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ABSTRACT For safety-critical applications, the validation process using a model-based approach plays
an increasingly important role. In this paper we propose the application of a predictive control algorithm,
entirely implemented in low-level code, to the use case of assisted driving of four-wheel vehicles. The aim
is to present the workflow for the validation of an advanced control algorithm and its implementation on
an Embedded system, representative of the computational capabilities of Automotive ECUs. The proposed
validation exploits the SIL (Software-In-the-Loop) and PIL (Processor-In-the-Loop) paradigms to analyse
the combination of control parameters and factors related to the choice of the mathematical model describing
the vehicle behaviour and the choice of the numerical algorithms selected to approximate the differential
equations.

INDEX TERMS Model predictive control, assistance driving, vehicle dynamics, model-based design,
simulation.

I. INTRODUCTION
A. OVERVIEW ON ASSISTED DRIVING
An autonomous vehicle is able to detect its environment and
navigate with partial or even null driver action [1]. Informa-
tion from different perception techniques of the surrounding
environment are usually combined, e.g. radar, lidar, GPS,
odometry and computer vision.

An advanced control algorithm interprets the sensory infor-
mation to identify appropriate navigation paths, as well
as obstacles and signs. The functionalities required of an
autonomous vehicle are Perception, Localization, Planning,
Vehicle Control and System Management.

This paper is focused on vehicle trajectory control imple-
mented through a predictive control algorithm, assuming
that the necessary sensors are present on board the
vehicle to provide information about the surrounding
environment.

In the first hierarchical block a route is planned based on
the road network. The road network is described by means of
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a directed graph, with weights corresponding to the costs of
crossing road segments, so that this process can be described
as the problem of finding a minimum cost route on a graph
(operational search).

The second hierarchical level is called ‘‘behavioural’’,
where the driving algorithm solves locally the problem of how
to move the vehicle forward, respecting the road lanes. The
third hierarchical level concerns the planning of the vehicle’s
motion by calculating a trajectory on which the vehicle must
move in order to perform a local navigation task. Finally, the
fourth hierarchical level is the control system that reactively
corrects errors in the execution of the motion planned in the
previous level [2].

As anticipated in this article we deal with vehicle control
which requires the presence of the trajectory planning system.
With reference to the the classification of 6 autonomy levels,
from L0 (no assistance) to L5 (fully autonomous), published
by the SAE (Society of Automotive Engineers), in this work
we propose the use of Model Predictive Control (MPC) to
implement an assisted driving algorithm capable of process-
ing an obstacle avoidance manoeuvre, so ensuring L3 and
being at the core of emerging L4 and L5 vehicles.
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The challenges are to design control and sensory systems
that are so accurate in processing the vehicle’s road travel
information that they ensure maximum passenger safety and
provide vehicle comfort and low fuel consumption.

B. STATE OF THE ART
Modern research on self-driving cars generally uses Bayesian
simultaneous localization and mapping (SLAM) algorithms,
which fuse data from multiple sensors and an off-line map
into current location estimates and map updates [3].

Researchers are developing a variant of SLAM, with detec-
tion and tracking of other moving objects (DATMO), which
also handles obstacles such as cars and pedestrians [4], [5].

Simpler systems may use roadside real-time locating sys-
tem (RTLS) technologies to aid localization. Typical sensors
include Lidar, stereo vision, GPS and IMU. Udacity is devel-
oping an open-source software stack [6].

Control systems on autonomous cars may use Sensor
Fusion, which is an approach that integrates information from
a variety of sensors on the car to produce a more consistent,
accurate, and useful view of the environment [7].

Being highly flexible, MPC (Model Predictive Control)
started to be implemented also in automotive field for active
safety purposes. It can manage in fact not only the path
planning problem but also threat assessment and hazard
avoidance.

As example, [8] assumes that road lane data is available and
that road hazards have been detected, located, and mapped
into a 2-dimensional corridor of travel. This is possible thanks
to a proper system of sensors, such as LIDAR, radar and
camera and an optimal sensor fusion.

These sensors should provide lane, position and environ-
mental information needed for the application. Thanks to
these data we can obtain constrained vectors in the prediction
horizon, in order to evaluate the minimum threat pose.

Another interesting application was in [9], where they
account for the uncertainty in the traffic environment by
a small number of future scenarios, which is intuitive and
computationally efficient. These scenarios can be generated
by any model-based or data-based approach, resulting in a
good performance for highways’ scenarios.

The artificial potential field can be an optimal method to
deal with different types of constraints. An application using
the MPC and the APF (Artificial Potential Functions) is done
in [10]–[12].

The main idea behind is to associate at every constraint a
proper potential field, so that the minimum values are in the
center of the vehicle’s lane. Furthermore the MPC can man-
age also low friction road conditions such as demonstrated
in [13].

In order to deal with these limit conditions, they take into
account highly nonlinear models, which consider both wheel
dynamic and load transfer, resulting in a high computational
request. For this reason an auto-generated tailored NLMPC
(Non Linear MPC) is implemented thanks to the ACADO
Code Generation tool [14].

The MPC technique has been implemented not only for
active safety systems but also for vehicle dynamics, driver
modeling and integrated chassis control systems [15], [16].

