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ABSTRACT Petri nets are used to design deadlock control strategies for flexible manufacturing systems
(FMSs), which typically involve the addition of monitors and the associated arcs to the FMS. The addition
of several monitors and associated arcs to the first constructed Petri net model significantly complicates the
Petri net controller. This paper develops a two-step method for preventing deadlocks based on a colored Petri
net and a structurally minimal approach that significantly reduces the number of monitors. In the first step,
a vector covering technique is applied to generate a minimal covered set of first-met bad markings (FBMs)
and legal markings that are respectively smaller than the sets of FBMs and legal markings. At one iteration,
place invariants (PIs) corresponding to monitors are constructed by solving an integer linear programming
problem (ILPP) to prohibit the maximum number of FBMs, while allowing all legal markings in the minimal
covering set. The purpose of the ILPP is to maximize the number of FBMs forbidden by the PIs. Then,
based on a colored Petri net, all generated monitors are combined into a global control place. Therefore,
a supervisor with minimal structural complexity can be constructed. The obtained net model is controlled
after the addition of the designed supervisor. Two instances from the literature are considered to illustrate
the proposed approach.

INDEX TERMS Colored Petri nets, integer linear programming, flexible manufacturing system, deadlock
prevention.

I. INTRODUCTION
A flexible manufacturing system (FMS) executes a variety
of tasks through the use of several processes that compete
for finite resources including machines, robots, buffers, and
fixtures [1], [2]. In an FMS, deadlock can occur as a result
of processes competing for system resources [3]. In general,
a deadlock causes a system to become inefficient and blocked,
and may even result in destructive behavior, which is usually
undesirable. As a result, a variety ofmethods have been devel-
oped to address the deadlock problem, including detection
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and recovery of deadlock [4], [5], avoidance of deadlock
[6], [7], and prevention of deadlock [1], [2], [8]–[11].

Petri nets (PNs) are efficient mathematical and graphical
modeling, analysis, and control tools for FMS deadlocks [2],
[12], [13]. It is used to depict the FMSs’ properties and
behaviors, including conflict, sequencing, and synchroniza-
tion. Additionally, PNs can be applied to represent character-
istics such as liveness and boundedness [8]. The advantage of
PNs over other modeling and simulation tools such as Arena
[14], [15], queuing network models [16], digraph [17], and
automata [18] are that they provide a simple representation
of the systems. Petri nets are qualified to represent systems
top-down at multiple levels of analysis and complexity, and
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they have a strong mathematical foundation that permits both
qualitative and quantitative study of such systems [9]. Dead-
lock prevention approaches are being pursued by a number of
researchers, which can work as criteria for liveness-enforcing
supervisors. These criteria involve behavioral permissive-
ness, which improves the system’s resource utilization, and
structural complexity, which results in a controller with a
small number of control places, thus also reducing hardware
and software costs, and computational complexity, which
permits the implementation of a deadlock control approach
to the large-scale systems [9], [10], [19]–[22].

Generally, structural analysis [10], [23], [24] and
reachability graph analysis [25]–[27] are used to synthesize
deadlock prevention methods based on Petri nets. Structural
analysis is a powerful method for overcoming deadlocks
in certain types of Petri net structures. In comparison to
structural analysis methods, reachability graph-based meth-
ods can result in optimal or near-optimal controllers for
generalized Petri net systems. Furthermore, these approaches
must list all of the system’s reachable states [8], [28], [29].
The purpose of this study is to discuss methods for analyzing
reachability graphs. All markings (states) on a system can
be classified into two groups, legal and illegal, based on
their compliance with a control specification. In the deadlock
prevention specification, a marking is considered legal if
it or one of its successor states may transition back to the
original marking; otherwise, it is an illegal state. A monitor
is optimal if it prevents all illegal states while enabling
legal states. In the studies [30], [31], a reachability graph is
classified into a live zone (LZ) and a deadlock zone (DZ),
with the LZ including all legal states and the DZ containing
all illegal states. Then, a first-met bad marking (FBM) is
classified as one that is illegal and indicates the LZ’s initial
entry into the DZ. First-met bad markings are a subset of
illegal states associated with deadlocks, as the system cannot
enter the DZ if all of them are prevented. Therefore, if a
set of monitors is constructed to prohibit all first-met bad
markings, then certain legal states may be forbidden. Such
that, the generated supervisor cannot be guaranteed to be
behaviorally optimal and also faces structural complexity
as a result of a large number of monitors developed. The
study [8] proposes a vector covering strategy to solve the
above problem by analyzing the relationship between various
states. Without considering all legal markings and all FBMs,
they first proposed minimal covering sets of legal and FBMs
markings be used in designing monitors. However, because
a monitor is needed for each first-met bad marking in the
minimal covered set of FBMs, a supervisor has an insufficient
number of monitors. Chen and Li [28] extend this method by
showing how to develop a structurally minimal controller that
utilizes the fewest feasible monitors. No redundant monitor
exists when this technique is used [21], [28]. Moreover,
it guarantees that the supervisor obtained is behaviorally
optimal. However, due to the complexity of solving an integer
linear program with an excessive number of constraints and
variables, it is difficult to construct a maximally permissive

supervisor in an acceptable amount of time using this method
for a complicated net model.

