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ABSTRACT Machine learning is a popular approach to security monitoring and intrusion detection in
cyber-physical systems (CPS) like the smart grid. However, these highly dynamic CPS operating in open
environments can result in significant data distribution divergence, which may require the adaptation of a
learned model. While transfer learning has been an effective approach to retain the performance against the
divergence, there is still limited work on a more fundamental question that can be called transferability:
when should one apply transfer learning? To address this challenge, this paper proposes a divergence-based
transferability analysis to decide whether to apply transfer learning and autonomically adapt learning-based
intrusion detectors. This work first identifies three metrics used to measure the divergence between data
distributions, and then explores the relation between detector’s accuracy drop and divergence in extensive
temporal, spatial, and spatiotemporal experiments. Two regression models are trained to approximate the
divergence-accuracy relation and then used to predict an accuracy drop which determines whether to apply
transfer learning. Finally, a state-of-the-art domain adversarial neural network (DANN) classifier is adopted
as the transfer learning model. Datasets from real normal operation profiles and simulated attacks are used
to validate the effectiveness of the proposed transferability analysis against variations in attack timing,
locations, and both. In all three scenarios, the proposed analysis demonstrated high accuracy in predicting
accuracy drop from the divergence, with an RMSE lower than 4.20%, and the DANN can be timely triggered
to achieve an accuracy improvement over 5.00%.

INDEX TERMS Transferability analysis, adversarial training, false data injection, intrusion detection, data
distribution divergence, domain adaptation, smart grid.

I. INTRODUCTION
The smart grid is a trans-continental cyber-physical sys-
tem (CPS) empowered by the advancement of declining costs
in communications, advanced sensors, and distributed com-
puting technology. The grid connects utilities and customers
with two-way power and information flows to provide more
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efficiency, reliability, and safety of power delivery. However,
the growing number of interconnections among billions of
cyber-physical devices creates complex interdependence and
vulnerabilities that will inevitably raise the occurrence of
cyber attacks in power systems.

The impact of a cyber attack on CPS could be grievous
and disastrous, as demonstrated by recent research efforts,
business studies, and real-world incidences [1]–[3]. Machine
learning (ML), which undergoes the rigorous process of
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designing and implementing algorithms with expected per-
formance, has acclaimed significant attention in the smart
grid security research community. A rich line of ML
approaches have significantly enhanced the cyber-physical
situational awareness and security monitoring [4], [5].

General ML approaches presume that the training and
testing data are generated by identical or similar indepen-
dent distribution. This assumption may not hold in many
real-world systems and applications like the CPS, since the
system dynamics may change the data distribution and thus
fail the trained model. This poses a challenge to ML in the
CPS scenarios. In the smart grid, as an example, the load
demand is constantly changing, and there are variations from
normal operations, grid topology and attack patterns [3], [6].

Moreover, despite the mounting risk, labeled attack data
are still rare in the smart grid. The model trained on lim-
ited attack data can be brittle, and seemingly slight changes
in the data distribution may lead to performance degrada-
tion [7]. Transfer learning (TL) is hence proposed to address
this challenge by transferring learned knowledge from a
labeled source domain to a related target domain. It has been
extensively adopted and witnessed remarkable advances in
natural language processing (NLP), image and video applica-
tions [8]. Lately, TL methods are applied to anomaly detec-
tion in Internet and cloud applications [9], which sheds new
light on introducing TL to empower intrusion detection in
highly dynamic cyber-physical power systems [6].

While most existing TLworks focus on designing a sophis-
ticated model to achieve state-of-the-art performance, little
attention has been paid to answering a more fundamental
question, especially in the field of CPS, that may be called
transferability: when should one consider the performance of
a trained model has degraded significantly enough to justify
the need for TL, without having to retrain a new model
from scratch? Studies have indicated that TL performance
is related to the similarity between the source and target
domains [10], and the effectiveness of TLmay remain high in
a certain range of distribution divergence, depending on how
critical the application scenarios are.

We can use Fig. 1 as an illustrative example of the possible
relation between the effectiveness of TL and distribution
divergence. If the divergence between the source domain
and target domain is within a small range, the ML model
trained on the source domain can generally retain a good
performance when applied to the target domain, so TL is not
necessary as the performance boost would be trivial while the
adaptation can be costly. Meanwhile, if the divergence is too
large, even a TL model could suffer a severe accuracy drop
on the target domain as the case is beyond transferable. In this
case, one would better train a newmodel from scratch instead
of applying TL. If the divergence is somewhere in between,
it may be significant enough to degrade the performance of
a trained ML model but not beyond what a TL model can
handle. This will be the sweet spot where we can leverage
TL to retain a good performance against the divergence by
adapting - instead of re-applying or re-creating anMLmodel.