Nonetheless the major focus is in active safety with many
possible applications such as active steering [17], [18], active
braking [19], active traction [20] and active differentials
or suspension to coordinate and improve the vehicle han-
dling [21], the stability and the ride comfort while avoiding
collisions [22].

In [23], authors propose an interesting NLMPC with
improved computationally efficiency, followed by detailed
validation tests in simulation.

However, the limit of the above mentioned state-
of-art techniques for trajectory planning and obstacle
avoidance is that the proposed techniques are usually
modelled at high level and require a computational com-
plexity not suitable for real-time implementation in the
resources-constrained embedded systems that typically are
present in automotive ECUs.

C. CONTRIBUTIONS
To overcome this limit, the contribution of this work is to
present an integrated algorithm capable of calculating vehicle
trajectories and avoid obstacles, while generating the neces-
sary control actions, with a complexity suitable for real-time
implementation in automotive embedded systems.

This work is focused on the third and fourth levels of the
decision hierarchy in Section I.A, assuming that the vehicle
has the necessary technology on board to implement the first
two hierarchical levels.

Our implementation makes use of the GRAMPC
(GRadient-based Augmented Lagrangian MPC) library,
which implements at low-level a variant of MPC where the
numerical optimiser exploits gradient descent, often used also
in Adaptive [24], [25] and Learning-based [26], [27] Control
Systems for Mechatronics, and is implemented entirely in the
C/C++ language.

Another contribution of our proposed work is the valida-
tion of the control algorithm with a Processor-in-The-Loop
paradigm, together with an exhaustive analysis of the compu-
tational cost associated with the choice of used mathematical
models and the choice of numerical methods and parameters
in the definition of the constrained optimisation problem.

As a further contribution, we propose the analysis of
robustness to measurement noise, emulated in the context
of PIL validation, exploiting a ZCU104 that has a real-time
processor on which the control algorithm is run, and has
an FPGA that is used as a HW accelerator to emulate the
measurement noise.

We can summarize main claims as: (i) implementation
in C/C++ language and verification of an NLMPC-based
assisted driving algorithm and gradient descent algorithm-
based optimizer, to lighten the computational load;
(ii) in-depth SIL and PIL validation of GRAMPC algorithm
and embedded implementation performance; (iii) PIL veri-
fication on core Embedded Cortex-A/R + FPGA systems;
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(iv) real-time simulation of noise injection on FPGA, for
closed-loop robust stability analysis; (v) analysis of com-
putation time and performance as a function of variation of
the mathematical model representing the vehicle kinematics/
dynamics; (vi) analysis of computation time and performance
as a function of variation in the method of numerical approx-
imation of differential equations.

D. PAPER ORGANIZATION
The rest of the paper is organized as follows: Section II
presents the GRAMPC Framework in terms of theoreti-
cal introduction on the implemented NLMPC and library
description; Section III introduce the kinematics, dynamics
and augmented models for vehicle representation; Section IV
reports the SIL validation with several configuration of
GRAMPC parameters; Section V show further analysis for
validate the GRAMPC solution in terms of computational
time analysis varying vehicle model and numerical approx-
imation method, and further robustness analysis in terms of
measurement noise injection and model uncertainty; Conclu-
sions and considerations on future development are reported
in Section VI.

II. DESCRIPTION OF THE GRAMPC FRAMEWORK
A. THE GRAMPC ALGORITHM
A constrained optimal control problem (OCP) is solved in
GRAMPC, as reported in Eq.1.

min
u,p,T

J (u, p,T , x0) = V (xT , p,T )

+

∫ T

0
L(x(t), u(t), p, t)dt

ẋ(t) = f (x(t), u(t), p, t), x (t0) = x0
g(x(t), u(t), p, t) = 0

gT (xT , p,T ) = 0

h(x(t), u(t), p, t) ≤ 0

hT (xT , p,T ) ≤ 0

u(t) ∈ [umin, umax]

p ∈ [pmin, pmax]

T ∈ [Tmin,Tmax] (1)

With the following symbolic meaning: u ∈ RNu is
the control vector, p ∈ RNp is the parameter vector,
x ∈ RNx , T is the prediction time horizon, f (x, u, p, t)
is the vector field describing the dynamics of the sys-
tem, g(x, u, p, t), gT (xT , p,T ) represent the set of equality
alleys, h(x, u, p, t), hT (xT , p,T ) represent the set of inequal-
ity constraints, and finally �u = [umin, umax], �p =

[pmin, pmax], �T = [Tmin,Tmax] define the operational
constraints.

GRAMPC functions implement an augmented Lagrangian
formulation based on the penalty method, where the gradient
descent algorithm is exploited to optimize the iterative update
of the variables u, p and T (if enabled).

For each set of constraints in OCP we define a Lagrange
multiplier and a penalty factor (in general these are vectors of
dimension equal to the set of alleys).

µ̄ =
[
µg, µgT , µh, µhT

]
c̄ =

[
cg, cgT , ch, chT

]
(2)

Eq. 2 returns the vectors in question for the augmented
formulation, which allow us to re-write the sets of constraints
(Eq. 3), making OCP an equivalent unconstrained optimiza-
tion problem.