In this study, we extend a strategy for supervisory con-
trol based on a controller’s structural minimization. Without
the need for iterations, the structurally minimum method is
applied to formulate an integer linear programming problem
(ILPP). By solving this ILPP, it is possible to achieve a set
of optimal or near-optimal monitors while minimizing the
monitors. Consequently, the designed monitors are signifi-
cantly reduced, and the redundancy test is omitted. Finally,
by adding a minimal number of monitors, the final net model
becomes live. In comparison to previous work [34], our
approach enables the development of an optimal or near-
optimal supervisor with fewer monitors and without the need
for iterations.

The rest of the paper is structured as follows: Section II
presents some of the basic concepts employed in this
research, including Petri nets, monitor synthesis using a place
invariant, and the structurally minimal method. Section III
provides a policy for supervisors with simple structures
to prevent deadlocks. Several experimental results obtained
using the developed approach are shown in Section IV.
Finally, Section V presents conclusions and future research.

II. PRELIMINARIES
A. PETRI NETS
A marked Petri net is represented by N = (P, T, F, W, Mo),
where
1. P: Set of places, P = {p1, p2, . . . , pm}, m > 1.
2. T : Set of transitions, T = {t1, t2, . . . , tn}, n > 1.
3. F : (P×T )∪ (T ×P): Input and output function of a net.
4. W : (P×T )∪ (T×P)→ IN: Mapping function that adds

a weight to an arc, W (p, t) > 0 if (p, t) ∈ F , otherwise,
W (p, t) = 0, all p, t ∈ P ∪ T , and IN = {0, 1, 2, . . . }.

5. Mo : P → IN: Initial marking of a net, and the
pth element of Mo, represented by Mo(p), is the initial
tokens in place p.

A marked Petri net N = (P, T, F, W, Mo) is called
1. an ordinary net if W (p, t) = 1, ∀(p, t) ∈ F , p ∈ P, and

t ∈ T .
2. a weighted net if W (p, t) > 1, (p, t) ∈ F, ∃p ∈ P, and
∃t ∈ T .

3. self-loop free if W (p, t) > 0 implies W (t , p) = 0 and
∀(p, t) ∈ P ∪ T .

4. self-loop ifW (t , p) > 0 and ∀(p, t) ∈ P ∪ T .
Assume that a node a ∈ P∪T , the preset and postset of a can
be respectively represented as ·a = {b ∈ P∪ T | (b, a) ∈ F}
and a· = {b ∈ P ∪T | (a, b) ∈ F}. Incidence matrix [N ]
of net N is a |P| × |T | integer matrix with [N ](p, t) =
W (t , p)−W (p, t). A transition t ∈ T is enabled (can be fired)
if M (p) ≥ W (p, t), ∀p ∈· t , denoted as M [t〉, where M (p) is
the tokens number in place p. If a transition t fires, it generates
a marking M′, represented by M [t〉M′, where ∀p ∈ P, M′

(p) = M (p)− W(p, t) + W(t, p). The set of net N markings
that are reachable from the initial marking Mo is represented
by R(N, Mo). R(N, Mo) is represented by a reachability graph,
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designated as G(N, Mo), which is composed of arcs and
nodes; arcs indicate transition firings labeled with t , while
nodes contain markings labeled withMi.
A marked Petri net N = (P, T, F, W, Mo) is
1. live if ∀t ∈ T , t is live at Mo, ∀M ∈ R(N, Mo), ∃M ∈

R(N, M ) such thatM [t〉.
2. dead atMo if t ∈ T such thatMo[t〉.

A P-vector is a column vector I : P → Z that is indexed
by P, where Z = {. . . , −2, −1, 0, 1, 2, . . . }. If I 6= 0 and IT

[N ]= 0T , P-vector I is said to be a place invariant (PI). ||I || =
{p |I(p) 6= 0}, ||I ||+ = {p|I(p) > 0}, and ||I ||− = {p |I(p) < 0}
are said to be respectively the support, positive support, and
negative support of place invariant of I . If li = I (pi), ∀pi ∈ P,
li’s are named the coefficients of place invariant I . Assume
that I is a PI of a net N and M is a marking that is reachable
from Mo. Then, ITM = IT Mo.

