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ABSTRACT The emergence of mobile crowd sensing (MCS) platforms makes it possible to collect
data in a time and cost efficient manner. However, one of the challenges in MCS systems is obtaining
reliable information especially in the presence of impersonators who could provide false reports without
getting detected. User recruitment mechanisms adopted in MCS systems hire users such that the Quality
of Information (QoI) of the submitted sensing reports is maximized. Despite that, there is still a risk of
recruiting impersonators to the system. This problem is even more prominent in the case of continuous
mobile sensing tasks, since multiple false sensing reports could be submitted by the impersonator during
the sensing period, which can impact the quality of the sensing outcome and hence the performance of the
system. Therefore, to ensure the reliability of the continuously submitted data, a more robust recruitment
mechanism, which detects and eliminates impersonators during the sensing task, is needed. This work
proposes a biometrics-based behavioral trust framework that can support a reliable recruitment process in
continuous MCS tasks. Behavioral biometrics are unique behavioral traits that can be used to profile users
based on how they naturally perform a specific activity. By leveraging machine learning techniques, these
behavioral traits can be used in order to detect impersonators in the system. In this work, a unique model
for each MCS worker is built based on their unique interaction patterns with the smartphone’s touching
screen. The proposed approach integrates the trained machine learning models with a dynamic continuous
recruitment system, which continuously monitors the QoI of the submitted sensing reports and changes the
recruited participants as needed. Simulation results of the proposed approach show its efficacy in detecting
and eliminating impersonators in continuous sensing recruitment.

INDEX TERMS Mobile crowdsensing (MCS), quality of information (QoI), behavioral biometrics,
touchscreen dynamics.

I. INTRODUCTION
Thewidespread use of smartphones and smart devices around
the world has led to the emergence of sensing paradigms such
as Mobile Crowdsensing (MCS), where user-paired devices
are recruited to perform a sensing task. A typicalMCS system
consists of a task requester, who submits sensing requests to
the management platform, a cloud-based management plat-
form, which processes, analyzes and stores the sensing data,
and the MCS workers, who perform the sensing tasks and
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send the sensing reports back to the management platform.
In terms of user involvement, the data collection process can
either take place in an opportunistic or in a participatory
manner. In opportunistic sensing, users are not asked to per-
form a specific action, however, an application is run in the
background and the data collection is performed automati-
cally. On the other hand, in participatory sensing, a user is
required to perform a task at a specific time and location and
then users are rewarded based upon the quality of the data
they submit [1]. The deployment of MCS platforms comple-
ments the existing Internet of Things (IoT) sensing solutions
in supporting the vision of smart cities and improving the
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quality of citizens’ life. In fact, it is viewed as an important
solution for building smart cities since human mobility and
intelligence offer higher coverage and deeper understanding
of the sensing task context.

MCS tasks can be classified into one-time sensing tasks
and continuous sensing tasks. In one-time sensing tasks, only
one-time readings from the devices of the recruited work-
ers are needed. These tasks are usually triggered by event
occurrence, such as detecting and reporting a car accident,
monitoring bus arrival time, comparing prices of goods and
healthcare applications. On the other hand, continuous sens-
ing tasks require collecting information continuously from
the Area of Interest (AoI) for a given sensing period. This
type of sensing is required to accurately study the phenomena
that task publisher is interested in. For example, monitoring
noise, air pollution, and characterizing the coverage of WiFi
intensity, all require data to be collected continuously for a
specific period of time [1].

A. PROBLEM STATEMENT
InMCS systems, recruiting trustworthy users plays an impor-
tant role in collecting high quality data. However, due to
the human involvement in the data collection process in
participatory MCS systems, malicious users could submit
poisoned sensing reports to themanagement platformwithout
getting detected, by impersonating other users’ identities.
As illustrated Figure 1, this poses a serious threat to the
system, especially in continuous sensing tasks, since multiple
readings will be collected from users’ devices during the
sensing period. Therefore, to limit the chances of successful
attacks, continuous monitoring of users’ behavior is needed
during the sensing task so that the recruitment system can
detect and interrupt impersonators as soon as possible.

FIGURE 1. Impact of recruiting impersonators on continuous sensing
tasks.