ḡ (x, u, p, t, µh, ch)

=

[
g(x, u, p, t)

h̄ (x, u, p, t, µh, ch)

]
h̄ = max

{
h(x, p, u, t),− diag (ch)−1 µh

}
ḡT
(
xT , p,T , µhT , chT

)
=

[
gT (xT , p,T )

h̄T
(
xT , p,T , µhT , chT

) ]
h̄T = max

{
hT (xT , p,T ) ,− diag

(
chT
)−1

µhT

}
(3)

Through Eq.3, it is possible to re-write the terms of the cost
function as given in Eq.4.

J̃ (x, u, p,T , µ̄, c̄, x0) = Ṽ (xT , p,T , µT , cT )

+

∫ T

0
L̆(x, u, p, t, µ, c)dt

Ṽ (xT , p,T , µT , cT ) = V (xT , p,T )

+µTT ḡT
(
xT , p,T , µhT , chT

)
+

1
2

∥∥ḡT (xT , p,T , µhT , chT )∥∥2cT
L̃(x, u, p, t, µ̄, c̄) = L(x, u, p, t)

+µT ḡ (x, u, p, t, µh, ch)

+
1
2
‖ḡ (x, u, p, t, µh, ch)‖2c (4)

For convenience we used the following notation µTT =[
µTgT , µ

T
hT

]
; cTT =

[
cTgT , c

T
hT

]
;µT =

[
µTg , µ

T
h

]
and

cT =
[
cTg , c

T
h

]
.

In this way it is possible to redefine OCP as an uncon-
strained optimization, and in particular as a MAX-MIN type
optimization problem, as reported in Eq. 5.

max
µ̄

{
min
u,p,T

J̃ (x, u, p,T , µ̄, c̄, x0)
}

s.t ẋ = f (x, u, p, t), x0
u ∈ [umin, umax]

p ∈ [pmin, pmax]

T ∈ [Tmin,Tmax] (5)

In GRAMPC the inner minimization problem it is solved
through the gradient descent approach, while the external
maximization problem it is solved with the steepest ascent
approach.
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The main control function is then divided in the external
cycle in which µ̄ and c̄ are updated, and the inner cycle in
which are updated the variables u,p and, if enabled, T .
At the end of each cycle the convergence criterion it is

invoked for check the ‘‘quality’’ of solution provided by
GRAMPC.

List 1. Pseudo routine of the external cycle (max problem).

In the inner cycle it is solved the optimization of the con-
trol variables exploiting gradient descent updates for classic
unconstrained optimal problems. Defining the Hamiltonian
function as following:

H (x, u, p, t, µ, c) = L̃(x, u, p, t, µ, c)+ λT f (x, u, p, t)

(6)

The gradient-descent algorithm solves iteratively the sys-
tem of equations in 7.

ẋ = f (x, u, p, t), x0

λ̇ = −
∂H (x, u, p, t, µ, c)

∂x
= −Hx(x, u, p, t, µ, c)

λT =
∂Ṽ (xT , p,T , µT , cT )

∂x
= Ṽx (x, p,T , µT , cT ) (7)

In this way the Pontryagin’s principle [28] is satisfied to
find the optimal control vector that is compliant with the
following optimization sub-problem.

min
u∈[umin,umax]

H (x, u, p, t, λ, µ, c) ∀t ∈ [0,T ] (8)

Of course, the result of the inner cycle it is necessary in the
new external iteration, setting ui = ui|j+1, x i = x i|j+1, pi =
pi|j+1,T i = T i|j+1 and ηi = ηi|j+1.

For the updates of the variables u, p,T , µg, µh, cg, ch the
following relationship are chosen.

µi+1g =

{
µig + (1− ρ)cigg

i if
∣∣∣gi∣∣∣ > εg AND ηi ≤ ε0

µig otherwise

µi+1h =

{
µih+(1−ρ)c

i
hh̄
i if

(
hi>εh, ηi≤ε0

)
OR h̄i<0

µih otherwise

ci+1g =


β1cig if

∣∣∣gi∣∣∣≥max
{
γ1

∣∣∣gi−1∣∣∣ , εg} AND ηi≤ε0

β2cig if
∣∣∣gi∣∣∣ ≤ γ2εg

cig otherwise

ci+1h =


β1cih if h̄i ≥ max

{
γ1h̄i−1, εh

}
ANDηi < ε0

β2cih if h̄i ≤ γ2 ≤ εh
cih otherwise

where the coefficients εg, εgT , εh, εhT and ε0 are the toler-
ances factors that the user can set or leave as default values;
the same for γ1, β1, β2, ρ in the update relationships.

For the update of control variables u(t), parameters p(t),
and time T (t), GRAMPC uses the following relationships,
based on gradient-descent.

ui+1 = sat
{
ui − αid iu, umin, umax

}
pi+1 = sat

{
pi − γpαid ip, pmin, pmax

}
T i+1 = sat

{
T i − γTαid iT ,Tmin,Tmax

}
(9)

Regarding the stability/convergence check, the conver-
gence criterion is defined with the following condition.

[ ∣∣giT ∣∣
max

(
hiT , 0

) ] ≤ [ εgT
εhT

]
AND

maxt∈[0,T ]

[ ∣∣gi∣∣
max

(
hi, 0

) ] ≤ [ εg
εh

]
OR ηi ≤ ε0

(10)

In any case, the external algorithm terminates when the
maximum number of iterations imax is reached, providing a
sub-optimal solution. This is necessary to ensure a real-time
implementation, as imax depends on the choices made by the
user on simulation time and integration step.