B. ANALYSIS OF REACHABILITY GRAPH
Consider the reachability graph R(N,M0) of a net N . For
purposes of deadlock control, markings in an R(N,M0) can be
categorized as good, bad, dangerous, and deadlock. A good
marking is one that is capable of reaching both the initial
and subsequent markings. A bad one has successors, but
they cannot achieve the initial marking. A dangerous marking
is capable of reaching the initial marking, but at least one
of its successors cannot reach the initial marking. A dead-
lock implies a dead state in a system that has no successor.
To ensure optimal supervision, the controlled system should
include both dangerous and good markings; these are the
legal markings indicated byML . The legal markings for a PN
system are stated as

ML = {M |M ∈ R(N ,M0) ∧M0 ∈ R(N ,M )}. (1)

A reachability graph is divided into two zones in [30], [31]:
a live zone (LZ) and a deadlock zone (DZ), with the live
zone containing all legal markings and the deadlock zone
containing all illegal markings. An FBM is a specific illegal
marking that can be created by firing one transition from the
live zone to the deadlock zone. The FBMs are indicated by
MFBM and mathematically represented as

MFBM = {M ∈ DZ|∃M ′ ∈ LZ, ∃t ∈ T , M ′[t〉M}. (2)

C. MONITOR FORMULATION METHOD
Yamalidou et al. [32] developed a technique based on PI for
enforcing algebraic constraints on Petri net elements through
the construction of monitors (control places), which includes
the initial marking and associated arcs. Let [Np] with n places
andm transitions represent the incidence matrix of an original
net that must be controlled. The monitors can be expressed as
a matrix containing the arcs connecting the monitors to the
original net’s transitions, denoted as [Nc]. The original net
and the monitors are combined into a controlled net with an
incidence matrix as

[N ] =
[
Np
Nc

]
.

The following constraint must be satisfied when there is a
control requirement:

n∑
i=1

li ·M (pi) ≤ β (3)

where β and li are positive integer constants, and M (pi) is
the marking of the pi. Eq. (3) is transformed by the addition
of a positive slack variable M (pc) (the initial marking of a
monitor pc), and Eq. (3) becomes

n∑
i=1

li ·M (pi)+M (pc) = β. (4)

Eq. (4) defines a place invariant that must fulfill the equation
IT[N ] = 0T. Therefore, the control place [Nc] can be stated
as

[Nc] = −L ·
[
Np
]
. (5)

At the initial state, the initial markingMo (pc) of a monitor pc
can be formulated as

Mo (pc) = β −
n∑
i=1

li ·Mo (pi) . (6)

D. OPTIMAL MONITOR FORMULATION
Suppose we have an AMS with a net (N, Mo) and its reacha-
bility graph R(N, Mo), which comprises of the ML markings
and the MFBM markings. In this study, tokens in operation
places (denoted as PA, PA ∈ P) are only considered for the
purpose of obtaining a PI to prevent an FBM, indicated as
NA = {i|pi ∈ PA}. To prevent an FBM M ∈ MFBM , the
following constraint must be enforced:∑

i∈NA

li ·M (pi) ≤ β (7)

where

β =
∑
i∈NA

li ·M (pi)− 1. (8)

The prohibited condition is denoted by Eq. (7). To ensure
the maximally permissive control, after adding a monitor, all
legal markings must be kept. To guarantee that no marking
M’∈ ML can be prevented, coefficients li(i ∈ NA) should
meet the reachability conditions∑

i∈NA

li ·M ′(pi) ≤ β, ∀M ′ ∈ ML . (9)

By substituting the β in constraint (8) into constraint (9), the
legal markings reachability conditions for an FBM can be
formulated as∑

i∈NA

li · (M
′

(pi)−M (pi)) ≤ −1, ∀M ′ ∈ ML . (10)

For the coefficients li’s, solving constraint (10) generates
a set of feasible solutions. Consequently, an optimal PI is
calculated to guarantee that no FBM occurs and that all legal
markings are reachable.
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To decrease the number of legal markings ML and the
number of FBM MFBM , the study [8] introduces a vector
covering method for the place invariant control, with the
following details:
Definition 1: Let (N ,Mo) be a marked Petri net, R(N, M0)

be its reachability markings, and two markingsM andM′ are
in R(N, M0). If M (p) ≥ M′ (p), ∀p ∈ PA that is represented
by M ≥A M′, then M A-coversM′.
Definition 2: Let (N ,Mo) be a marked Petri net andM∗L be

a subset of legal markings ML in N. If the following criteria
are fulfilled, then M∗L is said to be a minimal covered set
of ML :
1) ∀M ∈ ML , ∃M′∈ M∗L , subject toM

′
≥A M; and

2) ∀M ∈ M∗L , M
′ ′
∈ M∗L , subject to M′ ′ ≥A M and

M 6= M′ ′.
Definition 3: Let (N , Mo) be a marked Petri net and

M∗FBM be a subset ofMFBM in N. If the following criteria are
fulfilled, thenM∗FBM is called aminimal covered set ofMFBM :
1) ∀M ∈ MFBM , ∃M′∈ M∗FBM , subject toM ≥A M′; and
2) ∀M ∈ M∗FBM , M′ ′∈ M∗FBM , subject to M ≥A M′ ′ and

M 6= M′ ′.
M∗FBM and M∗L are respectively smaller than MFBM and ML ,
when the vector covering method is used. There is no FBM
that is reachable if PIs prevent all markings inM∗FBM . Mean-
while, if ∀M ∈ M∗L are not prohibited by PIs, and then
∀M ∈∗L are kept. The optimal supervisor is calculated using
the markings in the sets M∗FBM and M∗L . As a result, for a
markingM ∈ MFBM , constraint (10) can be reformulated as∑

i∈NA

li · (M
′

(pi)−M (pi)) ≤ −1, ∀M ′ ∈ M∗L . (11)