Typically, in continuous MCS tasks, users recruitment is
performed such that the Quality of Information (QoI) of
the submitted sensing reports meets the publisher’s required
quality throughout the period of sensing. Multiple works in
literature proposed recruitment frameworks for continuous
sensing tasks. Some of them proposed recruiting users based
on the knowledge of historical data [2]–[4], while others
proposed dynamically recruiting users during the task based
on real-time updates of the quality of the submitted sensing
reports [4]–[6]. Unfortunately, although existing recruitment
systems in MCS can maintain a good QoI, there is still a risk

of recruiting impersonators to the sensing task. In fact, the
presence of impersonators in the system can cause a signifi-
cant drop in the QoI value as will be illustrated in Section I-B.
Hence, continuous recruitment systems also need to eliminate
impersonators during the sensing period in order to ensure
high quality sensing.

Today’s smart devices are equipped with different sensors,
which can be used to distinguish genuine users from imper-
sonators in the system from how a user performs a specific
activity such as walking, typing or interacting with the smart-
phone’s touch screen. The unique behavioral traits that can be
used to monitor users’ action every point in time and detect
impersonators is referred to as behavioral biometrics [7], [8].
Unlike one-time authentication solutions such as passwords
and facial recognition, using behavioral biometrics to identify
impersonators is considered a more practical solution as it
offers an unobtrusive way of collecting data from users.
Hence, impersonators can be detectedwithout having to inter-
rupt users during the sensing task. Different types of behav-
ioral biometrics-based solutions exist, including touchscreen
dynamics behavioral biometrics, which relies on the users’
behavioral patterns when interacting with the smartphone’s
touchscreen, walking gait behavioral biometrics, where users
are identified based on the motion data collected from them
as they walk, and keystroke dynamics behavioral biometrics,
which leverages features that describe the behavior of users
when typing on the smartphone’s keyboard. This work con-
siders touchscreen dynamics behavioral biometrics since it
is not scenario dependent and it only relies on the applica-
tion being used and the touchscreen input data generated by
the user.

All of the behavioral biometrics based solutions proposed
in literature use machine learning techniques in order to
make predictions about whether the user is genuine or not.
However, the use of machine learning is always accompanied
with uncertainties and there is no guarantee for the correct-
ness of the predictions made by the model. Hence, in order
to integrate touchscreen dynamics behavioral biometrics with
continuous MCS recruitment, it is essential to take into con-
sideration evaluating the trustworthiness of the predictions
made by the machine learning models when making predic-
tions about the users.

B. MOTIVATIONAL SCENARIO
To illustrate the impact of the presence of impersonators
in the selected group of participants, an existing dynamic
recruitment system for continuous sensing tasks, namely the
stability-based Group-based Recruitment System (stability-
based GRS) proposed in [6], was simulated in an environment
where all participants are genuine (truthful environment)
versus an environment where some of them are imperson-
ated (untruthful environment). The stability-based GRS con-
siders participants mobility during the selection process to
ensure high coverage and the task requester’s desired QoI [6].
In this example, the dataset of mobility traces in the city of
Cologne, Germany, was used for both truthful and untruthful
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FIGURE 2. Snapshots of the selected groups in the second and fourth intervals in a truthful environment.

FIGURE 3. Snapshots of the selected groups in the second and fourth intervals in an untruthful environment.

environments [9]. The simulation was performed for a sens-
ing task with AoI boundaries (10000 to 15000)x(10000 to
15000) for a duration of 80 seconds and with a required
QoI of 2.7. The sensing period was divided into four equal
sensing intervals of length 20 seconds each. Snapshots of the
selected groups in the second and fourth intervals in both
environments are shown in figures 2 and 3.

Figure 2 shows the users selected 40 and 80 seconds
after the task has started in a truthful environment.
At t = 40 seconds, 19 users were needed in order to achieve
a QoI of 2.7, whereas at t = 80 seconds, two additional
workers were needed (W262 andW288) to keep the QoI of the
group above 2.7. For the untruthful environment, 20% of the
population was randomly chosen to be the impersonators.

The negation symbol before the identity of the worker was
used to denote that this is not the true identity of the worker.
As shown in Figure 3, the group members at t = 40 seconds
included two misbehaving workers who are impersonat-
ing the identities of W580 and W435. Additionally, at

TABLE 1. Expected vs. achieved QoI in truthful and untruthful
environments.

t = 80 seconds, an additional misbehaving worker who is
impersonating the identity ofW351 was added to the group.