B. GRAMPC LIBRARY ORGANIZATION
The GRAMPC framework is designed to be portable and exe-
cutable on different operating systems and hardware without
the use of external libraries. The code is implemented in plain
C with a user-friendly interface to C++, Matlab/Simulink,
and Dspace. As schematized in Fig. 1, the main files are:

i probfct.c in which the structure of the dynamic equa-
tions, constraints and cost function are defined;

ii grampc_RUN.c in which the Augmented Lagrangian
formulation and the OCP problem through the
gradient-descent algorithm are implemented; this func-
tion needs to invoke ffct since is the one which define
the model equations;

iii main_SYSTEM.c in which the other functions are
invoked, computing optimal (or sub-optimal) solution
and evaluate the state vector evolution under such con-
trol solution.
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FIGURE 1. GRAMPC main files organization.

List 2. Pseudo routine of the inner cycle (min problem).

As schematized in Fig.2, the workspace of a GRAMPC
project as well as algorithmic options and parameters are
stored by the structure variable grampc.
Several parameter settings are problem-specific and need

to be provided, whereas other values are set to default values.
A generic interface (Cmex interface) allows the commu-

nication among Matlab-files and C-code-files and allows to
manipulate the grampc structure to set algorithmic options or
parameters for the problem at hand.

The functionalities of GRAMPC can be manipulated from
Matlab/Simulink by means of mex routines that are wrappers
for the corresponding c-files.

FIGURE 2. Interfacing of GRAMPC to C (grey) and matlab/simulink
(white).

III. REFERENCE MODELS FOR VEHICLES
A. KINEMATICS OF A VEHICLE
The ‘‘Single-Trace model’’ or ‘‘2D bicycle model’’ can be
expressed as a simplified car model, schematized in Fig.3.

This is a classic model that does very well at capturing
vehicle motion in normal driving conditions [29].

The time-continuous model describing the kinematics of a
vehicle is given Equations 11.
Where x and y are the coordinates of the center of mass in

an inertial frame (X ,Y ). ψ is the inertial heading and v is the
speed of the vehicle. Lf and Lr represent the distance from the
center of the mass of the vehicle to the front and rear axles,
respectively.
β is the angle of the current velocity of the center of

mass with respect to the longitudinal axis of the car. a is the
acceleration of the center of mass in the same direction as the
velocity.
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FIGURE 3. Single-trace model of a vehicle.

The control inputs are the front and rear steering angles δ,
and a.

ẋ = v cos(ψ + βf (δ))

ẏ = v sin(ψ + βf (δ))

V̇ = a

ψ̇ =
v

Lr + lf
cos (βf (δ)) tan (δ)

βf (δ) = arctan
(
tan(δ)

Lr
Lr + Lf

)
(11)

B. DYNAMICS OF A VEHICLE
The kinematic model lacks references to forces opposing
motion, such as the aerodynamic lift force, and reaction
forces between the road surface and the tyres.

In the dynamic model it is possible to include this level of
detail. The reference time-continuous model is given in the
set of Equations (12).

In this case, the state vector is represented by[
Vx Vy x y ψ

]
while the control vector is represented

by
[
δ Fxf

]
. Fxf is the traction force.

m(V̇x + Vyω) = (Fxf cos(δ))− (Fyf sin(δ))− Fair
m(V̇y − Vxω) = (Fxf sin(δ))− (Fyf cos(δ))+ Fyr

I ψ̈ = Lf (Fxf sin(δ)+ Fyf cos(δ))− LrFyr
ẋ = Vxcos(ψ)− Vysin(ψ)

ẏ = Vycos(ψ)+ Vxsin(ψ)

ψ̇ = ω (12)

whereFyf = −C(α,F)αf = −C(α,F)[
Vy+Lf ω
Vx
−δ] is the lat-

eral tire force on front tires withCf cornering stiffness of front
tires and α is the tire slip angle.

TABLE 1. Nomenclature of tested mathematical models.

Fyr = −C(α,R)αr = −C(α,R)[
Vy+Lrω
Vx

] is the lat-
eral tire force on rear tires with Cr cornering stiffness of rear
tires and αr is the tire slip angle.
Fair = 1

2ρairCxSV
2
x is the frictional force of air, where ρair

is the air density, Cx is the penetration coefficient depending
on the shape of the vehicle and S is the frontal area of the vehi-
cle. C(α,R) and C(α,F) are called ‘‘stability derivatives’’,
and although they depend on the tyre characteristics, values
typically used in the literature can be assumed.

In fact, the important variations occur in the analysis of
racing vehicles.

C. AUGMENTED MODELS FOR CONTROL
With the idea of improving performance, the dynamics of the
vehicle’s position and yaw error were introduced as auxiliary
equations to those of the two models described above.

In particular, the problem of tracking the trajectory that
describes the centre of a lane, on a road whose description
in Cartesian coordinates is known. This makes it possible to
write the following auxiliary equations.

ex = x∗−x

ey = y∗−y = f (x)−y

eψ = ψ∗ − ψ = θ (x)− ψ (13)

In the following it is assumed that the reference for the
x-coordinate of the vehicle is linearly dependent on the time
variable.