E. MONITOR FORMULATION FOR FORBIDDING FBMS
This section describes how to construct a place invariant PI,
which prohibits the maximum number of FBMs. We can
develop a PI to prohibit a certain FBM using an approach
described in Section II-D. Indeed, more FBMs may be pro-
hibited by a PI. Next, we design a method to increase the
number of FBMs, which a PI prohibits. Initially, we use the
notations N∗

I , N
∗
FBM and N∗

LM to indicate the number of PIs,
{l|Ml ∈ M∗FBM } and {i|Mi ∈ M∗L }, respectively. Note that
N∗
I = N∗

FBM. Let Ij be a PI for the constraint∑
k∈NA

ljk ·Mi(pk ) ≤ βj · Ij ∀j ∈ N∗
I , i ∈ N∗

LM,Mi ∈ M∗L

(12)

where ljk’s are the coefficients of Ij, Ij (j ∈ N∗
FBM) a set

of binary variables, and βj is a positive integer variable.
In constraint (12), if PI Ij is selected to prohibit FBM, then
Ij = 1, otherwise, Ij = 0.
Ij prohibits the markingMl ∈ M∗FBM if∑
k∈NA

ljk ·Ml(pk ) ∀j ∈ N∗
I , l ∈ N∗

FBM,

≥ βj · Ij + 1 Ml ∈ M∗FBM (13)

To represent the relationship between Ij and Ml in M∗FBM ,
a set of binary variables f ′jls (j,l ∈ N∗

FBM) is introduced.
Constraint (13) is modified as∑
k∈NA

ljk ·Ml(pk ) ∀j ∈ N∗
I , l ∈

≥ βj · Ij + 1− H · (1− fjl) N∗
FBM,Ml ∈ M∗FBM (14)

where fjl ∈{0, 1} andH is a sufficiently large positive integer
value. In constraint (14), fjl = 1 shows that Ij prohibits Ml ,
while fjl = 0 denotes that Ml cannot be prohibited by Ij and
it is redundant constraint.

Constraints (15) and (16) guarantees that each FBM can be
prohibited by one PI Ij as∑

j∈N∗
I

fjl ≤ 1 ∀l ∈ N∗
FBM (15)

fjl ≤ Ij. ∀j ∈ N∗
I , l ∈ N∗

FBM (16)

Constraints (17) ensures that at least one FBM can be prohib-
ited by one PI Ij as∑

l∈N∗
FBM

fjl ≥ 1− Ij. ∀j ∈ N∗
I (17)

The objective functionmaximizes the set of FBMswhich, a PI
prohibits and can be formulated as

Max z=
∑N∗

I

j=1

∑N∗
FBM

l=1
fjl . (18)

The coefficients of Ij and βj must meet the conditions of
reachability. Therefore, to design PI, the following ILPP is
constructed, namely, an improved maximum number of for-
bidding FBM problem (IMFFP).

IMFFP:

Max z =
∑N∗

I

j=1

∑N∗
FBM

l=1
fjl

subject to
∑
k∈NA

ljk ·Mi(pk ) ≤ βj · Ij

∀j ∈ N∗
I , i ∈ N∗

LM,Mi ∈ M∗L (19)∑
k∈NA

ljk ·Ml(pk ) ≥ βj · Ij + 1− H · (1− fjl)

∀j ∈ N∗
I , l ∈ N∗

FBM,Ml ∈ M∗FBM (20)∑
l∈N∗

FBM

fjl ≤ 1 ∀j ∈ N∗
I (21)

fjl ≤ Ij ∀j ∈ N∗
I , l ∈ N∗

FBM (22)∑
l∈N∗

FBM

fjl ≥ 1− Ij ∀j ∈ N∗
I (23)

ljk = {0, 1, 2, . . .} ∀j ∈ N∗
I , k ∈ NA (24)

fjl = {0, 1} ∀j ∈ N∗
I , l ∈ N∗

FBM (25)

Ij = {0, 1} ∀j ∈ N∗
I (26)

βj = {0, 1, 2, . . .} ∀j ∈ N∗
I (27)
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The IMFFP objective function z is employed to maximize the
set of FBMs prohibited by PIs and to achieve a structurally
minimal and behaviorally optimal supervisor, by ensuring
that all markings in M∗L are reachable and the number of
monitors is minimized.
Theorem 1: If z = 0, no FBM in M∗FBM has a maximally

permissive PI.
Proof: Assume that there is a PI Ij, which can pro-

hibit marking Ml ∈ M∗FBM by contradiction. Due to the
permissive design of Ij, its coefficients l11, l12,. . . , satisfy
constraint (19). Given that Ml is prohibited by Ij, we have∑

k∈NA ljk .Ml(pk ) ≥ βj.Ij + 1. Thus, fjk = 1 satisfies
constraints (20-22). We have z =

