IEEE Access

Multidisciplinary  Rapid Review : Open Access Journal

Received 30 May 2022, accepted 16 June 2022, date of publication 27 June 2022, date of current version 5 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3186323

Deep Learning Gated Recurrent Neural
Network-Based Channel State Estimator for
OFDM Wireless Communication Systems

MOHAMED HASSAN ESSAI ALI"”?, M. LOTFY RABEH?, SHERIF HEKAL2,
AND ABEER N. ABBAS 723

! Department of Electrical Engineering, Faculty of Engineering, Al-Azhar University, Qena 83513, Egypt
2Department of Electrical Engineering, Faculty of Engineering at Shoubra, Benha University, Cairo 11629, Egypt
3Department of Electrical Engineering, Marg High Institute for Engineering and Modern Technology, Cairo 11721, Egypt

Corresponding author: Mohamed Hassan Essai Ali (mhessai @azhar.edu.eg)

ABSTRACT Using deep learning technologies, the channel estimate for an orthogonal frequency division
multiplexing system (OFDM) based on pilots is done in this work. To be more specific, deep learning gated
recurrent unit (GRU) neural networks are used to present a new framework for channel estimation. Initially,
it is trained offline using generated data sets, and thereafter it is used online to track the channel parameters,
after which the data transmitted can be recovered. For the purpose of determining the performance of the
proposed estimator, three alternative deep learning optimization techniques are used to test it. It is also
compared to other commonly used estimators, such as least squares (LS) and minimum mean square error
(MMSE). In addition, the proposed estimator is compared with two existing models. Deep learning GRU
neural network-based channel state estimator, which are capable of learning and generalizing rapidly, are
shown to outperform the comparable estimators when just a few pilots are available. In addition, there is no
need for prior knowledge of channel statistics. So, estimating OFDM communication system channel states

using the proposed estimator appears promising.

INDEX TERMS Deep learning, channel estimation, gated recurrent unit, OFDM.

I. INTRODUCTION

Modern wireless networks are built to provide high data rates
for users to accommodate the rapidly increasing volume of
mobile internet traffic. Because of its bandwidth efficiency
and resistance to frequency-selective fading, orthogonal fre-
quency division multiplexing (OFDM) is a crucial building
block in present 4G wireless networks and will continue to
be in future 5G networks. The ability to gather channel state
information (CSI) quickly and accurately is critical in today’s
rapidly evolving wireless environment.

CSlI is frequently acquired using pilot-based channel esti-
mation in OFDM systems. Additionally, a particular sort of
symbol known as a ““pilot” is transmitted, and the receiver
uses this symbol to determine channel information by com-
paring received symbol to the transmitted. LS and MMSE are
two of the most common techniques for determining the best
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estimating approach. Despite its simplicity, the LS method’s
accuracy is often unsatisfying. Second-order channel statis-
tics and noise variance are required as prior knowledge for
MMSE, which has high computational complexity.

A. RELATED WORK

Because of their great nonlinear mapping ability, artificial
neural networks have recently attracted increasing attention
and are commonly utilized in classification or recognition [1].
There are hundreds of different topologies for neural network
models right now, each tailored to meet the demands of a
particular application, but their working method is outlined as
follows: The neural network’s connection weights and biases
are modified because of the training data being fed into the
network. Once the network achieves a stable condition, the
learning process has been completed [2], [3]. Several various
network structures have been coupled with traditional cellu-
lar communication networks to handle associated challenges
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such as CSI estimates, symbol detection, channel coding, and
dynamic spectrum allocation as well as the management of
resources, energy optimization, and network fault identifica-
tion [4], [5].

With more layers and neurons, the deep neural net-
work (DNN) has a greater ability to generalize and learn when
large datasets are used [6]—[8] and more complex feature
mappings [9] than the typical three-layer neural network.
There is currently a DNN model for the automatic classifica-
tion of modulation in communication techniques [9], and the
DNN structure of encoders have been implemented to mini-
mize the difficulties of peak-average power ratio and symbol
identification against Doppler frequency shift [10], [11].