This allows us to describe the road section as a function of
the type f (x) = f0sin(x) and to describe the yaw angle of the
vehicle in a simple way as θ (x) = arctan(f (x)).

ėy =
∂f (x)
∂x

∂x
∂t
− ẏ =

∂f (x)
∂x

ẋ − ẏ = F(x)ẋ − ẏ

ėψ =
∂θ (x)
∂x

∂x
∂t
− ψ̇ =

∂θ (x)
∂x

ẋ − ψ̇ = 2(x)ẋ − ψ̇ (14)

The Equations (14) are used to increase the dynamics of the
mathematical models presented above, to ‘‘force’’ the error
for trajectory tracking to tend to a null value, exploiting the
knowledge of path representation in Cartesian coordinates.

Since the expression of ẋ, ẏ and ψ̇ changes between kine-
matic and dynamic models, the auxiliary equations change
their appearance in the various use cases.

From here onwe refer to the following nomenclature, given
in Table 1, concerning the models used in the tests.

IV. SOFTWARE-IN-THE-LOOP ANALYSIS
In the following, a verification of the functionality of the
GRAMPC algorithm on two different control problems:
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TABLE 2. Model parameters in SIL and PIL simulations.

FIGURE 4. Straight road, without obstacles.

(a) movement of the vehicle from an a point A to a point
B (seen as a way-point) both with a clear roadway and with
obstacles; (b) trajectory tracking that describes the course of
the carriageway (assuming it can be described implicitly in
2D space) both with a free carriageway and with obstacles.

With regard to the definition of obstacles, based on the
dimensions of the vehicle, we consider a constraint area
increased by an amount equal to half the longitudinal thick-
ness of the vehicle, to take into account the fact that we control
the coordinates of the vehicle’s centre of gravity.

In Tab.2 are reported the parameters used both in SIL and
PIL sections.

A. POINT-TO-POINT CONTROL
1) WITHOUT OBSTACLES
First of all it is defined a working environment on which
to perform the relevant simulations. It has been supposed to
work on a straight, unobstructed road.

The dimensions of the single carriageway are 4 m and
a 100 m long road is assumed, as reported schematically
in Fig. 4.

In the first simulation we are going to analyse the first
important function of the MPC controller.

The system, defined through its model, generates a vector
of state variables. This vector will contain all the state vari-
ables of the system that are linked to the system itself through
physical equations of their evolving in time.

All the state variables that appear in the system can be
controlled; all of them, in fact, known their initial value at
time 0 (imposed in the project phase) can be controlled by
the MPC system to reach a certain desired value at the end of
the simulation.

In our case we will only deal with the variables that control
the position on x and y in a top view of the system. All the

FIGURE 5. Controlled vehicle on straight road without obstacle.

FIGURE 6. Effect of weight variation.

auxiliary variables that control the system, if not directly con-
trolled, adjust to meet the conditions imposed in the design
phase.

We will therefore place a strong weight in the cost function
on minimising the difference between the initial and desired
Xdes and Ydes positions.

The aim of this first part will therefore be to reach a
desired point starting from an initial point. In particular
X0 = [0 2]T ,Xdes = [100 6]T . The system respects the
conditions going from the initial point to the final point in
a predetermined time, simulation time.

Fig. 5 shows the trajectory of the centre of mass of the
vehicle when it is required to start from one point and arrive at
another point, both known a priori, having fixed some values
of the weights of the objective function.

It can be seen that having set the same ‘‘priority’’ on X and
Y coordinates, the trajectory resulting from the resolution of
the optimality problem is essentially a straight line. As can be
seen, the variation of these parameters affects the trajectory
as shown in Fig. 6.

2) WITH OBSTACLES
As anticipated, in case of obstacles each is interpreted as a
forbidden area, described in terms of inequality constraints
for the control problem, see Fig. 7.

Fig. 5 simulates a car travelling on a straight carriageway
with starting position at t = t0 and desired position at t = tsim
and a possible obstacle in themiddle of the carriageway. In the
simulations shown below we set tsim = 10s.

The most important parameter for the obstacle avoidance
function is certainly the prediction horizon, since according
to this parameter, the vehicle ‘‘sees’’ the road ahead closer or
further away.

Fig. 8 shows the results with a ‘‘nominal’’ choice of the
tuning parameters in the point-to-point control problem.
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FIGURE 7. Road with constraints.

FIGURE 8. Straight road point to point with one obstacle.

Fig. 9 shows the variation of the trajectory according to the
change of the prediction horizon. Another interesting analysis
of the variation of the parameters of the control optimisation
problem is that relating to the various combinations of prior-
ities, as shown in Fig. 10.
A very interesting result is the one represented by the green

line, in Fig. 10, related to a configuration with high priority
to the constant velocity constraint.

The solution that the algorithm finds is to ‘‘go around’’ the
endpoint. Intuitively, this is a solution that makes ‘‘physical’’
sense, since high priority is given to maintaining constant
velocity, the solution that is ‘‘closest’’ to the goal of reaching
the desired end position is certainly to go around it.

Similar results are obtained by inserting more than one
obstacle constraint during the route. For example, Fig. 11
shows the case in which the car shall maintain the centre-line
of the roadway (imposing the same height at the point of
departure and arrival) and there are four obstacles placed
alternatively in the two lanes.