∑
l∈N∗

FBM
fjl ≥ 1,

∀j ∈N∗
I . This contradicts z = 0. As a result, the conclusion is

correct. �
As known, it is NP-hard to solve an ILPP. The computa-

tional time required to solve an IMFFP is strongly influenced
by the number of variables (denoted by Nv) and constraints
(denoted by Nc) in it. Thus, we can discuss IMFFP in terms
of its number of variables and constraints. The number of
variables ljk ’s (j ∈ N∗

I , k ∈ NA) is |M∗FBM |
∗
|PA|, where

|PA| and |M∗FBM | represent respectively the number of the
operation places and PIs. The number of variables fjl’s (j ∈
N∗
I , l ∈ M∗FBM ), Ij’s (j ∈ N∗

I ), and βj’s (j ∈ N∗
I ) are

|M∗FBM |
∗
|M∗FBM |, |M

∗
FBM |, and |M

∗
FBM |, respectively. As a

result, IMFFP has |M∗FBM |
∗
|PA|+ (|M∗FBM |)

2
+ 2|M∗FBM | vari-

ables in total. Now, we can consider the number of constraints
in the IMFFP, the total numbers of constraints (19), (20), (21),
(22), and (23) are |M∗L |

∗
|M∗FBM |, |M

∗
FBM |

∗
|M∗FBM |, |M

∗
FBM |,

|M∗FBM |
∗
|M∗FBM |, and |M

∗
FBM |, respectively. Finally, the total

number of the constraints in IMFFP is |M∗L |
∗
|M∗FBM |+

2(|M∗FBM |)
2
+ 2|M∗FBM |.

III. DEADLOCK PREVENTION METHODS
A. DEADLOCK PREVENTION METHOD-BASED IMFFP
In this section, we present a structurally minimal method
and the deadlock prevention policy to prevent deadlocks by
using IMFFP. The structurally minimal method is applied
in one iteration to develop a set of maximally permissive
monitors and minimize their number. The main advantage is
that a few number of monitors are designed and it allows for
the development of an optimal or nearly optimal supervisor.
Algorithm 1 illustrates the deadlock prevention method based
IMFFP.
Consider the FMS example in Figure 1 to demonstrate

the proposed Algorithm 1. Figure 2 shows the system’s PN
model. The model contains 20 reachable markings, 5 of
which are FBMs markings MFBM and 15 of which are legal
markingsML . The minimal covered sets of FBMsM∗FBM and
legal markingsM∗L areM∗FBM = {p2 + p5, p3 + p5, p2 + p6}
andM∗L = {p2 + p3+ p4, p5 + p6 + p7}, respectively, when
using a vector covering method.
Now, Algorithm 1 is considered, we introduce
1. three binary variables I1, I2, and I3 to be computed.

Algorithm 1 A Deadlock Prevention Algorithm Based
IMFFP
Input: A net (N, Mo).
Output: A controlled net (N1, M1).

1. Calculate theML and theMFBM .
2. Calculate theM∗L and the M∗FBM .
3. VS:= ∅. /∗ The notation VS represents the monitors

to be calculated.∗/
4. for all M∗FBM do

i. Build the IMFFP;
ii. Solve IMFFP;

if z 6= 0 then /∗ Objective function.∗/
Let l ′jks and βj be the solution;
else
Exit, because there is no solution;
end if

iii. Based on Ij, design a monitor pc;
iv. VS: = VS ∪ [pc]. /∗ All M∗FBM is covered ∗/
endfor

5. Insert all obtaining monitors in VS to the initial net
(N, Mo).

6. Output (N1, M1).
7. End.

FIGURE 1. FMS example and its process route.

2. nine binary variables f11, f12, f13, f21, f22, f23, f31, f32,
and f33 to indicate if I1, I2, and I3 prohibit three FBMs
in M∗FBM .

Finally, we have IMFFP as follows

Maxz = f11 + f12 + f13 + f21 + f22 + f23 + f31 + f32 + f33
subject to l15 + l16 + l17 ≤ β1.I1

l12 + l13 + l14 ≤ β1.I1
l25 + l26 + l27 ≤ β2.I2
l22 + l23 + l24 ≤ β2.I2
l35 + l36 + l37 ≤ β3.I3
l32 + l33 + l34 ≤ β3.I3
l13 + l15 ≥ β1.I1 + 1− H · (1− f11)
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FIGURE 2. A net (N, Mo) of a system presented in Figure 1.

