitude
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FIGURE 1. Typical applications for SLAC with RISs. A UAV serves as a mobile location reference and high-gain
communication relay, which is configured to meet the red truck’s SLAC requirements. When the LoS is blocked, the RIS can
be reconfigured to provide a strong backup path to the red self-driving car. Different from previous generations,
localization and communication will reinforce each other, rather than compete for resources.
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FIGURE 2. An illustration of an RIS system model with BS and MS antenna arrays and some LoS, NLoS, and RIS-aided channels, as well as
AoA and AoD ranges of all possible paths. A control channel (CC) is established between the BS and RIS.

and phase control at the BS/MS, the gains of the BS and where the LoS path is

MS antennas, RIS phase control matrix, and LoS, NLoS and T

RIS paths. Mathematically, the channel at subcarrier k is Hy Los = arLosams(0Los)aps(Pros)
expressed as

ol 2k AftLos (2)

for LoS path gain ay0s, A0A 01,05, AoD ¢} s and ToA 7,
H; =Hy 10s + Hi NLos + Hi Ris, @)) where Ay is the subcarrier spacing, and ays(-) and ags(-) is
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the MS and BS response vector, respectively. Similarly, the
NLoS part of the channel is the superposition of M paths:

H NLos
M

= ) NLoSAMS (01 NLo8 )R (B, Np.og e A TNLS,
m=1
where each path may be a single-bounce or multiple bounce
path, @m,NLoS Om,NLoS» @, NLos» a0d T, NLos are the NLoS
path gain, AoA, AoD, and ToA associated with the mth path,
respectively. Final part of the channel related to the RIS is

Hj ris = agise’ 7THATmIS

xams(OR1s Jags (P Rr1s)Rkaris (Pris aps (Pris),

where 2y is a diagonal matrix that describes the RIS control
(in phase and amplitude), @rig and ¢gg are the AoA and
AoD for the channel between the BS and RIS, while s
and #Rys are the AoA and AoD for the channel between the
RIS and MS, and tggs is the corresponding ToA. Note that
the path gains o, NLos and aris may be random, if each path
corresponds to an unresolved cluster of paths.

2) MODELING CHALLENGES

The RIS channels are modeled as compound channel between
BS-RIS and RIS-MS with the phase control at the RIS.
The channel models of the compound link depend on the
environment, mobility of users and other network elements,
and the frequency band. The phase control at RIS modifies
the behavior of the compound link to maximize the channel
gains. The RIS (phase) control depends on various aspects,
but predominantly the type of the RIS itself and its limitations
(element spacing, element gains, phase shifter resolutions,
etc.). Models for RIS control should account for these limita-
tions [17], as well as possible frequency selectivity [18]. As a
low-cost RIS will be HW-limited, each of these limitations
must be carefully modeled. For instance, realistic models for
mutual coupling are needed when RIS elements are spaced
less than half a wavelength apart [19]. An additional mod-
eling challenge stems from the large aperture of the RIS,
which pushes the far field of the array far away from radiation
source, leading to wavefront curvature [20]. This near field
region can be handled with beamforming algorithms via CE,
but may result in decreased channel gains compared to far
field operation. There are many different types of RISs whose
physical properties have impact on the control algorithms.
The two most common in literature are phased reflective
arrays and metasurface-based RISs [14]. The most commonly
utilized RIS models in literature are phased reflective arrays
as those allow easy way to model and modulate the phase
shifts, and subsequently, the beamforming at the RIS.

In summary, the RIS channel models can be composed by
combining the conventional static and mobile channel models
with specific RIS hardware models and RIS control algo-
rithms. There are many research challenges ahead to physi-
cally and algorithmically understand the behavior of the RISs
and channels with RISs, how to estimate the channel, how to
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FIGURE 3. A systematic framework for CS-aided RIS CE, RIS beam
alignment, and deep neural network (DNN) based data-driven
approaches for RIS joint active and passive beamforming, channel
parameters extraction, and even MS localization. The beam training
matrix design is also of great importance for the above tasks, and can be
enhanced by prior location information on MS and environmental
objects. As for different SLAC objectives, a variety of loss functions can be
considered accordingly.

steer beams efficiently, and ultimately, how to simultaneously
maximize the communication and localization performance.