The results shown relate to an analysis of the ‘‘feasibility’’
of the solutions proposed by the GRAMPC algorithm when
the kinematic vehicle model (K4) is taken into account.

Fig. 13 shows the comparison between the K4 and D6
models in the problem of avoiding the four obstacles and
maintaining the centre-line of the roadway.

It can be seen that the differences in ‘‘performance’’ are
hardly appreciable in terms of the trajectory taken by the
vehicle.

In practice, the two trajectories overlap. However, Fig. 12
shows a difference in the solutions derived from the
GRAMPC algorithm, highlighting that the control actions are
more ‘‘aggressive’’ in the case of the kinematic model.

In Figures 12 and 14 each physical quantity has its own
units: X ,Y in metres; Vx ,Vy metres/second; θ, ψ radians; ω
in radians/second.

On the other hand, the use of a more complex model
requires higher computation times, as shown in Fig. 15.

Note however that, having fixed the integration time at
10ms, both are characterised by relatively low computational
complexity. In fact, as shown in Fig. 16, the time required
to simulate a 10 ms model step and then derive the MPC
solution remains smaller (on average) at 0.5 ms for both
vehicle models considered.

This kind of consideration is useful to state that the algo-
rithm can be considered to be implemented in real-time.

In Figure 15 is shown the computation time in
milliseconds, with respect of simulation time in seconds, both
for kinematic and dynamic models.

B. TRAJECTORY TRACKING CONTROL
The second control problem addressed is that of trajectory
tracking in the XY plane, which explicitly describes the
‘‘shape’’ of the roadway.

It is assumed that the X coordinate of the vehicle evolves
linearly in time and that the desired Y coordinate is a sinu-
soidal function of X itself.

Similarly, as regards the yaw angle of the vehicle, it is
assumed that the centre line (in the forward direction) of the
vehicle must be tangent to the trajectory at all times.

The results proposed in Fig. 17 are related to the best
combination of priority coefficients and prediction horizon
derived from the preliminary analysis in the driving problem
with way-points, so as to make an equal coefficient analysis
in the optimization problem setting.

The figure shows that in the case of the K4 and D6 models
there is a violation of the obstacle constraint, as the trajectory
of the vehicle’s centre of mass enters the ‘‘safety’’ circle.

The same is true for the K6 model while the D8 model
fulfils both objectives, trajectory tracking at the same time as
obstacle avoidance.

Certainly D8 is the most complicated model, in fact as it
can be seen from Fig. 16 the computation times associated
with D8 are those with the highest peak values.

However, to perform the 10 ms simulation of the evolution
of the dynamic model, the processor always takes less than
2 ms. This means that D8 is also a good candidate for imple-
mentation on an embedded platform.

In Fig. 20(a) a robustness analysis to the variation of the
initial condition of the vehicle yaw angle is presented.

In particular, the case in which the track constraints are set
as ‘‘soft’’ constraints that do not affect the solution obtained
by the GRAMPC algorithm very much is shown.

Intuitively, different starting angles mean that the transi-
tional phase evolves differently.

Fig. 20(b) shows the parametric robustness analysis, com-
bining variations in vehicle attitude angle with variations in
initial vehicle position.

It can be seen that having set the constraints on the road-
side, as ‘‘soft’’ the solutions computed by GRAMPC can be
outside the roadway.

This is due to the fact that maintaining a constant vehi-
cle speed is also one of the constraints on the optimisation
problem.
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FIGURE 9. Overcoming an obstacle with a variable prediction horizon.

FIGURE 10. Combination of the priorities.

FIGURE 11. Controlled trajectory from point A to point B with obstacle.

V. PROCESSOR-IN-THE-LOOP ANALYSIS
AND VALIDATION
In this section the analysis of the GRAMPC algorithm is
presented again, when the project is compiled on an Embed-
ded platform. In particular, the Raspberry Pi 3 Model B with
64-bit 1.5 GHz quad-core Arm Cortex-A53 CPU is used,
which is representative of the calculation capabilities of an
automotive gateway.

FIGURE 12. K4 VS D6 in terms of state variable evolution.

The differences between the vehicle trajectories obtained
on a i7 CPU in Section III and those obtained here on the
embedded system are not appreciable. The substantial differ-
ences are in the calculation times.

An exhaustive analysis of the variation of the average
computation time is proposed below, both with regard to the
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FIGURE 13. Comparison between K4 and D6 models.

FIGURE 14. K4 VS D6 in terms of control variable evolution.

FIGURE 15. K4 VS D6 in terms of computation cost analysis.

models used and to the numerical approximationmethod. The
results on the embedded platform are obtained running the
GRAMPC algorithm as the only process task.

A. EFFECT OF MODEL CHOICE
Computation time analysis is proposed by comparing K4
and D6models on point-to-point displacement problems with

FIGURE 16. Computational analysis of the four different exploited
models.

both one and four obstacles placed on the roadway, as shown
in the MIL simulation section.

In addition, the K6 and D8 models are compared, aug-
mented by the error dynamics equations in the case of 2D
trajectory knowledge (Equations (14)).

Fig. 18 shows the variation of the average computation
time with respect to the choice of model on which GRAMPC
bases the solution of the optimisation problem.
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FIGURE 17. Comparison between ‘‘classic’’ models (K4 and D6) and ‘‘augmented’’ models (K6 and D8).