l12 + l15 ≥ β1.I1 + 1− H · (1− f12)

l12 + l16 ≥ β1.I1 + 1− H · (1− f13)

l23 + l25 ≥ β2.I2 + 1− H · (1− f21)

l22 + l25 ≥ β2.I2 + 1− H · (1− f22)

l22 + l26 ≥ β2.I2 + 1− H · (1− f23)

l33 + l35 ≥ β3.I3 + 1− H · (1− f31)

l32 + l35 ≥ β3.I3 + 1− H · (1− f32)

l32 + l36 ≥ β3.I3 + 1− H · (1− f33)

f11 + f21 + f31 ≤ 1

f12 + f22 + f32 ≤ 1

f13 + f23 + f33 ≤ 1

f11 + f12 + f13 ≥ 1− I1
f21 + f22 + f23 ≥ 1− I2
f31 + f32 + f33 ≥ 1− I3
f11 ≤ I1, f12 ≤ I1, f13 ≤ I1
f21 ≤ I2, f22 ≤ I2, f23 ≤ I2
f31 ≤ I3, f32 ≤ I3, f33 ≤ I3
βj ∈ {0, 1, 2, . . .}, ∀j ∈ {1, 2, 3}

ljk ∈ {0, 1, 2, . . .}, ∀j ∈ {1, 2, 3},

k ∈ {2, 3, 4, 5, 6, 7}

fjl ∈ {0, 1}, ∀j ∈ {1, 2, 3}, l ∈ {1, 2, 3}

Ij ∈ {0, 1}, ∀j ∈ {1, 2, 3}

The above IMFFP is solved using the Lingo solver, and
the optimal solution is l12 = 2, l15 = 1, l16 = 1, I1 = 1,
β1 = 2, f12 = 1, f13 = 1. Then, a monitor pc1 is developed
for PI1: 2µ2+µ5+µ6+ µpc1 = 2. Thus, I1 prohibits FBM2
and FBM3, and the preset transitions, postset transitions, and
initial marking of themonitor pc1 are respectively ·pc1 = {2t2,
t7}, p·c1 = {2t1, t5}, and M1o(pc1) = β1 = 2. In addition,
l33 = 1, l35 = 1, I3 = 1, β3 = 1, f31 = 1. Then, a monitor
pc2 is developed for PI2: µ3 + µ5 + µpc2 = 1. Thus, I3
forbids FBM1, and the preset transitions, postset transitions,

and initial marking of the monitor pc2 are respectively ·pc2 =
{t3, t6}, pc·2 = {t2, t5}, and M1o(pc2) = β3 = 1. All rest
variables are equal zero.

Table 1 presents a summary of the results, with the first
column indicating the calculated PI Ij, the second column
indicating the number of covered FBMs in M∗FBM that are
prohibited by Ij. The third to fifth columns indicating respec-
tively the output transitions p·cj, the input transitions

·pcj, and
initial marking (M1o(pcj)) of monitor pcj. The sixth and sev-
enth columns indicating respectively the number of variables
Nv and the number of constraints Nc in IMFFP. The last
column indicating the required computational time (denoted
by 9(s)) to solve the ILPP. Figure 3 illustrates the controlled
system after adding two monitors to the initial net model.

TABLE 1. Calculated monitors using Algorithm 1 for the model shown in
Figure 2.

FIGURE 3. A net (N1, M1) of the net shown in Figure 2 using Algorithm 1.

B. DEADLOCK PREVENTION METHOD -BASED COLORED
PETRI NETS
A colored Petri net (CPN) is represented by N = (P, T, C, F,
K, Mo), where
1. P and T are defined in Section 2.1;
2. C(p) and C(t) are respectively represent the sets of

colors connected with p ∈ P and t ∈ T . We let C(pi) =
{ai1, ai2, . . . , aiui } and C(ti) = {bj1, bj2,. . . , bjvj } where
ui = |C(pi)| and vj = |C(ti)|;

3. F : I (p, t) ∪ O(p, t): Input and output function of a
net, where the input function is expressed as I (p, t):
C(p)× C(t)→ IN, and the output function is expressed
as O(p, t): C(p) × C(t)→ IN;
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4. K : P → IN: represents the function of capacity
that assigns the maximal number of tokens to each
place K (pi);

5. Mo: P→ IN is a marking function that allocates tokens
to the places.Mo(pi) denotes the initial number of tokens
in pi, regardless of their color, whileMo(pi, aij) denotes
the initial tokens in pi, which have the color aij.

The enabling and firing rules of the transition tj in a colored
Petri net can be stated as below.
1. A transition tj is said to be a process-resource-enabled if

M (pi, aih) ≥ I (pi, tj)(aih, bjk ), ∀pi ∈ P,

∀pi ∈· tj, aih ∈ C(pi), bik ∈ C(tj) (28)

and

K (pi) ≥ M (pi, aih)+ O(pi, tj)(aih, bjk )

−I (pi, tj)(aih, bjk ), ∀pi ∈ P,

∀pi ∈ t ·j , aih ∈ C(pi), bik ∈ C(tj). (29)

2. At marking M , the transition tj can fire if the tj is
enabled and the markingM transformed to markingM ′

as follows.