For OFDM systems with frequency selective channels,
the authors in [12] suggested a feed-forward neural network
(FFNN)-based combined channel estimation and symbol
detection technique. Proposed algorithms outperform con-
ventional estimators when imperfect communication systems
are considered. Online feedforward deep learning (DL)-based
estimators for doubly selective channels were proposed by
the authors in [13]. The proposed algorithm exhibits superi-
ority over standard linear MMSE estimators in all examina-
tion conditions. In [14], a 1D-convolutional neural network
(1D-CNN) DL model was developed to estimate the channel
and retrieve equalized data. It was also examined in terms
of bit error rate and mean square error at various modulation
approaches to see how the 1D-CNN compared to LS, MMSE,
and FFNN. LS, MMSE, and FFNN estimators are all found
to be inferior to 1D-CNN. By treating the channel as an
image, the authors in [15] introduced a deep residual channel
estimation network (ReEsNet) for channel estimation with
high performance and low computation cost. In [16], two
architectures of five-layer DNN models are proposed in an
underwater acoustic (UWA) system to alleviate the effect
of environmental variations while estimating the channel
parameters.

B. MOTIVATION AND CONTRIBUTION

Deep learning approaches have a significant advantage for
channel estimators because they can automatically extract the
features of a specific problem without the need for extensive
prior knowledge. The difficulties in training and computing
complexity have kept recurrent neural networks (RNN) from
becoming a standard network model in the last few years.
RNN has recently entered a period of rapid development as a
result of the development of deep learning theory. Handwrit-
ing recognition [17] and speech recognition [18] are two areas
where RNN has already been successfully used. RNN’s major
characteristic is that it has a hidden layer that can remember
information previously processed, resulting in a structural
advantage for the processing of time-series information. As a
result, RNN can be used as a channel estimator to enhance the
CSlestimator’s learning and performance. Therefore, we pro-
pose a channel estimator based on deep learning techniques.
However, using RNN with long short term memory (LSTM)
[19] has a relatively complex structure. To address this issue,
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in this paper, we propose DL gated recurrent unit (GRU)
neural networks for channel estimation of data subcarriers as
an innovative approach where the computation requirements
can be significantly reduced. The neural network approach
is more flexible than standard nonneural network methods
in that it does not have to concern about channel details and
can be deployed for any channel estimator. It is more direct,
simple, intelligent, and adaptive by ignoring the estimation of
specific CSI parameters. Listed below are the most significant
contributions.

1) The DL approach can be integrated into the OFDM
system to estimate the channel. Specifically, we use the DNN,
which is viewed as a black box in which various network
layers can handle certain tasks. The training procedure can
increase the accuracy of CSI estimation at data subcarriers
thanks to the DNN’s superior identification and representa-
tion capabilities.

2) The proposed DNN for channel estimation will be
learned offline because of the long training period and the
high number of weights and other variables that must be
updated and changed during the learning process. The trans-
mitted data is subsequently retrieved by means of a DNN that
has been trained for online employment.

3) We examine the proposed framework for channel esti-
mation’s performance in a variety of scenarios. The symbol
error rate (SER) is specifically simulated to evaluate the chan-
nel estimation’s accuracy. In addition, rigorous simulations
and comparisons have shown that the proposed framework is
both efficient and robust under the condition of fewer pilots.

4) The proposed framework’s performance will be com-
pared to the LS and MMSE estimations. Moreover, the per-
formance of the proposed framework is studied in comparison
with the ReEsNet model [15] and the five-layer DNN model
[16]. In addition, three different optimization algorithms are
used to train this proposed estimator on simulated datasets to
produce the most efficient model with the lowest number of
pilots.

C. PAPER ORGANIZATION

The following is a summary of the information presented in
this paper. Section II provides the OFDM communication
system and conventional methods for channel estimation.
Section III presents the novel CSI estimation method, which
is based on DL GRU neural networks. Simulation results of
the proposed framework are offered in Section I'V. Section V
shows the conclusion of this paper.

Il. OFDM COMMUNICATION SYSTEM AND
CONVENTIONAL CHANNEL ESTIMATION

The standard OFDM communication system and conven-
tional methods for channel estimation are introduced briefly
in the next subsections.