B. RIS CHANNEL ESTIMATION

RISs possess several fundamental limitations that affect CE
capabilities: (1) a large number of elements but no or limited
number of RF chains; (2) low computational power and small
storage space; (3) severe hardware issues such as phase quan-
tization and mutual coupling. All these properties should be
taken into consideration when designing and developing effi-
cient yet effective RIS-aided communication and localization
protocols. A systematic framework is sketched in Fig. 3, con-
taining three approaches: pilot-based approaches relying on
CS [21]-[23], blind beam alignment relying on pre-designed
beam codebook [24], and data-driven approaches [25]-[27].
These are described now in detail.

1) RIS CHANNEL ESTIMATION VIA COMPRESSIVE SENSING

In order to achieve the optimal or sub-optimal joint active
and passive beamforming, it is essential to get an accurate
channel state information (CSI) of all the individual channels
in (2)—(3) or parameters (i.e., AoAs, AoDs, and path gains)
therein. As discussed earlier, there exists inherent sparsity
in the mmWave MIMO channels, benefiting from the poor
scattering propagation environment, which can be leveraged
in the CE algorithm development via advanced CS tech-
niques, e.g., approximate message passing (AMP) and oft-
the-grid atomic norm minimization (ANM) [21]. However,
for the purely passive RIS architecture without any connected
baseband processing units, CE can only be performed either
at the BS via uplink training or the MS via downlink training,
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due to the lack of observations at the RIS and its limited
computation capabilities. When extending to multi-user RIS
CE, a shared BS-RIS channel exists among all the users, and
this fact should be considered for CE algorithm development.
In order to simplify the CE, a few active sensors or anchors
can be deployed at the RIS, so that CE can be performed at
the RIS, by alternations of uplink and downlink training [28].

With respect to the beam training matrix, if no prior
knowledge about the MS location and environmental objects,
e.g., scatters, reflectors, is available, a random construc-
tion or selection from part of unitary discrete Fourier trans-
form (DFT) matrix or array response vectors are usually
considered. The prior information on MS location and
environmental objects can be transformed into the prior
knowledge on channel parameters, e.g., AoAs and AoDs.
Thus, a better beam training matrix can be designed with
higher resolution, compared to the case without any prior
information [29]. This in turn brings better performance on
RIS CE. On the other hand, the prior information can be used
to reduce training overhead by beam selection, resulting in an
increase on effective SE.

2) RIS BEAM ALIGNMENT

Beam alignment, a one-step direct approach, can intention-
ally skip the CE process and directly focus on the optimal or
suboptimal beam pair selection. It scans and chooses the best
pair of beams, one for each terminal, according to a certain
criterion, for data transmission [24]. Meanwhile, a coarse
MS location can be extracted from the selected beams. The
criteria of choosing the best beam pair include maximizing
the received power, multiple hypothesis testing, etc. These
criteria work well in the high signal-to-noise ratio (SNR)
regime and bring a promising performance in terms of beam-
forming gains and effective SE. Same as RIS CE, the prior
location information can also help. The weakness lies in that
the performance of beam alignment will be determined by
the resolution of the predetermined beams (closely related to
training overhead) and the criterion of beam selection. When
the number of RIS elements is large, its overhead will be
inevitably high, which might prevent its usage for RIS-aided
mmWave MIMO systems in practice.