FIGURE 1. The relation between divergence and effectiveness of TL.

In this paper, we will mainly focus on the transferability
between the first and the third situations, where one need to
decide if the divergence is making it necessary to transfer an
existing ML model with effective TL methods.

Based on the remaining gap and above analysis, this
paper explores the landscape of TL by proposing a
divergence-based transferability analysis in CPS. First, the
proposed approach leverages three metrics chosen from
different families to measure data distribution divergence
between source and target domains. Then, two regression
models are trained to approximate the relation and applied
to predict the accuracy drop of the unlabeled target domain.
Finally, the target domain which requires TL is identified, and
we adopt domain adversarial neural networks (DANN) as the
TL model to retain robust detection accuracy.

To validate the effectiveness of the proposed approach, this
paper extracts one week of operation data from ISO New
England as the normal data. The widely studied false data
injection (FDI) attack is then used to generate the attack data.
Considering attacks on different periods and/or locations in
the smart grid, we synthesize the datasets with temporal,
spatial, and spatiotemporal variations. The results demon-
strate that the transferability analysis has high accuracy in
predicting accuracy drop, and the intrusion detector can retain
a robust accuracy after TL is timely applied.

The main contributions of this paper can be summarized as
follows:

1) We propose a divergence-based transferability analysis
to help evaluate the necessity of TL in security moni-
toring for CPS, such as intrusion detection in the smart
grid.

2) We evaluate the accuracy drop and data distribution
divergence with multiple metrics to reveal the relation
between accuracy drop and divergence in dynamic CPS
operations.

3) This paper considers the situation where attacks may
happen at different time and/or locations during the
power system operation, which may lead to temporal
and/or spatial divergence that would result in an accu-
racy drop.

4) The results demonstrate three metrics (PAD, KL, and
MMD) that are able to predict accuracy drop against
both temporal and spatial divergence, which shows that
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the transferability analysis can improve the adoption of
TL in realistic CPS security monitoring.

The rest of this paper is organized as follows: Section II
discusses the related work about transferability analysis.
Section III illustrates the proposed transferability analy-
sis for self-adaptive TL. Section IV introduces the exper-
iments setup. Section V presents the simulation results
and analysis. Section VI draws the conclusions and future
works.

II. RELATED WORKS
In this paper, we are interested in the data distribution diver-
gence that can lead to a significant accuracy drop and require
TL. Divergence metrics like the maximum mean discrep-
ancy (MMD) and Kullback–Leibler (KL) divergence are
commonly used to measure distribution divergence in ML,
including TL.

Recently, several studies outside the field of TL have
started to establish a connection between the distribution
divergence and accuracy. Among them, the most related
work is from Elsahar and Galle [11], [12], who used var-
ious methods such as H-divergence, Fréchet distance and
confidence-based metrics to predict the accuracy drop of
modern NLP and computer version (CV) models under
domain shifts. Both studies above used predicted accuracy
drops to evaluate the robustness of trained models. How-
ever, these studies did not further explore the use of the
predicted accuracy to determine whether/how the model shall
be updated to retain the previous performance. Instead, in our
work, we use divergence metrics as an indicator to determine
whether one should apply TL, benchmarking three diver-
gence metrics in predicting the accuracy drop to create a
reliable predictor that will help operators decide whether to
apply TL based on the predicted performance degradation of
trained machine learning models.

There are also some studies that have used divergence
metrics, such as MMD and cross-entropy, as the domain con-
fusion loss in TL. Long et al. [13]–[15] leverage divergence
metrics to measure the dissimilarity between the source and
target domains as the domain confusion loss, then combine
this loss with the classification loss as the total loss during
training. Meanwhile, we introduce the divergence before the
TL training process to decide whether one shall apply TL
or not. Instead of using the divergence metrics as domain
distribution dissimilarity in the training stage, we leverage
the divergence metrics to predict the accuracy drop in the
pre-training stage and trigger the TL process if the predicted
accuracy drop is in a suitable range.

Divergence has also been introduced in power system stud-
ies. For example, Gupta et al. [16] use the relative entropy
between normal and the perturbed power flow data, to pre-
dict the blackout risk. Tajdinian and Samet [17] propose
a method based on Kullback–Leibler (KL) divergence for
discriminating inrush and internal fault currents in power
transformers. Compared to these works, our transferability

analysis focuses on predicting the performance degradation
based on the divergence metric to decide when TL should
be triggered, instead of using the metric to measure the dis-
similarity for a direct alert. We also consider different events
of attacks, which may have more intentionally developed
schemes than typical faults and thus can be more challenging
to detect than the events in the aforementioned detectors using
PMU-data.