A. OFDM COMMUNICATION SYSTEMS’ MODEL
The system model of the standard OFDM communication
system is depicted in Figure 1. Let Ngc represents the number
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FIGURE 1. Orthogonal frequency-division multiplexing (OFDM) system
model.

of subcarriers, Ngy is the number of OFDM symbols and Ncp
is the length of cyclic prefix (CP). The full OFDM symbol in

time domain to be transmitted, i.e., {x (n)}nNz_Ol, where N =

Nsc + Ncp, is obtained by finding {X (n) }ivico_l, then add the
CP. The symbol X (n) can be obtained by applying the inverse
discrete Fourier transform (IDFT) operation on {X (k)};{vic(;1

as follows:
Nsc—1
Fm=IDFT{(X ()} = Y X (k)M ()
k=0

where X (k) is the information that multiplexed on the Ngc
subcarriers of one OFDM symbol in the frequency domain
and j represents the imaginary unit notation. The indices n
and k are used to represent the discrete time and discrete
frequency components of the OFDM symbol at a certain
subcarrier, respectively. At the receiver, the OFDM system’s
data symbol can be given as follows:

y(m) =xm @hn) +wn). (@)

The notation @ is used to represents the circular convolution,
h (n) is channel coefficients in the time domain, and w(n)
represents the additive white Gaussian noise (AWGN).

After removing the CP, the discrete Fourier trans-
form (DFT) procedures are used to transform the signals
from the time domain to the frequency domain. The resultant
signals can be represented as follows:

Y (k) =X (k)H (k) + W (k) , 3

where Y (k), X (k), H (k), and W (k) are the DFT of y (n),
% (n), h (n), and W (n), respectively. After removing the cyclic
prefix from the time domain signals, these DF transforma-
tions were created.

Then, the received OFDM symbols ¥ eCNsc*NsY can be
expressed as

Y =XoH + W, 4

where X € CNsc*Nsy jg the transmitted OFDM symbols. H €
CNscxNsy includes the channel coefficients in the frequency
domains, o is the Hadamard product (element-wise product)
and W eCNsc*Nsy represents the noise matrix.
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B. CONVENTIONAL CHANNEL ESTIMATION

In traditional OFDM systems, pilots embedded in the trans-
mitted data can be used to estimate the channel. At the
receiving end, the channel parameters can be derived from
the relationship between the received signal and the pilot
information. The accuracy of the channel information, on the
other hand, is highly dependent on the density of pilots [20].
Pilot-based signals are used in both LS and MMSE.

The LS algorithm is the most widely used approach for
channel estimation. For CSI, the LS method is frequently used
as a performance benchmark [21]. In the LS framework, the
LS method can be described as

2
= yox°~ 1. )

ﬁLs = arg min Hy —xoh
h

where x, y, heCNscNsy <1 are vectorized X, Y, H and H is the
estimated H. Operator °~ 1 represents the Hadamard inverse
(element wise inverse).

The MMSE algorithm aims to minimize the mean square
error between the estimated channel information and the real
channel information. Its objective function can be given by

ilMMSE = arg min {E |:‘il - h’zi“ . (6)
h

To get the closed-form formula, we need to get the partial
derivative with respect to H and set the result to 0, which can
be given as follows:

haivise = RuyRyyy, @)

where Ryy = Rypx™, Ryy = xRypx™ + 0’2INSC and o2
denotes the noise variance. Although the MMSE technique
takes into account the impact of Gaussian noise on the CSI
performance, its computing complexity is significantly more
than that of the LS approach.

1Il. DEEP LEARNING BASED CSI ESTIMATION

A. PRELIMINARY TO THE DEEP NEURAL NETWORK (DNN)
With DNN, the results of the prediction are derived at the
output layer via linear and nonlinear operations at numer-
ous hidden layers, as in the classical neural network model.
With its outstanding learning and representation capabili-
ties, it excels at handling extremely complex and nonlinear
situations.