3) RIS DATA-DRIVEN APPROACHES

In practice, a huge number of low-cost RIS elements are
needed in order to compensate for the severe path loss
occurred in the reflection route via RIS. Under such an
extreme situation, advanced CS-based CE scheme and stan-
dard beam alignment may fail to deliver a satisfactory perfor-
mance due to either the inevitably high complexity or training
overhead. In this regard, data-driven approaches come into
effect and may play a pivotal role in CE [25], [26], joint
active and passive beamforming [30], MS localization, and
SLAC (see Fig. 3). In general, data-driven approaches enable
us to learn a model from the huge amount of available data
(usually with labels) for different purposes. After the training,
the learned model is leveraged to predict the output with
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FIGURE 4. Case study 1: CE via compressive sensing (ANM [21]) and
beam alignment in terms of effective SE, considering 16 BS and 16 MS
antennas and 64 RIS elements, all with half-wavelength spacing. Each
individual channel is modelled by following Section II-A, and the CE is
performed at the MS via downlink training. Beam alignment is conducted
by creating single-layer beam codebooks at all the terminals.

new input. The commonly known data-driven approaches
include DNN, convolutional neural network (CNN), deep
unfolding neural network, etc. In the data-driven approaches,
the dataset can be collected by fixing the beam training
matrices (with reasonable sizes) at all the terminals, resulting
in a reasonable training overhead. The labels include the
exact (cascaded) channels or parameters therein, joint active
and passive beamforming, MS location, or combinations of
these. A fully connected DNN or its variant is then trained
to map the received signals to the aforementioned labels.
Besides, deep unfolding can also be applied with the aid
of domain knowledge to mimic the conventional iterative
CE algorithms, e.g., iterative reweighted method, projected
gradient descent, yielding better estimation performance as
well as speeding up the convergence [26]. The training pro-
cedure can be done offline with parameter fine-tuning online
with a negligible effort. The SLAC loss functions include the
combinations of the normalized mean square error (NMSE),
SE, and position error bound (PEB). After training, the DL
model is used for real-time implementation with the same
fixed beam training matrices as in the channel acquisition
phase to collect observations. The output of DL model can
be used for multiple purposes, as various loss functions can
be applied, shown in Fig. 3.

C. CASE STUDIES

To demonstrate the relative performance of the different
approaches, the usefulness of exploiting sparsity, as well
as different performance metrics, we have conducted two
case studies. The first case study (shown in Fig. 4) com-
pares RIS channel estimation via compressive sensing (using
ANM [21]) with beam alignment, with performance mea-
sured in terms of the effective SE (i.e., accounting for the rate
loss due to using 7}, training signals compared to a frame time
of duration 7, = 500). CE via ANM outperforms the standard
beam alignment due to its fixed beam resolution. As the
effective SE is a function of the training overhead T,/T,
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TABLE 1. Overview of SLAC for possible applications in RIS-aided communication. Here, v means that the information has limited impact, v means that
the information is useful, and v/ vmeans that the information provides significant performance benefits. We observe that location and map information
can boost RIS-aided communication performance, and should themselves be provided with the aid of RIS.

Communication Prior location Prior map Localization and sensing Prior location Prior map
application information information application information information
RIS phase profile RIS phase profile
optimization [31] 444 v optimization [32] 44 v
Frame structure :
st 52 v - User tracking [34] Y Y
RIS channel estimation RIS environment mapping
23] v v [35] v v
RIS link blockage . .
precieion T v 44 RIS object sensing [6] v v
Dedicated region (low
Inter-RIS handover [37] v v energy, high secrecy, etc) L4 v
emphasizes the importance of CSI acquisition, already dis-
100 £ E cussed in Section II-B, and the RIS control. An overview of
- : how prior location and sensing information can be harnessed
N : for communication and localization applications with RIS is
m T~ T provided in Table 1. For instance, prior location informa-
<101 s B E tion can be leveraged for RIS phase profile optimization in
~ H “Te T e N : both communication and localization applications. The two
| | - - - Deep Unfolding, T, = 24 | ~~~_ i . . .
i . =L | research topics are closely coupled. For this reason, we will
- - - Deep Unfolding, T, = 28 T~ . . . . .. . . .
I Least Squares, T} — 32 =~ discuss, in this section, RIS optimization for communications
10-2 : P | and localization performance separately, as well as their joint
0 5 10 15 20 performance. We conclude with a brief remark on the use of

SNR (dB)