It is notable that divergence itself can be used
directly in the power system attack detection without TL.
Chaojun et al. [18] use KL divergence to calculate the dis-
tance between normal and false data to identify the lat-
ter directly. Pal et al. [19] measure the Euclidean distance
between real and tampered data to detect the data manip-
ulation attacks directly. In both studies, the authors use
divergence metrics to measure the dissimilarity between two
data distributions and generate alerts for anomalies directly.
However, their uses of the divergence have only focused on
the dissimilarity between different events that typically have
an inherent distinction in the data distribution at any moment.
Meanwhile, our work considers the distribution divergence
under the same event (normal and attack, respectively), which
can change over time and space in a more intriguing way.
In addition, these studies did not consider the following
domain adaptation with TL, which can significantly retain or
improve a trained model’s robustness against the divergence.
Our study uses divergence metrics not to generate alerts
directly but to decide whether TL needs to be triggered.
Meanwhile, as a pre-determination step of TL, our transfer-
ability analysis can be combined with TL to adapt the event
detectors in the studies above to retain their performance
under dynamic operating environments.

Inspired by the existing work, we investigate different
divergence measurement metrics and choose three from them
to measure the data distribution divergence between different
domains.With these metrics, we want to identify the potential
relation between attack detection accuracy drop in the smart
grid and distribution divergence and approximate the relation
through regression models.

III. TRANSFERABILITY ANALYSIS FOR SELF-ADAPTIVE TL
A. PROBLEM FORMULATION
CPS operating in open environments may have significant
data distribution divergence, which may lead to accuracy
degradation for a model trained on the source domain and
tested on the target domain. Given source domain DS and
target domainDT , the distribution divergence may be caused
by a variety of reasons. It can be due to covariate divergence,
where only the feature distribution changes, i.e., PDS (X ) 6=
PDT (X ), but the conditional distribution remains the same,
i.e., PDS (Y |X ) = PDT (Y |X ). It may be caused by concept
divergence, where PDS (X ) = PDT (X ) and PDS (Y |X ) 6=
PDT (Y |X ), or label divergence, where PDS (Y ) 6= PDT (Y )
and PDS (X |Y ) = PDT (X |Y ), or a combination of the above
divergence.
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FIGURE 2. The proposed divergence-based transferability analysis for the smart grid intrusion detection.

This paper focuses on the covariate divergence, which
often occurs in CPS intrusion detection scenarios because
the system variations and attack variations will influence the
normal and attack data distribution. In the power system,
the system variations may be caused by the different load
demands, normal operations, or topology changes. The attack
variations could arise when the same scheme is launched
again at different periods or locations in the grid. This paper
considers the binary intrusion detection problem in the smart
grid, which intends to classify the multivariate time series
measurements data as attack events or normal operations.
We focus on the scenarios where two consecutive attacks
target on different time and/or different locations.

We are interested in the attack detection accuracy drop
that requires the TL. We assume that the source domain
consists of labeled normal data and attack data, where DS =

{(xS1 , yS1 ), . . . , (xSn1 , ySn1 )}. If we had a fully labeled target
domain DT , the accuracy drop could be measured by empir-
ical data:

1Pr = PrDS − PrDT , (1)

where PrDS is the accuracy of a model trained on a source
domain DS , and PrDT is the accuracy of this model when
applied to the target domain DT . However, the detection
system deployed in the smart grid detects attacks online, and
the new generated target domain is unlabeled, i.e., DT =

{(xT1 ), . . . , (xTn2 )}. So, the accuracy drop can not be calcu-
lated via (1) with the unlabeled target domain.

To solve the problem, we introduce the labeled pseudo
target domain DTs = {(xTs1 , yTs1 ), . . . , (xTsn2 , yTsn2 )}. Since

the pseudo target domain is labeled, we can measure the
attack detection accuracy. We propose to explore the relation
between accuracy drop and divergence between the source
domain and the pseudo target domain, then use the relation
to predict the accuracy drop of the unlabeled target domain.

If we have the divergence-accuracy drop relation, the accu-
racy drop of the target domain can be predicted by:

1Pr ′ = A(d), (2)

where 1Pr ′ is the predicted accuracy drop, A is the rela-
tion between accuracy drop and divergence, and d is the
distribution divergence of the source domain and the target
domain.

The proposed transferability analysis aims to predict accu-
racy drop and identify the unlabeled target datasets where
a trained model will degrade significantly and call for TL.
The challenges are how to measure the data distribution
divergence in intrusion detection and how to approximate
the relation between accuracy drop and divergence, which
are tackled by the proposed framework in Fig. 2. The frame-
work has two phases: 1) We measure the accuracy drop and
divergence between each pair of source dataset and pseudo
target dataset, then train regression models to approximate
the divergence-accuracy drop relation. For an unlabeled target
dataset, calculate the divergence and predict the accuracy
dropwith the relationmodel. 2) If the predicted accuracy drop
is in a suitable range, trigger the TL.