Two steps comprise DNN’s learning process: training and
testing. The network model must first be trained in three steps
before it can be used to estimate channel parameters effec-
tively. The first step is to determine the input data samples.
Second, the gradient descent technique is used to determine
the partial derivative of the cost utility that contains the output
and the true values, to reduce the error between these two
values. The precise modification of its value must be made in
the direction of the error function’s negative gradient. In the
third step, the validation set must be used to manually set
parameters like the number of neurons at each layer and the
number of hidden layers.
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FIGURE 2. An example of a deep learning model.

The ith neuron’s weight in relation to the /th layer is
depicted in Figure 2 by the symbol 91'1;" After that, the pre-
activation of the layer is provided by

w(l) =y Ohul~" +bl. ®)

J

The output activation of each neuron can be expressed as

w=f @) =f|> 0u" +bl|. ©)

J

The training data is uploaded to the DNN network whose
structure is depicted in Figure 2. Through the network’s hid-
den layer, data features are extracted, and then classification
results are created. In a matrix form, the network output u’
can be expressed as follows:

L —f <0LuL—l _I_bL> 7 (10)

where 0% is the output layer’s connection weight, b” is the
output layer’s bias vector, and u” denotes the output vector
of the network.

The algorithm’s basic procedures are to determine the
partial derivatives of the cost utility. The following is a list
of the steps involved in using it.

The parameters @ and b, as well as the weights 911] and
associated parameters, are initialized. Second, use the for-
ward propagation formula to figure out the state 8 and the
activation values u for each NN layer, as shown below:

5= f (0’1/—1 +bl) , (11)
W =f (5’), (12)

where @' and b’ represent the (I—1)th layer to /th layer
weights matrix and the bias matrix of the /th layer, respec-
tively.

The output layer parameter yl.l can be given by

== () or (o). a3
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where z; and ulL denote the expected and the actual outputs
of the training data that generated using the neural network,
respectively. The symbol £ () is used to represent the partial
derivative of the underlying variable. yl.l of the hidden layer
can be determined from the (L—1)th layer to the 2nd layer as
follows:

di+1

Z J/jl+191+1 ( lz) (14)

where d; is the number of neurons at the /th layer. The
crossentropyex loss function is used in this paper as cost
function, which can be defined as follows:
M dr
CEx =— Y Yz (m)logu; (m), (15)
m=1 i=1
where M is the total number of samples that used in the
training phase.
For the third step in the process, the back propagation
algorithm is utilized to determine the difference among the
DNN network’s output value and its true value.

B. OPTIMIZATION TECHNIQUES

It is most common to minimize the loss function via gradient
descent. Using the gradient descent method, weights and
biases are changed using incremental steps in the direction
of the negative gradient of the loss.

6'(t + 1) = 6'(t) — « VCEx (91(1)), (16)
b (t+1) = 0 — aVCEx (bl(t)> , (17)

where ¢ is the iteration number and o represents the learning
rate. In the typical gradient descent approach, the gradient
of the loss function is evaluated using the complete training
set at once. Instead of using all training data to evaluate
the gradient and update the parameters, stochastic gradient
descent can be used. Iterations employ a distinct subset of
data, referred to as a “‘mini-batch’. During one epoch, a train-
ing algorithm runs through all of its mini-batches of training
data. In stochastic gradient descent, the parameter updates
computed using a mini-batch are a noisy estimate of the
parameter updates that would be generated if the whole data
set were employed.

Stochastic gradient descent algorithms allow for oscilla-
tions along the route of the steepest fall towards the optimum.
Incorporating a momentum element into the parameters
update [22] can help reduce this oscillation. Using stochastic
gradient descent with momentum (SGDm), it is possible to
modify a neural network’s weights and biases in the following
ways:

6'(t + 1) = 6'(1) — « VCEx (91 (t))

+e@ (1) — 0l(t—1)), (18)

bt + 1) = b'(t) — «VCEx (bl(t)>
+e@ (1) — b (1—1)), (19)
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where the previous gradient step’s contribution to the current
iteration is given by €.