The QoI of the group, at each time point, in a truthful
environment is compared against the obtained values in an
untruthful environment as shown in Table 1. The expected
QoI is evaluated based on the selected workers without
the detection of the impersonators, while the achieved QoI
is computed when considering only genuine users. As can
be seen from the table, the achieved QoI falls below the
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required value of 2.7 in both sensing intervals. In addition, the
achieved QoI is less than the expected QoI by 8.5% and 17%
for both intervals respectively in the untruthful environment,
which presents the impact of impersonators on the sensing
outcome.

C. CONTRIBUTION
In order to ensure the reliability of the submitted sensing
data in continuous sensing tasks, a more robust recruitment
mechanism should also monitor users’ behavior during the
sensing period. This work leverages continuous authentica-
tion using behavioral biometrics in continuous participatory
sensing tasks to flag potential impersonators in the system.
Using supervised machine learning, a unique model per
worker is trained to characterize his behavior. The generated
models for all the workers are then used by the framework
to help distinguish genuine users from impersonators by
incorporating their predictions in the recruitment approach.
Consequently, impersonators are detected, removed from the
task and replaced with more reliable users. However, since
the predictions made by the machine learning models are
accompanied with uncertainties, the proposed system also
considers evaluating a trust metric for the models before
deciding to keep or remove any user. To summarize, the main
contributions of this work are as follows:
• Leverage behavioral biometrics in continuous partici-
patory MCS tasks, to eliminate impersonators from the
system by building unique models for eachMCSworker
and integrating the predictions made by these models
with the continuous recruitment process.

• Propose a trust evaluation mechanism for the workers’
machine learningmodels to account for the uncertainties
accompanied with the predictions made by the model
when deciding to keep or remove a participant from the
sensing task.

Simulation results of the proposed approach show its
efficacy in detecting and eliminating impersonators in
the stability-based GRS recruitment system using real-life
datasets of mobility traces and touchscreen input data which
describes users’ interaction patterns with the smartphone’s
touchscreen. In the stability-based GRS, users are continu-
ously added and removed from the group by considering their
mobility to ensure that the required QoI value is met.

The remainder of this paper is organized as follows.
Section II presents the related work. Section III presents the
overall proposed approach. Section IV presents the touch-
screen input dataset used and explains how the machine
learning models were trained. Section V presents the pro-
posed framework which integrates the trained models with
the stability-based GRS. Section VI presents the performance
evaluation of the proposed approach. Finally, Section VII
concludes the paper.

II. RELATED WORK
In this section, a literature review is provided for the
work done on ensuring high data quality in continuous

MCS systems, in addition to the work done on impersonation
attacks detection using behavioral biometrics.

A. ENSURING DATA QUALITY IN CONTINUOUS
MCS SYSTEMS
Ensuring high quality sensing data is an important problem
that should be addressed in continuous MCS systems. In [2],
a framework to assign tasks to the best group of users who
will return high quality reports within the required sensing
periodwas proposed. The quality of information evaluated for
each worker depends on the reputation, the confidence that a
worker will complete the task within a given period of time
and the distance between the worker and the given task. The
reputation parameter computed by the MCS system depends
on the historical performance of the worker. It considers
that a task was performed successfully if their answers are
equal to the estimated ground truth value of the system [2].
In [3], a dynamic-trust-based recruitment framework which
calculates the overall trust based on real-time direct trust and
indirect trust was proposed. Real-time direct trust refers to
the trust value evaluated based on the satisfaction degree of
the task requester in the worker in the recent past. In this trust
evaluation method, the latest interaction record is given more
weight than previous records. On the other hand, the indirect
trust evaluationmethod relies on collecting feedback from the
task requester after the task is over for other task requesters,
as a reference in future interactions [3]. In [4], the prob-
lem of recruiting the minimum number of participants, who
can achieve a certain level coverage, to multiple continuous
sensing tasks was tackled. Several offline and online greedy
algorithms were proposed to dynamically select a subset of
participants to perform the tasks based on the probability of
a user making calls at particular time and locations. In [5],
an efficiency cost data collection scheme (ECDCS) where
the worker is selected according to the contribution that all
the data it collects have on the whole system rather than
a single data samples was proposed. A matrix completion
technology was adopted to recover the missing data samples
with partial data while ensuring the quality of service of the
task. The proposed algorithm selects workers with lower cost
and better collaboration effect. In [6], a continuous group-
based recruitment systemwas proposedwhich selects the best
group of workers while considering their mobility patterns.
The proposed system ensures that the required QoI value
is met during the sensing period by continuously adding
or removing members to the group [6]. Overall, different
factors that affect the final sensing outcome were considered
in literature in order to optimize the recruitment process in
MCS systems as shown in Table 2. These factors include: the
coverage, distribution, reputation and other device attributes
such as the battery level and sampling frequency. As illus-
trated in the table, none of the proposed solutions considered
the confidence that the users are genuine during the recruit-
ment process. Therefore, this work considers the confidence
parameter in addition to the other QoI parameters in order to
ensure high quality sensing.
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TABLE 2. Research gap.