B. DATA DISTRIBUTION DIVERGENCE METRICS
Considering the properties of different metrics, we select
three widely used divergence metrics of different families
from the literature:
• Classifier-based metric: depending on the capability
of a basic classifier to discriminate between samples
generated from source and target domains, like Proxy
A-Distance (PAD).

• Information theory-based metric: measuring the infor-
mation gain required to code samples from one distribu-
tion using a code optimized for another distribution, like
Kullback–Leibler (KL) divergence and Jensen-Shannon
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(JS) divergence [20]. KL has shown effectiveness in
predicting performance in sentiment analysis [21], so we
pick KL in this paper.

• Higher-order moment-based metric: projecting higher-
order moments of random variables to a new feature
representation space, like Maximum Mean Discrep-
ancy (MMD), Central Moment Discrepancy (CMD),
and Correlation Alignment (CORAL) [22]. In this paper,
we choose the MMD because MMD can make use of
the kernel trick and is applicable to a wide range of data
type [21].

1) PROXY A-ISTANCE
PAD is a H-divergence based metric proposed by
Ben-David et al. [23]. Ben-David et al. have proven that
the error of a trained model on a target domain is
bounded by its error on the source domain and the
H-divergence between the source domain and the target
domain.H-divergence depends on the capability of a trained
classifier to discriminate between samples generated from
source and target domains. Although H-divergence is hard
to calculate, Ben-Davidr et al. approximates it by Proxy
A-Distance (PAD).

To calculate the PAD, source domain data and target
domain data are mixed, and samples from source and target
domains are labeled as 0 and 1, respectively. Then a classifier
Gd is trained on the mixed dataset to distinguish between
samples from source and target domains. Finally, the classi-
fier is tested on the held-out test dataset. The PAD is defined
as:

ε (Gd ) =
1
|D|

∑
xi∈D′s,D

′
t

|G (xi)− I (xi)| , (3)

PAD = 2(1− 2ε (Gd )), (4)

where Gd is the trained classifier. ε (Gd ) is the classifier’s
error on the held-out dataset D′s and D

′
t . I is the true domain

label. In the experiments of this paper, following the approach
of Ben-David et al. [23], we train a linear SVM as our
classifier.

2) KULLBACK–LEIBLER (KL) DIVERGENCE
KL [17] is the relative entropy between two probability den-
sity functions p(x) and q(x):

DKL(P||Q) =
∫
p(x)log

p(x)
q(x)

dx. (5)

We adopt the work of Hershey and Olsen et al. [24] and
consider the two datasets follow Gaussian Mixture Models
(GMM). The marginal densities of x ∈ Rd under p and q are

p(x) =
∑
a

πaN (x;µa;6a),

q(x) =
∑
b

πbN (x;µb;6b). (6)

To estimate D(P||Q), we could conduct Monte Carlo sim-
ulation. Using n i.i.d. samples {xi}i=1n , we have:

DMC (P||Q) =
1
n

n∑
i=1

log
p(xi)
q(xi)

→ D(P||Q). (7)

The variance of the estimation error could be decreased when
n→∞.

3) MAXIMUM MEAN DISCREPANCY (MMD)
MMD is a non-linear metric widely used in TL. MMD esti-
mates divergence between two distributions based on the
Reproducing Kernel Hilbert Space (RKHS) [25]. Given two
datasets X = {x1, x2, . . . , xn1} and Y = {y1, y2, . . . , yn2} that
come from two distribution P andQ, the empirical estimation
of the distance is defined by:

DMMD(X ||Y ) =

∥∥∥∥∥∥ 1
n1

n1∑
i=1

ϕ(xi)−
1
n2

n2∑
j=1

ϕ(yj)

∥∥∥∥∥∥
H

. (8)

where ϕ(x): X → H, is a kernel-based function mapping
samples to a feature representation space in RKHS.

The feature representation varies with the different choices
of kernels. In this paper, the radial basis function (RBF)
kernel is adopted since the RBF kernel can take advantage
of the Taylor expansion of the Gaussian function to map all
the moments of two distributions [15].

C. REGRESSION MODEL
After measuring accuracy drop and data distribution diver-
gence by the selected metrics, the potential relation between
the distribution divergence and the detector accuracy drop
are approximated through regressionmodels, including linear
regression and neural network regression.

1) LINEAR REGRESSION
A strong positive relation between detection accuracy drop
and divergence can be observed in Fig. 5: Pearson correla-
tion coefficient ρ is above 0.83 in all cases. According to
Haldun [26], 0.8 < ρ <= 1 shows a strong relation between
two variables. Based on this observation, we first introduce a
linear regression model.