In both cases, with one and four obstacles respectively,
D6 is computationally more expensive. Note that the initial
computation time exceeds the real time limits.

This fact is clearly due to the initial stages of compiling
and starting the library in wrapped form and the simulation
environment.

However, it should be noted that the average computation
times are well below the chosen integration time of 10 ms
(indicative for ‘‘real-time’’ applications).

Similar comparison, on the trajectory tracking problem
with an obstacle on a roadway, is made with respect to the
augmented models, K6 and D8 respectively, as shown in
Fig. 19. Table 3 summarises the results in Figs. 18 and 19,
in terms of the average computational time recorded on the
simulations carried out, varying the vehicle models.

It should be noted that the various tests were carried out
by setting the numerical solver as the one based on Euler’s
numerical method. As we expected, the D8 model is certainly

TABLE 3. Summary of the computational-time analysis.

the most complex to process for the GRAMPC numerical
optimiser. In any case, it is also pointed out that the variation
of the model with which the vehicle is described has a rather
manageable influence in terms of processing times.

B. EFFECT OF NUMERIC METHOD CHOICE
The GRAMPC library provides four different numer-
ical methods for approximating differential equations.
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FIGURE 18. Effect of variation of the model for ‘‘Point-to-Point’’ control problems (Comp.Time in
blue and Average Comp.Time in red).

FIGURE 19. Effect of variation of the model for ‘‘Trajectory Tracking’’ control problems (Comp.Time in
blue and Average Comp.Time in red).

In particular in this work we compares the Euler, Heun,
Runge-Kutta and Rosenbrock methods [30].

Fig. 21 shows a comparison between the trajectory
obtained by GRAMPC when setting the Euler method
(orange trajectory) and the Rosenbrock method using the
RODAS solver (blue trajectory), respectively.

Fig. 23 shows the comparison between the tracking error
of the trajectory describing the roadway, in particular on
the Y -coordinate. It is shown that the use of Euler’s method

improves performance compared to the use of a computation-
ally heavy method such as Rosenbrock one.

This is justified graphically through the analysis of compu-
tational times in Fig. 22 that shows the differences in terms
of computational time required with the different numerical
methods provided by GRAMPC.

As far as the implementation on Raspberry Pi 3 B+ is con-
cerned, the methods that are suitable for maintaining a ‘‘real-
time’’ throughput are Euler and Heun, while the computation
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FIGURE 20. (a) Effect of ψ(0) variation; (b) Combined effect of xG(0) and ψ(0) variations.

FIGURE 21. Precision comparison with different numerical approximations.
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FIGURE 22. Comparison of required computational time with variation of the numerical methods
(Comp.Time in blue and average comp.time in red).

FIGURE 23. Trajectory tracking error eY with different numerical
methods.

times with the Rosenbrock (RODAS) and Runge-Kutta
(RUKU) methods are too high compared to the reference
sampling time of 10ms.

Table 4 summarises the results of the variation analysis of
the numerical approximation method, shown in Fig. 22.

C. REAL-TIME ROBUST MPC WITH MEASUREMENT
NOISE INJECTION
A fundamental question about an MPC system is its robust-
ness to model uncertainty and noise from external sources.

TABLE 4. Summary of the computational-time analysis.

From the control theory, a control system is robust when the
stability is maintained and the performance specifications are
met for a specified range of model variations and a class of
noise signals (uncertainty range).

To be meaningful, any statement about ‘‘robustness’’ of a
particular control algorithmmust make reference to a specific
uncertainty range. In this context, an Additive White Gaus-
sian Noise generator [31] has been developed to introduce
random errors into the states vector.

In particular, a single AWGN generator has been exploited
for X and Y positions, yaw angle and velocity to insert pos-
sible external disturbances, coming from a real environment.
The standard deviation chosen for these generator is charac-
teristic for every state variable and has been sized considering
a possible real error introduced in the system.

Two types of AWGN generator have been implemented for
the MPC algorithm developed: one with a standard deviation
of 0.065, that produces a maximum absolute error of 0.25 and
it’s added to X and Y position and to the velocity. The other
generator has a standard deviation of 0.002, with a maximum
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FIGURE 24. Setup configuration for processor-in-the-loop validation with zynq ultrascale + MPSoC ZCU104.

FIGURE 25. Effect of the noise injection in the control loop.

absolute error of 0.0075 and it’s used to characterize the yaw
angle state.

With this solution, the future iteration receives as initial
state vector a set of variables that is different from the optimal
value calculated with the Optimal Control Problem devel-
oped. This forces the algorithm to a fast adaptation to restore
the optimal state values to follow the reference trajectory and
avoid the obstacles.

Analysing this aspect through the vehicle behaviour, it’s
possible to understand if the MPC algorithm has the robust-
ness to correct possible random errors and to maintain the
right trajectory.

Fig. 25 shows the solution of the GRAMPC algorithm
when the feedback is perturbed by additive disruption, gen-
erated through the FPGA logic of ZynQ ZU7EV device, and

the MPC algorithm runs on the programmable core available
on the same device.