M ′(pi, aih) = M (pi, aih)+ O(pi, tj)(aih, bjk )

−I (pi, tj)(aih, bjk ),

∀pi ∈ P, aih ∈ C(pi), bik ∈ C(tj). (30)

Definition 4: Let (N , Mo) be a marked Petri net. The
deadlock supervisor for (N, Mo) designed in IMFFP is rep-
resented as (V, MVo) = (PV , TV , FV , MVo). Here, (V, MVo)
can be replaced by a common colored subnet that is a net
with NDC = ({pglobal}, {TDCi ∪ TDCo}, FDC , CDC , MDCo),
where pglobal is named the combined monitor of all control
places PV = { pcj\pcj ∈ VS}, VS = { pc1, pc2, . . . , pcj }.
TDCi = ∪i∈Vs {t\t ∈· pci}. TDCo = ∪i∈Vs {t\t ∈ p·ci}. FDC ⊆
({pglobal}× {TDCi ∪ TDCo}) ∪ ({TDCi ∪ TDCo}× {pglobal}) is
the set of arrows, which connect the combined monitor with
transitions (and vice versa). CDC = ∪i∈Vs{Cpci} is the set
of all monitors color, where Cpci is the color of the monitor
pci that maps pglobal into colors. (NDC , MDCo) is named a
common colored subnet. For all pc ∈ PV , MDCo(pglobal) =∑
MVo(pc), where MDCo(pglobal) is an initial tokens with the

colors of the combined control place.
Definition 5: Let (N ,Mo) be a marked Petri net and (NDC ,

MDCo) be a common colored deadlock control subnet with
NDC = ({pglobal}, {TDCi∪ TDCo}, FDC , CDC , MDCo).We call
(NCN , MCNo) a controlled colored Petri net. Furthermore,
(NCN , MCNo) = (N, Mo) ‖ (NDC , MDCo), which is the inte-
gration of (N, Mo) and (NDC , MDCo), where NCN = (P∪
{pglobal}, T ∪TDCi∪ TDCo, F∪FDC ,CDC ,MCNo), and R(NCN ,
MCNo) be its reachable graph.
Algorithm 2 illustrates the deadlock prevention method

by using IMFFP and CPN. Reconsider the controlled net in
Figure 3 to demonstrate the proposed Algorithm 2. Figure 4
depicts the pglobal place of all control places PV in Figure 3,
as generated by Algorithm 2. The output arcs of pglobal that

obtained from Algorithm 1 are represented as p·c1 = {2t1, t5}
and pc·2 = {t2, t5}. Therefore, TDCo can be represented as
TDCo = {2t1, t2, 2t5}, as depicted in Figure 5. The input arcs
of pglobal that obtained from Algorithm 1 are represented as
·pc1 = {2t2, t7} and ·pc2 = {t3, t6}. Thus, TDCi be stated
as TDCi = {2t2, t3, t6, t7}, as displayed in in Figure 6.
In addition, MDCo(pglobal) =

∑
M1o(VS ) = M1o(pc1) +

M1o(pc2) = 2 + 1 = 3. Petri net model in Figure 3 contains
two color types: CDC = {Cpc1, Cpc2}. Accordingly, as shown
in Figure 7, the pglobal has three colored tokens: two tokens
with color Cpc1 and one token with color Cpc2. Finally, the
controlled colored Petri net (NCN ,MCNo) of the net shown in
Figure 3 using Algorithm 2 is presented in Figure 8.

Algorithm 2Deadlock PreventionMethod Based IMFFP and
CPN
Input: A net (N1, M1). /∗ By using Algorithm 1.∗/
Output: A net (NCN , MCNo)
1. Merge all monitors PV into a single monitor (pglobal),

considering the procedures below:
i. Design the output arcs TDCo, then connect them

with pglobal ; /∗ By Definition 4∗/
ii. Design the input arcs TDCi, then connect themwith

pglobal ; /∗ By Definition 4∗/
iii. Define colors Cpci for a monitor pglobal ; /∗ By

Definition 4∗/
iv. Calculate the initial tokens with colors

MDCo(pglobal) =
∑
MVo(VS ). /∗ By Definition

4.∗/
2. Add the pglobal into the net (N1, M1).
3. Output (NCN , MCNo).
4. End

FIGURE 4. pglobal of all control places PV of the model presented in
Figure 3 using Algorithm 2.

IV. EXPERIMENTAL RESULTS
In this section, we demonstrate the application of the pro-
posed Algorithms 1 and 2 by presenting some FMS exam-
ples. C++ programs are applied to generate the minimal
covered sets of FBMs and legal markings, as well as to
construct IMFFP that can be used in Algorithm 1. Then,
the Lingo solver was used to solve IMFFP. In addition,
we have coded Algorithm 2 to construct the global control
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TABLE 2. Calculated monitors using Algorithms 1 for the net shown in Figure 9.

TABLE 3. Comparison of Algorithms 1 and 2 performance with some deadlock prevention methods for the net shown in Figure 9.

FIGURE 5. Output arcs of the pglobal of all control places PV of the model
presented in Figure 3 using Algorithm 2.

FIGURE 6. Input arcs of the pglobal of all control places PV of the model
presented in Figure 3 using Algorithm 2.