1Pr = w1d + w0, (9)

where w0 and w1 are parameters of the linear regression
model, d is the distance between DS to DT , and 1Pr is the
accuracy drop of a model that is trained on DS and applied
to DT .

2) NEURAL NETWORK REGRESSION
Considering that the divergence-accuracy relation may not be
linear, we also leverage a neural network (NN) regression
model. The neural network regression model can learn a
non-linear and complicated relation between accuracy drop
and divergence.

1Pr = fneural(d), (10)
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where fneural is a fully connected neural network, we adopt
the same configuration as [11]. The input d is the distribution
divergence of two domains. The output 1Pr is the accuracy
drop.

With the regressionmodels, we canmeasure the divergence
between the source domain and the unlabeled target domain,
and predict the accuracy drop according to the divergence.
If the divergence is greater than the accuracy drop threshold
5, we will trigger TL for the target domain. The entire
proposed transferability analysis process is summarized in
Algorithm 1.

Algorithm 1 Transferability Analysis.
Input: The set S of labeled source datasetDS ; The set T∫ of

labeled pseudo target datasetDTs ; The set T of unlabeled
target dataset DT ; Accuracy drop upper bound 5 and
lower bound π

Output: TL decision
1: for DS , DTs in S, T∫ do
2: # Measure divergence
3: d ← D(DS ||DTs )
4: # Measure accuracy drop
5: Train a classifier on DS , calculate accuracy PrDS
6: Apply classifier on DTs , calculate accuracy PrDTs
7: 1Pr ← PrDS − PrDTs
8: end for
9: # Train a regression model

10: 1Pr = A(d)
11: # Predict accuracy drop for target domain
12: for DS , DT in S, T do
13: d ′← D(DS ||DT )
14: 1Pr ′ = A(d ′)
15: # Make TL decision
16: if 1Pr ′ <= π then
17: Use exiting ML model
18: else if π < 1Pr ′ < 5 then
19: Train a TL model
20: else
21: Train a new ML model
22: end if
23: end for

IV. EXPERIMENTS SETUP
This section will introduce our experiments setup to validate
the transferability analysis for intrusion detection.

A. NORMAL DATA
To establish experiments based on realistic scenarios,
we obtain public load demand from ISO New England [27]
from August 24th to 30th, 2019, as shown in Fig. 3. In ISO
New England, the demand was reported every 5 minutes.
To increase the sampling rate and maintain the trend of
the demand curve, the demand data is interpolated with a
1-second interval by the Spline method in MATLAB.

FIGURE 3. One week load demand of ISO New England [27].

FIGURE 4. The IEEE 30-bus system by the Illinois Center for a Smarter
Electric Grid (ICSEG) [28].

The IEEE 30-bus system [28] is selected as the simula-
tion scenario, and MATLAB toolbox MATPOWER is lever-
aged to generate and synthesize the above load demand.
As illustrated in Fig. 4, the system consists of 30 buses and
41 branches with a total load demand of 189.2 MW. We first
assume that the default operating point in the 30-bus system
is at its peak (100%) and match the total load demand to the
peak load of the data we obtained from ISO New England.
Then we assume that the total demand of the IEEE 30-bus
system follows the same changes as that of the ISO New
England grid (in terms of percentage w.r.t. the peak load). For
example, if the total demand of the ISO New England drops
from 100% at the peak to 80% after 2 hours, the total demand
of the IEEE 30-bus system will also decrease to 80% of its
own peak after 2 hours. This matching will allow us to apply
the same aggregated load profile of the ISO New England to
that of the IEEE 30-bus system.

Meanwhile, we follow [29] and introduce variations into
load for each node over time. Based on [29], we assume that
at a given period, if the load of the entire grid is changed by
x%, the corresponding individual load change across 30 buses
follows a normal distribution with a mean of x% and a
variance of y%. For example, from tk to tk+1, if the total
load of the grid is increased by 3%, the load of each node
may increase similarly but with potential random variations,
such as 3.2% or 2.6%, and the average will be 3%. In our
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experiments, x is the change obtained from ISONewEngland
load profile, y = x/100. 142 measurements over a 1-second
interval are calculated and collected through the DC optimal
power flow (DC-OPF) solver inMATPOWERas normal data.

B. ATTACK DATA
Distinct attack models have been proposed and developed
to analyze and enhance the security of the smart grid in the
past two decades [3]. The false data injection (FDI), first
proposed by Liu et al. [30], is sophisticatedly designed to
exploit a mathematical vulnerability in the residual-based
bad data detector (BDD) and stealthily compromise measure-
ments from electricity grid sensors in a coordinated fashion
[31], [32]. A successful FDI attack will evade the detec-
tion and pose a severe threat to power system state
estimators (PSSE) in the supervisory control and data
acquisition (SCADA) systems, possibly inflicting severe
impacts like power outages, physical damages, and mone-
tary losses [33]. The FDI attack has successfully attracted
the attention of lots of researchers. Therefore, in this paper,
we choose the FDI attack as the attack model.