One learning rate is used for all parameters in SGDm’s
algorithm. Network training can be improved by adopting
learning rates that vary by parameter and can automati-
cally adjust to the loss function that is being adjusted. One
such technique is root mean square propagation (RMSProp).
It keeps track of the element-wise squares of parameter gra-
dients, which is given by

4o (1) = pago (1 = 1) + (1 = p2) (VCEx (6 (r)))2 ,
(20)

g5 () = oy (1 — 1)+ (1 — ) (VCEx (8 1))
@1

where u, is the decay rate of the moving average. In general,
the decay rate is 0.9, 0.99, or 0.999. The associated squared
gradient averaging lengths are equal to 1/ (1 — u2), specifi-
cally, 10, 100, or 1000 parameter updates, respectively. The
RMSProp technique employs a moving average to normalize
the updates of the weights and bias parameters as follows:

_ aVCEx (' (1)

Vag O +¢
aVCEx (b (1))

NIOE2

where the division is done element-by-element. Because of
this, RMSProp can reduce the learning rate for parameters
with large gradients and boost it for parameters with small
gradients. To avoid division by zero, a minor constant ¢ is
added. where the division is performed elementwise.

Similar to RMSProp, momentum terms have been intro-
duced to the parameter updates in Adam [23] (derived from
adaptive moment estimation). An element-wise moving aver-
age of both the parameter gradients and their squared values
is maintained by the algorithm. The moving average of the
parameter gradients can be given as follows:

olac+1) =6"@) (22)

bra+1) =b ) — (23)

¢o (1) = pco (1 = 1)+ (1 — ) VCEx (' (), (24)
e (1) = ey (= 1) + (1= up) VCBx (B (), (25)

where 11 is the decay rate. Adam updates the network param-
eters using moving averages as follows:

acy (1)

01 t+1) = 91 I ——_ 26
( ) (t) F__z?j ( )
bl t+1 _bll _#. 27
( ) ( ) F?;zfj ( )

Using a moving average of the gradient allows parameter
updates to gain momentum in a specific direction if the
gradients across several iterations are similar. The moving
average of the gradient is smaller if the gradients contain large
amounts of noise, so the parameter updates are smaller as
well.
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FIGURE 3. Structure of the GRU.

C. GATED RECURRENT UNIT (GRU)

A new memory cell called a gated recurrent unit (GRU)
has been shown to be useful for various tasks [24]. In this
sense, the GRU can be viewed as a simplified and improved
version of the LSTM [19]. In both the LSTM and GRU,
“cell state” is the central concept. Information flow to the
cell state is controlled by the structure known as a *““gate” in
this system. Sigmoid and multiplication operations are used
in the construction of the gate. Values from zero to one are
outputs from the “‘sigmoid” layer, with zero meaning ‘‘no
quantity can pass”’ and one meaning ‘‘any amount can pass.”
This system has three gates to preserve and govern the “unit”
state in order to preserve long-term information dependency.
The three gates are the forget gate, which determines what
information should be discarded from the cell state, the input
gate, which determines what information should be stored in
the cell state, and the output gate, which determines what
information should be output. It is widely accepted that the
GRU is an LSTM variation and that it makes use of the same
gate control mechanism. Gradient vanishing is no longer an
issue with this technique [25]. In the GRU, however, there are
some differences. An update gate is created by combining the
LSTM’s forget gate and input gate. Similarly, both the cell
and hidden states are combined. Thus, the GRU only has two
gates: an update gate and a reset gate. Unlike the LSTM, the
GRU’s computation requirements are significantly reduced.
Figure 3 depicts the general layout of the GRU.

Using the update gate Z (¢), you can regulate the amount
of information stored between the previous moment in time
and the current state. Using the reset gate 7 (f), you can
specify how much information about the preceding moment
should be ignored. In the GRU hidden elements, the following
conversion functions for an input vector x (¢) are provided:

ﬂﬂza@%m+U%0—D+5» (28)
Hﬂ:o@%@+U%U—D+V» (29)
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FIGURE 4. The proposed DL GRU neural network-based CSI estimator.

i (1) = tanh (0’52 )+ U" (; (1) ot (1 — 1)) +bh) ,
(30)
ht)=0—-7Z@)oh(t—1)+7t)oh (@), (31)

where 0%, 0" denote the input weight matrices of Z (¢) and 7 (¢)
gates, respectively. b, b" are the corresponding bias terms.
6" denotes the weight matrix of the output state and b” is the
corresponding bias term. hit—1) represent the input data at
time r — 1, h (1) and h (#) denotes candidate states and output
states at time f. o and tanh represents activation functions for
Z(t) and F (¢) gates, and U*, U", U h are the recurrent weight
matrices.