FIGURE 5. Case study 2: CE via data-driven approaches (deep unfolding)
and least squares (which ignores the channel sparsity) in terms of NMSE,
considering 1 BS antenna, 16 MS antennas, and 32 RIS elements, all with
half-wavelength spacing. Each individual channel is modelled by
following Section II-A.

we observe that the performance does not further improve
when we increase the training duration from 7, = 40 to
T, = 56 in the beam alignment. On the contrary, performance
improvement can still be seen in the CE via ANM. The second
case study (shown in Fig. 5) compares cascaded channel esti-
mation via data-driven deep unfolding with the standard least
squares approach (which ignores channel sparsity), in terms
of NMSE [26]. Deep unfolding mimics the gradient descent
algorithm for a regularized optimization problem, where both
channel rank deficiency and noise effect are considered. Deep
unfolding based cascaded channel estimation is capable of
offering better estimation performance in terms of NMSE
compared to the least squares estimation with lower training
overhead T}, /7.

Ill. RIS SIMULTANEOUS LOCALIZATION

AND COMMUNICATION

Many practical applications can be enabled by virtue of
RISs. The RIS mmWave MIMO channels contain the geom-
etry information about the environmental objects and the
terminals, which inextricably link the two important func-
tionalities, i.e., communications and localization. This also
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RIS for radar-like sensing.

A. RIS FOR COMMUNICATIONS

A typical use case of an RIS in wireless communications is
to use it as a reflector enabling communications ‘“‘around a
corner”’ by using directive beamforming. In mmWave com-
munications, the path loss of the radio wave propagation is
very large requiring usually a LoS connection between the
transmitter and the receiver. If the direct link is obstructed,
areflected “LoS”-like link may be created by an RIS:

Hy = Hi Nios + Hi ris(S2%), 3)

where the RIS control §2; can be tuned to optimize the end-
to-end SNR. The reflection loss decreases the receive power
level, but still it can in many cases be much higher than
that caused by random scattering from uncontrolled channel,
though still limited of course by physics [39]. Due to its large
area, an RIS can leverage the near-field effect and create
not only directional beams, but also positional beams. Such
beams focus energy and provide communication quality in
a specific location, rather than a specific direction, with as
extreme case so-called holographic RIS [40].
The RIS operation can be interpreted by at least two ways.
« One is to see it as a mechanism to control on the random
wireless channel realization [38]. The classical system
design takes the wireless channel as it is so that the
waveforms, channel codes, transmit and receive pro-
cessing etc. are the functionalities that an engineer can
design. The introduction of an RIS (or multiple RISs) in
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the channel changes the paradigm so that one can also
design the channel to optimize communication-relevant
performance metrics.

o The other way to interpret the use of an RIS is to inter-
pret it as a passive relay station. A true relay station
amplifies the received signal directly in the amplify-and-
forward (AF) protocol, or decodes and re-transmits it in
the decode-and-forward (DF) one. The RIS can operate
in some sense similarly to the AF relay without active
power amplification or receive noise, because it is a
passive element. However, similar order or even better
power gains have been reported [41].

The performance metrics for the communications include
the link range, SE or EE, for example [15]. The former can
be characterized as the probability of outage of given data
rate as a function of the distance between the transmitter and
the receiver. The latter is basically the achievable rate or the
sum rate in the case of multiple users. Both depend on the
signal-to-noise-plus-interference ratio (SINR) at the receiver.
The target of the RIS control algorithm is to adjust the phase
shifts so that the SINR is maximized by coherent combining
of the propagated signal given the instantaneous CSI.

B. RIS FOR LOCALIZATION

The RIS has been recognized as one of the key enabling
technologies toward B5G localization [16], [42]. A typical
use case on an RIS in localization, is to use it as a location
reference point when the LoS connection is obstructed. The
reflected LoS path created by the RIS provides an informative
measurement of the user’s position. When LoS is present,
the RIS can provide localization improvement, by turning
multipath from a foe to a friend, and moreover controlling this
multipath to optimize localization performance. In particular,
the RIS has great potential to improve the estimation accuracy
of the channel parameters (such as AoA, AoD, ToA, phase-
of-arrival (PoA), and even Doppler shifts), by optimizing the
adjustment of the phase profile or the current distribution in
the RIS elements. As a result, the position estimation by uti-
lizing the geometric relationship between the measurements
and positions, can be significantly improved.