We present the formulation of FDI attack under the power
flow model as [30]:

r = z−Hx̂, (11)

where z = z1, z2, . . . , zn represents the physical measure-
ments, x̂ = x̂1, x̂2, . . . , x̂m is the estimated states, H is an
n × m Jacobian matrix of power grid topology, and r is the
residual. The traditional BDD calculates the L2 − norm of
residual between observed measurements z and estimated
measurements Hx̂, and adopts the statistical residual tests to
detect the presence of bad data via comparing the residual
with a threshold τ . r > τ indicates the presence of an attack.

If the attacker chooses the attack vector a = Hc, where
c ∼ N (0, σ 2

c ) is the false state error injected into the system,
and injects it into the measurements z by za = z+ a, the new
residual will be:

ra = za −Hx̂a = (z+ a)−H(x̂+) = z−Hx̂. (12)

The new residual remains the same, allowing the FDI attack
to bypass the residual-based BDD. This paper will use za as
the attack data, generated from the false state c with a mean
of zero and a variance of σ 2

c = 0.1.

C. CASE SETUP FOR TRANSFERABILITY ANALYSIS
Three scenarios are considered to validate the effectiveness
of the proposed approach, including temporal, spatial, and
spatiotemporal cases. As illustrated in Fig. 3, if the source
domain is the data from t1 to t2, and the target domain is
the data from t5 to t6, the power grid operators can choose
the data from t3 to t4 as the pseudo target domain, where
t3 > t2 and t4 < t5. So, the pseudo target domain data is
the historical data and do not need to be labeled in real-time.
Since it is historical data, if both normal and attack data are
available, the power grid operators can choose a certain part

of data from the historical data and label them as the pseudo
target domain. Considering the labeled attack data could be
extremely rare in the smart grid compared with the labeled
normal data, if there is no attack data available, the power grid
operators can review the attack models [3] in the literature
and synthesize the most prominent attacks. This can still be
helpful in defense planning and operations against the most
prominent subset of attacks.

1) TEMPORAL CASES
First, we consider a known attack returning at different times.
We assume that attackers launch the attack vector at the same
locations but across different periods in temporal cases. Since
the load demand and its patterns vary significantly throughout
the day, we select the 4-hour time window data as the source
domain and target domain to best capture the characteristics
of data distributions.

As illustrated in Table 1, the source data consists of normal
data launched on Day 1 and attack data with the same hours
collected on Day 2. Considering the load patterns distinct in
different periods of a day, we define 4 cases based on our
previous work [6] according to the variation of load demand:
the valley, the ascending slope, the peak, and the descending
slope. For the pseudo target domain, considering attack data
are rare in the smart grid, we use a 4-hour time window to
collect normal data from Day 3 to Day 5. The normal data
in the pseudo target domain will be used to approximate the
divergence-accuracy drop relation. We also use the 4-hour
time window but divide Day 6 into six intervals as the target
domain for testing.

TABLE 1. Setup of cases in the temporal scenario.

2) SPATIAL CASES
For spatial cases, we consider attacks returning at different
locations. We assume the load demand will be similar in
source and target domains. We select the same 4-hour time
window of the different days for source and target data while
choosing different attack locations for the target data.

Since we use the IEEE 30-bus system, there are a total
of 30 potential buses to be attacked. However, some buses
carry zero loads and are non-attackable. We follow the refer-
ence [34] and notice that attackers will not choose to attack
15 specific buses. Hence for the IEEE 30-bus system, we have
15 attackable source domain datasets and target domian
datasets. We also assume that the attackers only inject one
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FIGURE 5. Relation between actual detection accuracy drop and divergence measured by selected metrics in temporal, spatial, and spatiotemporal
experiments. Each dot corresponds to a pair of source dataset and pseudo target dataset. We also plot the linear regression line and neural network
regression line in green and red.

bus when launching the attack. By conducting training and
testing on 15×15 pairs experiment, the non-transfer methods
perform worst when target buses are 14, 16, and 19. Thus,
we select 15 buses as the source domain datasets separately
and Buses 14, 16, 19 as target domain datasets.

3) SPATIOTEMPORAL CASES
For spatiotemporal cases, we consider attacks happen at
different time and locations. We assume that the time and
locations of attack in the target domain vary from the source
domain. To this end, we select 4 hours (‘‘valley’’) as the
source load demand pattern and another 4 hours (‘‘Peak’’) as
the target load demand pattern. And we inject different buses
for source domain datasets and target domain datasets.