D. OVERALL ARCHITECTURE
The following five layers were used to build the DL GRU
neural network for channel estimation: A sequence input
layer, where the input data size is set to 256, which represents
the input data features, the GRU layer, which has 16 hidden
units, where it outputs the latter element of the sequence;
ultimately, 4 classes are created by using a fully connected
layer of size 4, then a softmax layer and a classification output
layer are inserted. Inserting additional GRU layers allows for
deeper GRU networks. Figure 4 shows the proposed channel
estimator’s structure.

A softmax layer uses a softmax function to transfer the
output from the last fully connected layer into the normalized
prediction possibility in the interval (0,1) as follows:

etim
Zfil etti(m)’

The classification layer often follows a softmax layer in
classification tasks. This layer uses the defined loss function
to classify the values from the softmax function to one of the
mutually exclusive classes.

In this work, we study the end-to-end performance of the
receiver by implicitly estimating the channel parameters and
then detecting the transmitted message from the received
signal. Moreover, treating the channel estimation along with
the signal detection as a classification problem can reduce the
computational resources for online feature comparison due
to the limited number of classes, which is required for the
practical implementation of OFDM communication systems.

The proposed DL GRU neural network will be trained
using three optimization strategies to minimize the loss func-
tion. These are Adam, SGDm, and RMSProp. As a result
of pilot limitations, we needed the most accurate and robust
estimator we could find. Iterations are stopped when the stop-
ping requirement is met (the maximum number of iterations
is reached or the error difference between two of them is very
small).

uj (m) = j=1,2,....dp. (32)
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FIGURE 5. Training data creation and offline method for producing the
proposed channel estimator.

Channel models that accurately represent the CSI statis-
tics of physical channels have recently been established by
researchers. Training data can be modeled using these chan-
nel models. The 5G channel model is used in this investiga-
tion. According to TR38.901 [26], [27], this model is used to
simulate a variety of imperfection causes that decrease the
performance of channel estimation. Narrow-band Rayleigh
fading channels and doubly selective fading channels [28] can
also be employed.

The OFDM frame that consists of pilot and transmis-
sion symbols is constructed from a random data in offline
training. The selected channel model is used to model the
CSI data. Channel distortion and noise are considered while
determining the received OFDM signal. Offline training data
sets are made up of both transmitted and received signals.
Figure 5 displays the training symbols creation and offline
method for producing the proposed GRU-based channel esti-
mator.

IV. SIMULATION RESULTS

In this section, various experiments have been carried out
to illustrate the effectiveness of the DL GRU-based chan-
nel state estimator. Accordingly, it was trained offline
using the simulated data sets, then its SER was com-
pared with different estimations under varied signal-to-noise
ratios (SNRs).

Data for one subcarrier is used in the training dataset. A sin-
gle OFDM pilot symbol and one OFDM transmission symbol
are sent from the transmitter to the receiver in each OFDM
packet. Some of the data symbols may be interleaved in the
pilot sequence. A total of 10,000 OFDM packets are created,
of which 80% are used for training and 20% for validation.
Table 1 presents the parameters and training options for the
GRU-based channel estimator. Table 2, on the other hand,
depicts the channel parameters used in the OFDM system.
The proposed estimator will be trained using a variety of
optimization techniques in the current simulations so that we
can see how it performs under various learning approaches.
The SGDm, ADAM, and RMSProp optimization algorithms
are used.

A. EFFECT OF DIFFERENT NUMBER OF PILOTS ON
SYSTEM PERFORMANCE

In this section, the proposed estimator’s performance will be
compared to the conventional LS and MMSE estimations.
In addition, the results are compared with the ReEsNet model
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TABLE 1. Parameters and training options for the GRU-based channel

estimator.