More precisely, considering downlink transmission as in
Figure 1, and denoting the state (3D position, 3D orientation)
of MS, BS, and RIS by §ps, Sbs, Sris, and the position of
physical interaction points by pj,,, then the different channels
in (1) are functions of these geometric parameters:

Hy = Hj 1os(Sms, Sbs) + Hk NLoS(Sms. Sbs, Pip)
+ Hk,RIS(Sms: Sbss Sris)-

Hence, by estimating the individual channels in H and their
geometric parameters, it is in principle possible to recover the
MS position and/or RIS position, provided BS state is known.

As in communications, RIS operation for localization can
be interpreted in several ways.

« First, an RIS with known position and orientation serves
as a location reference (similar to a BS) in a global
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coordinate system. The signal from this reference pro-
vides measurements of ToA, AoA, and AoD, which
enable more accurate localization.

« A second interpretation is as a smart object with a unique
signature, providing a distinguishable multipath compo-
nent, thus aiding localization and environment mapping
applications.

An RIS can operate as a reflector, a receiver, and a trans-
mitter. For the most commonly used reflector mode, an RIS
can be deployed to smartly forward the wave signals to user
terminals or based station, where the multi-path propagation
is fully utilized to localize users. For the receiver mode,
an RIS can be configured with a nearly continuous phase
profile, acting as a lens. Due to the large size of the RIS,
wavefront curvature can be harnessed to localize MS and
help with system synchronization [43]. For the transmitter
mode, an RIS can act similarly to analog transmit beamformer
and generate phase-shift keying (PSK) modulated symbols
as pilots, hence the channel and position estimation can be
performed.

The performance metrics for localization include root
mean-square error (RMSE) of position estimation and the
localization coverage. Through Fisher information analysis,
the Cramér—Rao bound of position can be derived, using as
the PEB for localization frameworks.

C. RIS FOR SIMULTANEOUS LOCALIZATION AND
COMMUNICATIONS
With the development of 5G and beyond, emerging
applications have posed stringent constraints on both com-
munications and localization. For example, in autonomous
driving, a large amount of information needs to be exchanged
among vehicles and roadside infrastructure and decimeter-
level localization accuracy at the MS side should simulta-
neously be achieved. In these emerging SLAC applications,
the signal and algorithm designs, architecture, and standards,
should be further investigated. The RIS can be a promising
candidate technology in realizing SLAC applications, since,
as we will see, it shows great potential in achieving high SE
communications and high accuracy localization performance.
Distinct from the conventional communications or local-
ization framework, where either the communications metrics
(SE, for example) or the localization performance (PEB) are
considered, RIS-assisted SLAC requires a proper trade-off
between communications and localization. Particularly, the
optimal adjustment of the phase profile for the RIS should
be designed to meet both the communications and localiza-
tion requirements. In Fig. 6, we study the trade—off between
communication and localization in a SISO system equipped
with a single RIS (as in [44, Fig. 1]). The coherence time is
assumed to be 7. = 1000 symbols, where we use T, > 3
symbol slots for transmitting specific pilots and the rest for
communication. For each value of Ty, the localization and
communication performance are calculated in terms of PEB
and SE, and illustrated as a curve in Fig. 6. The RIS phase
profile sequence can be random (when there is no a priori
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FIGURE 6. PEB vs. NLoS SE with T, increasing from right to left, for a SISO
system equipped with a single RIS of size 16 x 16 (blue curves) and

32 x 32 (red curves). The BS, RIS and the user are located at (1, 1, 0),

(0, 0, 0), and (5, 5, —5), respectively. We consider directional or random
RIS profiles for localization and communication. The rest of the
parameters can be found in [44, Table 1].