B. BEHAVIORAL BIOMETRICS
The unique behavioral traits that can be used to contin-
uously profile users based upon their natural interactions
and without having to constantly interrupt them during the
session is referred to as behavioral biometrics. The most
commonly used behavioral biometrics in literature include
keystroke dynamics, walking gaits and touchscreen dynamics
behavioral biometrics [7], [8]. In keystroke dynamics behav-
ioral biometrics, features describing the typing rhythm such
as the keystroke length, the pressure exerted on each key
while typing and the time difference between consecutive
strokes are used [8]. The performance of a range of anomaly
detection algorithms employed to authenticate users based
on keystroke dynamics was evaluated and compared in [10].
The top-performing detectors found were Manhattan, Near-
est Neighbor and Outlier Count (z-score) [10]. Additionally,
two binary classifiers: BayesNet and Random forest were
used by [11] to perform authentication using keystroke fea-
tures along with features describing the user’s phone holding
behavior obtained from the smartphone’s built in sensors.
The proposed scheme showed acceptable authentication rates
with data that was collected in six different user positions:
sitting, standing, walking, walking upstairs, walking down-
stairs and lying on the sofa [11]. Although continuous authen-
tication based on keystroke dynamics provides unobtrusive
data collection, the variability of typing behavior is expected
to appear across different sittings which makes this type of
behavioral biometrics scenario dependent. In addition, the
flexibility of the input text requires the need to gather as
much typing input as possible, which translates to longer
waiting time before the authentication can be performed
efficiently [12].

Multiple works in literature have shown that individuals
can be recognized by their gait provided that proper motion
measurements are taken.Walking gaits behavioral biometrics
refers to the characteristic and mannerism in which an indi-
vidual walks [13]. Today’s smartphones and smart devices are
equipped with built in motion sensors such as accelerometers
and gyroscopes which contribute data that can be used to
extract unique features using the prevalent signal processing
techniques. In [14], a convolutional neural network-based
deep learning model was proposed to identify smartphone
users in crowd sensing systems based on the data produced

by the accelerometer sensors in their smartphones. It was
concluded that the Fourrier transform is a simple but very
powerful technique in the feature extraction process which
has improved the accuracy of the model [14]. In [15], a deep
neural network based scheme which relies on the unique
physical features of WiFi signals during the daily activities
of mobile users was proposed. The system extracts 6 time
domain features and 3 frequency domain features from both
the amplitude and the phase channel of the channel response
of WiFi signals. The extracted features are then used in a
three-layer stacked autoencoder to perform activity recogni-
tion and then user authentication [15]. In order to accelerate
the authentication process without having to perform feature
extraction at an earlier stage [16] introduced a deep learning
approach that self-learns the necessary network traffic fea-
tures to authenticate the MCS users. Using a stacked autoen-
coder, the first layer learns first-order features which are then
used in the second layer to learn the features corresponding
to the patterns from the previous features [16]. Continuous
authentication based on walking gaits can be affected by sev-
eral internal factors including psychological conditions and
illness as well as external factors such carrying a load and the
type of footwear. In addition, prior studies and experiments
were conducted in a controlled environment, which is not the
case in the real physical world. As a result, it is expected that
models trained using a dataset in a certain situation would
introduce bias when applied to other situations [8].