Parameter Value
input data size 256
GRU layer hidden units 16
Fully connected layer size 4
Error function crossentropyex
Mini batch size 1000
Number of Epochs 100
Optimization techniques SGDm, RMSProp, and

Adam

Contribution of the previous 0.9
gradient step (Momentum)
Decay rate of squared gradient 0.9 and 0.999
moving average for RMSProp
and Adam optimizers
Decay rate of gradient moving 0.9
average for Adam optimizer
Denominator offset 1078

TABLE 2. Channel parameters used in the OFDM system.

Parameter Value
Modulation type Quadrature phase-shift keying
Center frequency 2.6 GHz
Number of paths 24
Guard interval Cyclic prefix
Cyclic prefix length 16
Number of subcarriers 64
DFT size 64
Number of pilots 4,8, and 64

14
w102
a0

=== DLGRU @ B4-pllots using Adam
«fg- ReEsNet @ B4-pilots using Adam
==f== DNN @ 64-pilots using Adam
1073 S @ 64-pilots

=== MMSE @ 64-pilots

SNR (dB)

FIGURE 6. SER performance comparison when 64 pilots are used.

studied in [15] and the five-layer DNN model used in [16]. All
models are tested under the same channel conditions. The five
estimators will be tested on pilots of 4, 8, and 64 to see how
well they perform. The Adam optimizer is being utilized in
this simulation.
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FIGURE 7. SER performance comparison when 8 pilots are used.
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FIGURE 8. SER performance comparison when 4 pilots are used.

At SNRs ranging from O to 19 dB, as depicted in Figure 6,
the proposed estimator performs significantly better than the
LS estimator, and at SNRs ranging from O to 11, it performs
similarly to the MMSE estimator. Moreover, the proposed
estimator outperforms the ReEsNet and DNN models, espe-
cially at high SNR levels. For all SNR levels, the MMSE
estimate outperforms the LS estimator. The reason is that the
MMSE technique takes into account the effect of Gaussian
noise on estimate performance and uses the second order
channel statistics. The LS estimator, on the other hand, does
not make use of the prior channel statistics in its estimation.

From Figures 7 and 8, the DL GRU-based estimator out-
performs both the LS and MMSE conventional estimators
when the number of pilots decreases (8 and 4). Figure 6 shows
that when only 8 pilots are utilized, the LS and MMSE con-
ventional estimators perform worse than the DL GRU-based
estimator. When eight pilots are used, the proposed estima-
tor outperforms the LS, MMSE and ReEsNet estimators by
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FIGURE 9. SER performance of the DL GRU-based estimator using 64,
8 and 4 pilots, and adam optimizer.
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FIGURE 10. SER performance of the proposed DL GRU-b
using 64 pilots at different optimization algorithms.

2 to 4 dB gain in the low SNR range and by 4 to 6 dB
gain in the high SNR range. Also, the proposed estimator
outperforms the DNN model at SNRs ranging from 15 to
20 dB. According to Figure 8, however, when only four pilots
are used, the conventional estimators as well as ReEsNet
estimator lose their ability to work at zero dB. Conversely, the
DL GRU-based estimator and the DNN model can improve
the SER when SNR is increased. However, the proposed
estimator performs better than the DNN model for all SNR
levels. The improvement of the proposed estimator compared
with the DNN model is about 4dB in the high SNR range.
This can prove that the DL GRU-based estimator is resilient to
the restricted pilots that may be employed for CSI estimation
due to the structural advantage of the GRU layer, which can
remember the previous processed information.

Figure 9 shows the proposed estimator’s performance at
pilot numbers of 64, 8, and 4. The DL GRU-based channel
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FIGURE 11. SER performance of the proposed DL GRU-based estimator
using 8 pilots at different optimization algorithms.
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FIGURE 12. SER performance of the DL GRU-based CSI estimation when
4 pilots are used at different optimization algorithms.

estimator outperforms both LS and MMSE at varied pilot
sizes of 4, 8, and 64, respectively. Also, the proposed estima-
tor performs better than the compared models. In addition,
the proposed estimator’s performance can be improved by
increasing the number of pilots.