location information) or directional (when there is a priori
location information) during pilot transmission, while it is
always directional during communication, as it is based on
the estimated channel from the pilots. We observe that such a
priori location information can significantly boost both maxi-
mal SE (about a factor of 2) and minimal PEB (about a factor
of 10). The size of the RIS has a major impact on the per-
formance, where going from 256 elements to 1024 elements
improves the maximal SE about 4 times and the minimal
PEB about 2—4 times. The figure also clearly illustrates three
distinct regimes: (i) communication and localization quality
are bad when T}, is too small, as we obtain a poor estimation
of the user position, which leads to directing the signal to
an incorrect location and subsequently a low SNR. In this
regime, both PEB and SE can be improved by increasing 7p;
(ii) good localization performance but low rate occurs when
T}, is too high, since too much of the coherence time is devoted
to pilots, leading to excellent channel estimates, but no time
to exploit them; (iii) a regime where both positioning and
communication have good performance, near the peak of the
PEB-SE curves, obtained by moderate values of 7}, (about
5% overhead for the directional RIS phase profiles and 25%
for the random RIS phase profiles, irrespective of the RIS
size).

More generally, in the SLAC framework, the objective
function involves both communication metrics (e.g., SE) and
localization metrics (e.g., PEB). Considering x as the avail-
able resources, which include RIS phase profiles, power,
BS beamforming, and time/frequency allocation, canonical
versions of the SLAC problem are as follows.

o Communication-centric design: The aim is to opti-
mize communication performance, while ensuring good
enough localization quality:

max SE(x) 4
s.t. PEB(x) < y. ©)
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FIGURE 7. RIS for radar-like sensing, providing 2 additional propagation
paths compared to the conventional backscattered signal. These two
paths can boost sensing performance.

o Localization-centric design: The aim is to optimize
localization performance, while ensuring good enough
communication quality:

min PEB(x) (6)
s.t. SE(x) > y. @)

o Multi-objective design: The aim is to optimize both com-
munication and localization metrics,

max [SE(x), —PEB(x)], (8)

where the Pareto-optimal frontier can be found by, e.g.,
linear scalarization:

max w.SE(x) — w;PEB(x), )

in which w, > 0 and w, > 0 are the scalarization
weights.

When SE and PEB are conflicting, we have a trade-off;
when SE and PEB are aligned, they will reinforce each-other.
This is visible in Fig. 6, where for short pilots, SE and PEB are
aligned (increasing the pilot improves both metrics), while
for very long pilots, they are in a trade-off (increasing the
pilot improves PEB but worsens SE). It is our vision that
reinforcement will be more likely, especially when we are
able to exploit data symbols for positioning, in addition to
conventional pilot symbols. On the other hand, conflicting SE
and PEB, which are associated with pre-5G communications,
will likely become less relevant.

D. RIS FOR RADAR-LIKE SENSING

This paper was limited to RIS for SLAC, where both local-
ization and communication rely on channel estimation, which
is a form of bistatic sensing. RIS has also been considered
for directly supporting radar-like monostatic sensing appli-
cations, such as target detection and tracking. An example of
this is shown in Fig. 7. The conventional backscattered signal
is shown in red and is used by the radar to detect and localize
passive objects. The RIS provides 2 secondary paths:‘abc’
and ‘abde’, which can be used to detect and localize the target
when the backscattered signal is weak. However, overcoming
the large path loss corresponding to the double bounce or
triple bounce reflections requires careful design of the RIS
placement and the RIS configuration. This is the focus of
much ongoing work [45].
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IV. OUTLOOK

We have argued that beyond 5G systems enabled by RIS
will have to rely on a synergy between communications and
localization, since (i) both services rely on the same physical
channel; and (ii) one will rely on the other for optimized per-
formance. This leads to the concept of SLAC, which relies on
the co-design of communications and localization resources
and the flexible trade-off and reinforcement between the
two services. To realize SLAC, reliable geometric channel
models (including RIS and their hardware effects), as well as
low-complexity channel estimation and resource allocation
routines must be developed. More research and development

are

required to address the RIS and SLAC technologies

towards a wide commercial usage, e.g., in cellular com-
munications, UAV, industry 4.0, autonomous driving, and
others.
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