The third type of behavioral biometrics is touchscreen
dynamics behavioral biometrics. In touchscreen dynamics
behavioral biometrics, features related to the on-screen slid-
ing movements that represent the user’s unique interac-
tion patterns with the smartphone’s touchscreen are used.
A real-time re-authentication scheme for smartphones using
touchscreen dynamics behavioral biometrics was proposed
in [17]. Five machine learning algorithms were employed to
authenticate users including decision tree, naive Bayesian,
K-nearest neighbor, logistic regression and SVM. SVM clas-
sifier was found to be the best suited for authentication
with lower equal error rate (EER) and better performance
than the other machine learning methods. The data used
for training and testing was obtained from users as they
used their smartphones in a routine manner over a period
of one month [17]. The performance of ten touch-based
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authentication classification algorithms were evaluated
in [18]. The best performing algorithm found with the
lowest EER was the logistic regression machine learning
algorithm. The data used was obtained from users as they
answered multiple choice questions on their smartphones
over two sessions that were at least one day apart [18].
In [19], SVM was adopted to perform touch stroke based
authentication using data collected from users while nor-
mally using their smartphones during a 15 minute session
for 21 days. To model a valid user in the authentication
classifier, the user’s data during the previous 20 days were
used. On the other hand, in order to model the attacker in the
authentication classifier, data obtained from users who were
selected randomly from the remaining users in the dataset
was used. Overall, an improvement in the average error rate
was observed as the number of the randomly selected users
to model the attacker increased [19]. In [20], touch stroke
features were used in two different classifiers, K-nearest-
neighbors (KNN) and support vector machine (SVM) to
authenticate users in three different experimental settings:
inter-session authentication, inter-week authentication and
intra-session authentication.The data used was collected from
users as they performed two different tasks: a reading task
and an image comparison task. Overall, the authentication
difficulty seemed to increase with the increase in the time
difference between training and testing, and SVM always
achieved a lower EER than KNN algorithm [20].

Authentication based on touch operations provides a natu-
ral way to collect user interaction data. Each user generates
unique touch patterns, which depend on the application being
used. Therefore, this type of authentication is well suited to
protect against access of unauthorized individuals to impor-
tant mobile applications [8].

Different machine learning techniques have been deployed
in literature to learn users behavior and detect impersonators
in the system. However, none of these solutions considered
integrating behavioral biometrics in continuous MCS recruit-
ment systems. Since the predictions made by the machine
learning models are not guaranteed to be correct, the integra-
tion of behavioral biometrics with continuous MCS recruit-
ment requires ensuring that the model is trustworthy before
taking any decision of removing or keeping a worker. The
proposed approach is discussed more in details in the next
section.

III. OVERALL PROPOSED APPROACH
To address the problem of detecting impersonators in MCS
systems, a novel approach is proposed which verifies that the
recruited workers in continuous sensing tasks are genuine.
This work leverages touchscreen behavioral biometrics to
monitor the workers’ behavior during the sensing period.
Based on the real-time prediction made by the trained mod-
els, the proposed system eliminates from the task workers
who have high likelihood of being impersonators. As men-
tioned previously, MCS systems typically consist of three
main entities: task requesters, the management platform

FIGURE 4. High level architecture of the proposed system.

and workers. The sensing process starts by a task requester
sending a sensing task to the management platform. Based on
the requirement of the task, the platform will start recruiting
the appropriate participants. Once the task is completed, the
management platform evaluates and aggregates the submitted
reports and forwards the aggregated sensing reports back to
the task requester [21]. The proposed approach builds unique
behavioral models that can identify genuine and non-genuine
users from the way they interact with their smartphones’
touchscreens. A high level architecture of the proposed sys-
tem is illustrated in Figure 4. In order to incorporate worker’s
behavior predication in the recruitment process, the crowd
sourcing platform is designed to include two main modules:
Behavioral Biometrics Model Generation, andWorker Selec-
tion, which are summarized below:
• Behavioral Biometrics Model Generation: This mod-
ule is responsible for the generation of the machine
learning model for each worker. The features describ-
ing the user’s behavior of swiping on the smartphone’s
touch screen are used to generate a customized training
model for unique profiling of a worker. At first, the
system needs to prepare the data for each worker to be
able to run it through the machine learning algorithm.
This includes filtering out the training instances that
belong to the user, using the remaining data to model
the impersonator’s behavior, and combining multiple
strokes together by applying a sliding window tech-
nique. After that, the most important features to train the
worker’s model are selected. Finally, the machine learn-
ing models are generated using Random Forest (RF)
algorithm.