The ZynQ ZU7EV, mounted on the prototyping ZCU104
board in Fig. 24, has 2 types of programmable cores: a
quad-core Cortex-A53 and a dual-core Cortex-R5. The sim-
ulation with disturbance injection was performed on both
Cortex-A53 and Cortex-R5 processors.

The differences in the solution found by GRAMPC are not
appreciable, so the results shown are relative to the use of the
Cortex-R5, being a safe processor characterized by a lower
power consumption than the Cortex-A53.

The implementation of AWGN generation and disturbance
insertion on the ZU7EV device required 11700 LUTs and 160
DSP blocks, corresponding to 5% and 9%, respectively, of the
available FPGA resources.

The simulations with disturbance injection are performed
with the same control problem setting parameters in the nom-
inal case. The performance could be improved by finding the
most suitable combination to compensate for the presence of
disturbances.

The objective in this case was to verify the robustness of the
nominal solution in the case of additive disturbances in the
feedback. For simplicity of exposition, the PIL simulation
in the case of using the D8 model with Euler numerical
approximation algorithm is shown.

D. ROBUSTNESS TO MODEL UNCERTAINTY
A further verification consists in testing the GRAMPC solu-
tion, inserting in the dynamic equations of the vehicle the
tire-road surface interaction model of Pacejka [32], [33].
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FIGURE 26. Computational time analysis with Pacejka model inserted
only in Simulink Model (red) and also in GRAMPC runned on ZCU104
(blue).

FIGURE 27. Comparison in cost function of original OCP VS augmented
lagrangian formulation (up) and behaviour of Penality in case of Pacejka
model only in vehicle simulator.

Fairly comparable results were obtained, both in the case
where Pacejka is only in Simulink and GRAMPC uses
the linear model, and in the case where Pacejka is also
within GRAMPC.

As shown in Fig. 26, the more evident difference is that the
computational time increases significantly even in the case of
using numerical approximation with Euler method.

Indeed, in the case where Pacejka model is both in
Simulink and on an Embedded platform, the computational
time seems not to respect the limit for the real-time imple-
mentation, which in the specific case is 10ms.

FIGURE 28. Comparison in cost function of original OCP VS augmented
lagrangian formulation (up) and behaviour of Penality in case of Pacejka
model is both in Simulink and GRAMPC on ZCU104.

In the case where Pacejka is used in Simulink and the
linear model is used in GRAMPC on an Embedded system,
as shown in Fig.27, the original cost functional and that of
the Lagrangian function differ more markedly than in the
case where Pacejka is used in both Simulink and ZCU104,
reported in Fig.28.

GRAMC compensates for the difference between the sys-
tem model and the internal model (the one used for predic-
tion) by increasing the penalty coefficient.

In the case where Pacejka is both in Simulink and
on ZCU104, being the system model and the prediction
model, GRAMPC does not have to compensate for this
deviation through a penalty, in fact the original cost func-
tions and the Lagrangian formulation are substantially
overlapping.

Reasonably, the manoeuvres required in the analysis pro-
posed in this paper, do not require values of δ, αf and αr
that highlight the differences between the two models used.
Most likely, analyzing assisted parking maneuvers or trajec-
tory requests with very tight curve sections would highlight
the need to use a more accurate model even on the control
algorithm side of the embedded system.

VI. CONCLUSION AND FUTURE WORK
This paper presented the design and real-time implementation
on embedded systems of a novelMPC, incorporating obstacle
avoidance functionalities and based on the GRAMPC library
in which gradient descent is used as a numerical optimisation
method.
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The structure of the library and the operating procedure for
using it and testing its functionality through the case study of
vehicle control was presented.

In this work, an exhaustive analysis of the variations
obtained on the solution calculated on the basis of the
GRAMPC prediction has been presented, with regard to
the parameters of the optimisation problem, the choice of the
mathematical model describing the vehicle, and the numeri-
cal approximation methods.

The proposed analysis aims to find the trade-off between
accuracy (i.e. the complexity of the mathematical abstraction
required to describe the physical process) and computational
complexity (i.e. the computational time required to calculate
the prediction itself).

Modified equations have also been proposed for model
augmentation, in order to solve a trajectory control problem,
under the reasonable assumption that it is possible to mathe-
matically describe the road route, at least around the vehicle’s
current position.

The analysis of the results shows that the choice of the
model, although important, has less impact than the choice
of the numerical method of approximation of the differential
equations.

In particular, this gives important indications on the cus-
tomised implementation of GRAMPC, without having to
fully import the functions of all numerical methods, or want-
ing to directly implement low-level code.

Robustness analysis to measurement disturbances was pre-
sented, exploiting the potential of the ZCU104 platform,
on which disturbance injection via HW acceleration was
implemented, while the MPC algorithm was ported on a safe
Cortex-R5 core with an HW/SW architecture that is fully
compliant with the real-time and low-complexity/low-power
requirements of automotive ECUs.

The achieved results well compare to the state of the
art where advanced MPC algorithms are usually not imple-
mented in real-time and/or are not suitable for resource con-
strained embedded systems.

Extensions of our work will include further analysis of the
algorithm by exploiting advanced Co-simulation and Formal
Verification paradigms [34].

Increasing the level of details in the mathematical model,
including also power drive system [35] and power electron-
ics, for the evaluation of particular properties, related to the
behaviour of the vehicle in the face of the introduction of
possible faults.
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