D. CLASSIFIER ARCHITECTURE
We use the DANN [35] as our benchmark TL model, which
aims to learn domain-invariant features by maximizing the
domain discriminator loss and minimizing the label predictor
loss. Zhang and Yan [6] propose a DANN-based framework
in the smart grid and show their frame is sufficiently pow-
erful to perform well on intrusion detection in the smart
grid. For the basic classification model used to calculate the
classification accuracy drop in the transferability analysis,
we extract the Feature Extractor and the Label Predictor
from DANN and combine them into a Multi-layer Perceptron
(MLP) [36], which contains 5 layers and 592 neurons in
total.

We train the MLP on the source domain and test it on
the target domain to acquire the classification accuracy drop.
A threshold 5 is set to indicate whether the data distribution
divergence could have a significantly negative effect on the
trainedMLmodel. Considering FDI is a severe threat, we use
10% of accuracy drop as the threshold in triggering TL in
experiments.

To evaluate TL performance after identifying the tasks,
we compare the detection accuracy of DANN and a
non-transfer MLmethod. Since MLP has demonstrated supe-
rior accuracy and computation efficiency in intrusion detec-
tion [37], we choose MLP as the non-transfer ML method
and follow the same configuration as that in transferability
analysis. All classifiers are implemented in Scikit-learn and
Keras with manually optimized parameters releasable upon
request.

V. RESULTS AND DISCUSSIONS
We first evaluate the performance of the selected metrics in
predicting accuracy drop.

A. EVALUATION OF TRANSFERABILITY ANALYSIS
Fig. 5 shows the relation between actual detection accu-
racy drop (y-axis) and the divergence (x-axis) measured by
selected metrics in temporal, spatial, and spatiotemporal sce-
narios. Note that the pseudo target domain datasets in the
temporal scenario are attack-free as illustrated in Table 1,
while the pseudo target domain datasets in the spatial and
spatiotemporal scenarios contain attack data.
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TABLE 2. Error of accuracy drop prediction in the target domain.

1) COMPARISON BETWEEN THREE SCENARIOS
We can find a strong positive relation between accuracy drop
and distribution divergence with a high Pearson correlation
coefficient: ρ is above 0.83 in all experiments. This observa-
tion also indicates that it is feasible to predict the accuracy
drop by distribution divergence. Among the three scenarios,
spatial cases have the lowest divergence and accuracy drop.
This is because the normal data of source and target domains
are from the same load demand pattern and share similar
distributions. Meanwhile, spatiotemporal cases have the most
significant divergence and accuracy drop, since the source
domain and target domain vary in both temporal and spatial
variables.

2) COMPARISON OF DIVERGENCE METRICS AND
REGRESSION MODELS
To show the relation between accuracy drop and diver-
gence measured by the selected metrics in the target domain,
following Elsahar and Galle [11], we first make a com-
parison in predicting classification accuracy between the
selected metrics and baseline. The baseline directly mea-
sures the mean of actual accuracy drop in each scenario
and takes the mean as its prediction. Table 2 shows the
root mean squared error (RMSE) and maximum absolute
error (MaxAE) of different metrics with the two regression
models. The baseline RMSE, i.e., the standard deviation
of the actual accuracy drop, are 7.09%, 4.18%, 8.19% in
temporal, spatial, and spatiotemporal scenarios, respectively.
The baseline MaxAE are 18.91%, 13.87%, 20.28% in each
scenario.

Overall, all our selected metrics improve significantly over
the baseline in both RMSE andMaxAE. For instance, in tem-
poral cases, PAD and KL with either linear regression or neu-
ral network regression both decrease RMSE to below 2.38%
and MaxAE to under 8.62%. MMD performs slightly worse
than the first two metrics but still achieves high performance
compared to the baseline. MMD has an RMSE of 3.65% and
MaxAE of 10.94% with linear regression, and an RMSE of
3.26% and MaxAE of 9.14% with neural network regres-
sion. Among three metrics, PAD and KL have comparable
performance and show robust prediction power in all three
scenarios. In addition, PAD and KL are more accurate than
MMD in RMSE and MaxAE.

TABLE 3. Comparison of DANN and MLP against returning attacks at different hours.
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Neural network regression has a slightly smaller RMSE
than linear regression in all scenarios, but their general perfor-
mance is close. Overall, the RMSE of two regression models
with any metrics is lower than 4.20% in all cases, implying
the predicted accuracy drop is close to the ground accuracy
drop. In addition to using attack-free pseudo target datasets,
we also evaluate extra cases where there might be attacks in
the pseudo target dataset and it is shown that the regression
based method still remained robust. This indicates a strong
relation between accuracy drop and divergence, and we can
use this relation to predict accuracy drop.