• Worker Selection: This module is responsible for the
continuous selection of the workers that will perform
the task. Initially, the eligibility of candidate workers is
assessed and those who are available in the AoI and can
satisfy the task requirements are selected. Each contin-
uous task is divided into equal sensing intervals. After
each interval, the received touchscreen data as well as
the previously generated behavioral biometrics models
are used in order to make predictions about whether
the worker is genuine or not. The trustworthiness of the
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predictions made by the classifier each sensing interval
is then evaluated and used to decide whether to keep or
remove the participant. Finally, a feedback mechanism
is adopted to consider the current observations about the
user’s behavior in future sensing intervals.

IV. TOUCHSCREEN INPUT BEHAVIORAL BIOMETRICS
Using the touchscreen input data collected from the work-
ers during the sensing period, unique behavioral models,
which characterize their unique interaction patterns with the
touchscreen, are built for each worker. A single touch stroke
is defined as the sequence of touch data that begins with
touching the screen and ends with lifting the finger. This
work uses supervised machine learning to train each worker’s
behavioral model. The overall experimental workflow for
the training phase is summarized in Figure 5 and will be
explained in the subsequent sections.

FIGURE 5. Flowchart depicting the experimental workflow.

A. DATASET
One touch stroke s is a trajectory encoded as a sequence of
vectors sn = {xn, yn, tn, pn,An, o

f
n, o

ph
n }. The parameters used

tomodel a stroke vector are described in Table 3. Themoment
the touchscreen sensor detects that the finger is touching the
screen, a series of touch data, which describes the location
and orientation of the finger on the touch screen, how much
screen area is covered by the finger, the pressure exerted by
the finger and the orientation of the smartphone, is produced.
For each touch stroke, different features which demonstrate
different aspects of users’ behavior such as the swiping time,
the stroke length and the stroke direction, can be used to
characterise a user. Furthermore, the way in which users
interact with the smartphone’s touch screen mainly depends
on the interface design of the application. Consequently, the
designers can anticipate what type of navigational gestures
will be generated by the users more frequently. This work

TABLE 3. Parameters used to describe a single touch stroke.

considers the touch strokes generated when users slide hor-
izontally over the touchscreen. This is typically done when
browsing through images or navigating to the next page of
icons in the main screen. The dataset used is the Touchalytics
dataset, which includes 30 touch stroke features collected
from 40 different users who were asked to spot differences
between pairs of similar images over two sessions [20].
Table 4 describes all the features used in this work, which
could be either temporal features, spatial features or statistical
features.

B. DATA PREPARATION
In touchscreen based behavioral biometrics, touch stroke fea-
tures obtained from one session can be used to build unique
models for each worker. Therefore, in the training phase,
every classifier is trained using the data obtained in the first
session whereas in the testing phase, the data obtained from
the second session is used. For each worker, the dataset is
organized as (Ex, y) = (x1, x2, . . . , xm, y), where m is the
number of stroke features, Ex is the features’ vector and y ∈ Y
is the dependant variable which represents the label given
to Ex. To model the impersonator’s touching behavior, touch
strokes are randomly selected from other users in the dataset
such that the number of training instances of the genuine
user equals those of the impersonator. Before training each
model, a sliding window technique is applied to the genuine
user and the impersonator’s touch stroke features. Multiple
consecutive strokes were combined together using a sliding
window in order to capture the temporal behavioral character-
istic of the user when swiping on a touchscreen. In the sliding
windowmethod, a window of length nmoves over each stroke
feature, and computes the average of the data in the window.
After that, the data is labeled such that y = 1 indicates that the
stroke was generated by a genuine user and y = 0 indicates
that the stroke was generated by an impersonator.

C. CHOICE OF CLASSIFIERS
Random Forest is an ensemble machine learning algorithm,
which relies on generating many decision trees and aggregat-
ing their results in the end by taking the majority vote. Every
decision tree randomly selects different subsets of features
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FIGURE 6. Feature importance for 5 different workers.

and different training instances from the entire training data
set. In this work, a total number of 60 decision trees was used
since it was found that increasing the number or trees more
than that did not improve the performance of the models.
This was also confirmed in [22]. The main reasons behind
choosing RF algorithm are summarized below:

1) The touch strokes generated during the sensing period
sometimes might not represent the true behavior of
the user which leads to having outliers in the dataset.
Therefore, Random Forest was chosen because it is less
sensitive to outliers since it splits the data into groups
based on a threshold value.

2) The touch stroke features dataset used includes contin-
uous data types, like the average velocity of the stroke,
as well as discrete data types, such as the direction of
moving the screen. Hence, Random Forest was chosen
as it is accurate, stable and efficient for datasets with
continuous or discrete form.