FIGURE 7. Global control place of the net shown in Figure 3 using
Algorithm 2.

point using the GPenSIM tool [33]–[36]. Figure 9 illustrates
a Petri net model, which has been studied in [8], [10], [21],
[28], [37]–[40]. It consists of 19 places and 14 transitions.
The model has 282 reachable states with 205 legal markings
and 54 FBMs. The minimal covered sets of legal markings
M∗L and FBMs M∗FBM are respectively 26 and 8 markings.
The implementations of Algorithm 1 are summarized in Table
2. Next, the two resulting monitors using Algorithm 1 are

FIGURE 8. Controlled colored Petri net (NCN , MCNo) of the net shown in
Figure 2 using Algorithm 2.

combined to form pglobal using Algorithm 2. The output
arcs of pglobal are represented as TDCo = {t1, 5t2, 2t4, 4t9,
7t11}. The input arcs of pglobal are represented as TDCi =
{3t5, 5t6, 3t7, t12, 7t13}. In addition, MDCo(pglobal) =∑
M1o(VS ) = M1o(pc1) + M1o(pc2) = 9 + 14= 23. Thus,

we have two color types: CDC = {Cpc1, Cpc2}. The pglobal
place has 23 colored tokens: 9 tokens with the color Cpc1 and
14 tokens with the color Cpc2. Table 3 shows the comparison
the Algorithms 1 and 2 to other existing deadlock control
methods in terms of the numbers of added monitors, added
arcs, and states of the controlled net. Algorithm 2 yields
a supervisor with one monitor and 10 arcs, both of which
are minimal in comparison to other methods in [8], [21],
[37]–[39].

Next, Figure 10 illustrates a Petri net model, which has
been studied in [41], [44], [45]. It consists of 26 places
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FIGURE 9. A net (N, Mo) of the first FMS.

FIGURE 10. A net (N, Mo) of the second FMS presented in Ezpeleta et al. [41].

and 20 transitions. The model has 26750 reachable states
with 21581 legal markings and 4211 FBMs. The minimal
covered sets of legal markings M∗L and FBMs M∗FBM are
respectively 393 and 3 markings. Table 4 illustrates the

computed monitors for the model presented in Figure 10
using Algorithm 1. Then, the six resulting control places
using Algorithm 1 are combined to form pglobal using
Algorithm 2. The output arcs of pglobal are represented
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TABLE 4. Calculated monitors using Algorithm 1 for the net shown in Figure 10.

TABLE 5. Comparison of Algorithms 1 and 2 performance with some deadlock prevention methods for the net shown in Figure 10.

as TDCo = {9t1, 16t3, t4, 27t7, 45t8, 4t9, 2t11, 48t15,
t16, 13t17, 46t18}. The input arcs of pglobal are repre-
sented as TDCi = {6t3, t4, 18t5, 29t8, 2t9, 54t10, 17t13,
t16, 50t17, 18t18, 8t19}. In addition, MDCo(pglobal) =∑
M1o(VS ) = M1o(pc1) + M1o(pc2) + M1o(pc2) +

M1o(pc3) + M1o(pc5)+M1o(pc6) = 71 + 196+ 34+ 2+ 2+
2 = 341. Thus, we have six color types: CDC = {Cpc1, Cpc2,
Cpc3, Cpc4, Cpc5, Cpc6}. The pglobal place has 341 colored
tokens: 71 tokens with color Cpc1, 196 tokens with the
color Cpc2, 34 tokens with the color Cpc3, 2 tokens with
the color Cpc4, 2 tokens with the color Cpc5, and 2 tokens
with the color Cpc6. Finally, the comparison of the Algo-
rithms 1 and 2 performance with some deadlock prevention
methods in terms of the numbers of added monitors, added
arcs, and states of the controlled net is shown in Table 5.
Algorithm 2 provides a controller with one control place and
22 arcs, both of which are minimal in comparison to other
methods in [8], [21], [30], [39], [41]–[43].

V. CONCLUSION
This paper presents an approach for preventing deadlocks
based on colored Petri nets and a structurally minimal
method. First, a vector covering technique is applied to cal-
culate a minimal covered set of FBMs and legal markings.
By solving an ILPP in one iteration, place invariants cor-
responding to control places are constructed to prohibit the
maximum number of FBMs. The first-step-obtained con-
trolled model makes the Petri net supervisor significantly
more complicated. In the second step, colored Petri nets
are applied to design the smallest number of monitors by
integrating all generated control places into a single global
control place. In comparison to previous work [8], [21], [30],
[37]-[39], [41]–[43], our approach enables the development
of an optimal or near-optimal supervisor with fewer monitors
and without the need for iterations to design place invariants

to prohibit the FBMs, while there are no prohibited legal
markings.

The main disadvantage of the developed approach is that
it is subject to modifications in control requirements and
specifications, such as adding new equipment and products
or modifying the system’s processing routes. In the case that
these problems appear, the system must be changed. The
proposed model may thus be subject to new deadlock prob-
lems. Therefore, our future study will focus on optimizing
the efficiency of the proposed method for valid and quick
reconfiguration of the FMS [46] and the fault and its security
issues [47], [48].
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