B. EFFECT OF DIFFERENT OPTIMIZATION ALGORITHMS
ON SYSTEM PERFORMANCE

Choosing the best optimization strategy for a given problem
can be a difficult challenge. Choosing the wrong optimization
strategy can cause the network to stay in the local minima
throughout training, which does not improve the learning
process. It is therefore important to examine how different
optimizers perform on the basis of the model and dataset used
to produce the optimum performance for the DL GRU-based
channel estimator.
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FIGURE 13. SER performance of the proposed DL GRU-based estimator at
the best optimizer in different pilots.
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FIGURE 14. The proposed DL GRU-based estimator’s loss function
comparison during training employs various optimization techniques and
64 pilots.

An experimental comparison of three optimization tech-
niques is presented in this section to determine the best
appropriate technique for the channel estimation problem.
Adam, which was examined in the previous subsection,
SGDm, and RMSProp are the three optimization techniques
employed. To get a more accurate DL GRU-based channel
estimator, we will examine how well the learning processes
of RMSProp and SGDm perform.

Figures 10 and 11 show that the Adam and RMSProp
models outperform the SGDm model at pilots of 64 and 8.
Apart from that, the Adam model outperforms the RMSProp
model at higher levels of SNR. The RMSProp model exceeds
its competitors in terms of SER in restricted pilots of four,
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FIGURE 15. The proposed DL GRU-based estimator’s loss function
comparison during training employs various optimization techniques and
8 pilots.
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FIGURE 16. The proposed DL GRU-based estimator’s loss function
comparison during training employs various optimization techniques and
4 pilots.

as illustrated in Figure 12. We can see that the performance of
the same optimizer varies depending on the number of pilots.
Finally, it should be noted that the SGDm model performs the
worst across a range of pilot numbers. The reason is that the
SGDm model has a single learning rate for all parameters.
Figure 13 shows the robustness of the proposed estimator
against the restricted pilots utilized, as well as the relevance
of exploring alternative optimization techniques in the DL
process of the proposed DL GRU estimator. For communi-
cation systems, it is more advisable to employ the suggested
estimator with 8 and 4 pilots. As a result, OFDM wireless
communication systems will be capable of transmitting data
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at higher rates. In addition, when 4 pilots are used, the pro-
posed estimator has a comparable performance with 8 and 64
pilots in low SNR range.

It is a good idea to keep a focus on the training process
while it is taking place. By plotting loss metrics during train-
ing, we can see how the training is proceeding.

In Figures 14-16, it is shown that the SGDm optimization
technique attains the highest loss compared to Adam and
RMSProp optimization techniques, which can be confirmed
from Figures 10—12, where the trained DL GRU-based CSI
estimation using the SGDm technique have the worst SER
performance. In addition, the loss of RMSProp and Adam
optimization techniques in Figures 10-12 emphasizes the
conclusions obtained in these figures.

V. CONCLUSION

Using the DNN method, a new approach to OFDM channel
estimation has been developed. The utilization of DL. GRU
neural networks has been implemented. The proposed esti-
mator is trained offline, then utilized online in a communi-
cation system to track the channel statistics, so that the CSI
parameters can be estimated, and the transmitted symbols
can be reconstructed. The proposed estimator’s performance
has been examined on three distinct pilots: 64, 8, and 4.
Also, the proposed estimator is tested against three distinct
optimization techniques for DL, namely, SGDm, RMSProp,
and Adam, to see how well it performs at each. The results
show that the Adam and RMSProp models outperform the
SGDm model with pilots of 64 and 8. Additionally, the
RMSProp model exceeds its peers in terms of SER when only
four pilots are involved. When just a small number of pilots
are available, the proposed DL GRU-based CSI estimation
outperforms both the LS and MMSE estimates as well as the
ReEsNet and DNN existing models in terms of SER. With DL
GRU neural networks, the proposed approach, which does not
need prior information about the channel, is encouraging in
OFDM communication systems for CSI estimation purposes,
mainly when the number of pilots is restricted, because of
their excellent learning and generalization capabilities. It also
has the potential for improving communication systems, such
as 5G and beyond. For future directions, the usage of real
training data and/or testing the proposed method on real
devices can be considered.
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