3) It considers workers’ possible behavioral changes over
time since the final model aggregates a number of
different temporal models.

D. FEATURES SELECTION
Not all touch stroke features collected can be used to uniquely
distinguish a worker from other users acrossmultiple sessions
in the same way. In reality, each worker may have some
specific behavioral features that are important to characterise
his/her behavior. Permutation feature importance (PFI) can
be used to compute the importance score of the features for
each worker. First, RF is employed and each model is trained
using the original training data. Then, the models are trained
another time using the same data but after shuffling the train-
ing instances of the feature in the dataset. The performance of
the generatedmodels without shuffling is then compared with
the performance of the models with shuffling. The features
that show higher sensitivity to the shuffling operation are
considered of higher importance to the model. Addition-
ally, features with low importance are removed from the

final training. Figure 6 illustrates the importance of the fea-
tures used in this work for 5 different workers.

V. TOUCHSCREEN INPUT BEHAVIORAL BIOMETRICS IN
CONTINUOUS MCS RECRUITMENT
Continuous sensing tasks often seek the cooperation of mul-
tiple workers to collect data that cannot be collected only by
a single worker, which increases the risk of recruiting imper-
sonators to the system. In order to select the most appropriate
group to perform the sensing task, a continuous group-based
recruitment system that considers the participants’ collective
QoI was proposed in [6]. In the proposed recruitment system,
the QoI of the group depends on parameters which could
be either related to the AoI, the device or the user. The
system takes into consideration that some of these device-
related parameters and AoI-related parameters can change
during the period of sensing, due to participants’ mobility
or reduction in their devices battery levels. Hence, the QoI
is monitored by the system periodically and participants are
added and removed until the required QoI value is achieved.
In this work, the touch screen input behavioral biometrics
models are integrated with the dynamic recruitment system
introduced in [6] to improve the recruitment by detecting and
eliminating potential impersonators.

A. PARAMETER FORMULATION AND QoI EVALUATION
In MCS systems, every worker can be defined as wi =< li,
SAi, SFi,REi,Pi, Si,MLi >. The different attributes used
to define a worker are summarized in table 5. Based on
the task publisher’s requirements, the management platform
finds the set of eligible participants by choosing those who
are available in the AoI and have the required sensors to
perform the sensing task. Some publishers might also have
some constraints on the reputation and confidence of each
worker. The reputation of a worker represents how committed
the worker is to the sensing task, since some workers might
leave the AoI before the end of the sensing period. It can be
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TABLE 4. Touch stroke features used in this work.

evaluated as shown in (1).

Pi =
number of tasks the worker was committed to

total number of assigned tasks
(1)

The confidence of the system in an individual worker can be
obtained as given in (2). Every sensing interval, the system
makes predictions about whether the user is genuine or not.
Based on that, as more intervals detect that a certain worker
is impersonated during the sensing tasks, smaller value is

TABLE 5. Different attributes used to define a worker.

obtained for the confidence of the system in that worker.

Confi = 1−
duration the worker was impersonated
duration the worker was committed

(2)

Using these attributes, different parameters that character-
ize a group of workers can be evaluated as shown in table 6.
These parameters can be classified into three main categories:
AoI-related parameters, user-related parameters and device-
related parameters. From the GPS location of the workers,
two AoI related parameters can be evaluated: the coverage
and the distribution. To evaluate the coverage of the group,
first the AoI is divided into smaller sub-regions and then it
can be evaluated by dividing the number of sub-regions which
include at least one group member over the total number of
sub-regions in the AoI. Full coverage of is achieved when the
group submits sensing data from every sub-region in the AoI.
On the other hand, the distribution parameter D(g) measures
how uniformly the participants are distributed in the AoI.
It uses the Chi Square test in order to determine whether
the observed values of the true number of users in each sub-
region meet the theoretical assumption that participants are
evenly distributed among all sub-regions. In addition to the
AoI-related parameters, two device related parameters that
reflect the capability of the participants’ devices to sense the
requested data are used: the sampling frequency of the sensors
in the group SF(g) and the residual energy of the devices in
the group RE(g). Finally, to reflect the users’ properties that
can affect the sensing outcome, two user-related parameters
are considered: the reputation of the group P(g) and the confi-
dence of the group S(g). The reputation parameter represents
how committed the workers are to completing the sensing
task. On the other hand, the confidence metric reflects the
certainty of the system that the group of users are genuine,
based on the touchscreen input data obtained from them
from previous sensing intervals. The previously introduced
parameters can be used to find the QoI of the group as in (3).