B. FDI DETECTION ACCURACY
Based on the above observation, we can measure the diver-
gence and leverage the regression relation to predict the
accuracy drop of an unlabeled target domain dataset, and
determine whether to trigger TL accordingly.

1) FDI DETECTION ON TEMPORAL SCENARIO
The detection accuracy of DANN and MLP is illustrated in
Table 3. We underscore the target domain hours where the
predicted accuracy drop is below the threshold of 10% and TL
is not required. We find that all the underscored target hours
are during Hours 1-4, 5-8, and 21-24. The reason is the load
demand of the aforementioned hours on Day 6 is overlapped
with most of the source domain load demand on Day 1 and 2.
The overlapping implies less distribution divergence, so the
MLP has a smaller accuracy drop than other hours.

Compared with the TL-required cases, DANN gives less
improvement in the underscored cases. Furthermore, DANN
may not provide improvement when divergence is relatively
small. For instance, during target hours 1-4 in Case 2, the
predicted accuracy drop is only 2.40%, and there is no need
for TL. If we apply TL, DANN degrades the accuracy by
0.48% compared to MLP. In all TL-required cases, however,
DANN shows better performance overMLP. The greatest and
lowest improvements are +25.60% during Hours 13-16 in
Case 3 and +6.74% during target hours 21-24 in Case 2.
Overall, the results suggest that DANN can retain the FDI
detection accuracy while the non-transfer classifier fails to
adapt when there is a significant data distribution divergence
caused by variations in load demand.

2) FDI DETECTION ON SPATIAL SCENARIO
The classification accuracy of MLP and DANN on spatial
cases is reported in Fig. 6, and the white triangle shows
the average accuracy of each method. For the spatial cases,
since the data distributions of normal data are similar between
source and target domains, the non-transfer method is able
to identify most of the attack samples and achieve higher
accuracy than temporal cases. However, DANN still demon-
strates improvements in all cases. Comparing DANN and
MLP, it can be found that the greatest and lowest average
improvements reach 7.91% and 5.83% when the target buses
are 19 and 16. The results show that DANN can achieve high
detection accuracy against variations in attack locations.

FIGURE 6. Box plots of accuracy with source attack launched on
15 attackable buses and target attack on Buses 14, 16, 19.

FIGURE 7. The t-SNE visualization of DANN effectiveness: distribution of
extracted features (a) without transfer; and (b) with transfer.

We also use t-SNE to visualize the distribution of extracted
features without and with DANN in Fig. 7. In both sub-
figures, the normal data in the source and target domains
have a close distribution since they are from similar load
demand. Without DANN, attack data from the source domain
and target domain are not mixed because they target different
locations. After applying DANN, however, the attack data
of two domains are mixed well. Overall, the distribution of
the two datasets becomes similar after the domain adversarial
training. Moreover, normal data are distributed on the upper
left, and attack data are distributed on the lower right, making
it easier for DANN to distinguish them.
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FIGURE 8. Spatiotemporal cases accuracy with one bus as target domain and other 14 buses as source domain separately.

3) FDI DETECTION ON SPATIOTEMPORAL SCENARIO
We further test out the classifiers on spatiotemporal cases and
demonstrate the average accuracy of each method in Fig. 8
with one bus as the target domain and the other 14 buses as the
source domain separately. For the spatiotemporal cases, the
data distribution divergence on spatial and temporal dimen-
sions further degrades the baseline methods, but DANN
still demonstrates a significant improvement. The average
improvement is 18.84% compared to MLP. The greatest and
lowest average improvements reach 34.37% when the target
bus is 19 and 5.34% when the target bus is 17. The results
suggest that, once timely triggered, DANN can enable robust
performance in detecting FDI attacks with spatial and tempo-
ral variants.

VI. CONCLUSION
This paper studies the problem of when one should apply
TL for intrusion detection in the smart grid. We propose a
divergence-based transferability analysis to justify the neces-
sity of TL. First, we leverage three metrics of different
properties to evaluate the distribution divergence and use
two regression models to approximate the relation between
accuracy drop and divergence. The result shows that the
selected metrics are capable of predicting the accuracy drop
of a trained model on an unseen dataset with distribution
divergence. Furthermore, we consider attacks may happen
at different times, locations, and both in dynamic cyber-
physical systems, and adopt domain adaptive training as our
TL model on realistic datasets. The TL results show that
DANN can retain high detection accuracy against tempo-
ral, spatial, and spatial-temporal divergence, implying our
approach is promising for future applications in real-world
systems.

There are more sophisticated scenarios for the FDI and
other attacks in the studies, e.g., coordinated cyber-physical
attacks (CCPAs) [38] and coordinated topology attacks [39],
among others. In the future, we will study more advanced
coordinated attack scenarios to verify the performance and
improve the understanding of transferability analysis.
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