QoI (g) = w1 × C(g)+ w2 × D(g)+ w3 × SF(g)

+w4 × RE(g)+ w5 × P(g)+ w6 × Conf (g)

(3)

In this equation, w1 − w6 are the weights assigned to each of
the parameters as specified by the task publisher [6].
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TABLE 6. Parameters used in the QoI evaluation.

1) STABILITY
In continuous sensing tasks, some participants might leave
the AoI or lose connectivity with the management platform
during the sensing period. Since the sensing is continuous,
recruiting such participants is not desirable. Nevertheless, it is
possible to predict participants’ future mobility patterns using
their historical mobility traces. Based on the predictions of
the participants’ locations over the required sensing period in
the AoI, the coverage that is expected to be achieved at the
beginning of each sensing interval (Ci) can be evaluated. The
stability parameter reflects the availability of the participants
in the AoI by the summing the expected coverage at every
sensing interval during the sensing period, as given in (4).
This parameter can be used to assess the likelihood of the
workers to stay in the AoI during the entire sensing period.
Therefore, it is necessary to take into consideration that the
stability is maximized when selecting participants before the
beginning of the sensing task [6].

Stability =
number of sensing intervals∑

i=1

Ci (4)

2) TRUST EVALUATION
After every sensing interval, the system uses participants’
touch screen input and their behavioral biometrics mod-
els in order to predict whether or not each participant is
genuine. However, the use of machine learning models is
always accompanied by uncertainties regarding their out-
comes. Since no guarantee is provided for the correctness
of the predictions made by the models, the system needs to
deal with inherent uncertainty in its outcome in order to make
the models more dependable. Trusting a machine learning
model can be interpreted as a special type of belief, where the
model believes that users behave in a certain way. In order
to quantitatively evaluate the trustworthiness of a machine
learning model, the uncertainty in the belief needs to be taken
into consideration. In the context of this work, three possible
scenarios can take place: The model believes that the user is
a genuine user without any uncertainties, the model believes
that the user is not genuine without any uncertainties, or the
model is uncertain about whether or not the user is genuine.
The probability that user i is genuine can be evaluated as
given in (5), by considering the classifier’s probabilistic
score pj(MLi, sj) obtained for each genuine stroke prediction

and the fraction of the positively labeled strokes by the
model (m/M ), where m is the number of positively labeled
strokes and M is the total number of predictions made by the
model.

pi =
m
M

√√√√ m∏
j=1

pj(MLi, sj) (5)

Using the evaluated probability, the entropy function can be
evaluated as given in equation 6.

H (pi) = −pi log2(pi)− (1− pi) log2(1− pi) (6)

The trust metric of a machine learning model of user i can
be evaluated using entropy as given in (7), where pi is the
probability that the user is genuine based on the machine
learningmodel’s predictions andH (pi) is the entropy function
which represents the model’s uncertainty. The trust metric
gives a positive value if the model believes that user is gen-
uine without any uncertainties, a negative value if the model
believes that the user is not genuine without any uncertainties,
and 0 if the model is uncertain about whether or not the user is
genuine. Therefore, in the proposed approach, whenever the
trust value is negative, the user is eliminated since the model
is confident that the user is an impersonator. On the other
hand, if the trust value is positive or zero, the user doesn’t
get eliminated and remains in the group.

TMLi =


1− H (pi), 0.5 ≤ pi < 1
H (pi)− 1, 0 < pi < 0.5
1, pi = 1
0, pi = 0

(7)

B. INTEGRATING BEHAVIORAL BIOMETRICS IN
CONTINUOUS MCS RECRUITMENT
Once a sensing task is publicized, the goal of the recruitment
system is to find the group with the highest stability and con-
fidence whose members are able to achieve the required QoI
during the period of sensing. A flowchart of the recruitment
system is illustrated in Figure 7 and summarized below:

1) The system starts initially by searching for a group of
participants whose stability and confidence are maxi-
mized using the genetic algorithm. The fitness function
used in the genetic algorithm is shown in (8).

F = Conf (g)+ stability (8)
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FIGURE 7. Flowchart of the proposed approach.

2) The QoI of the selected group is evaluated and new
members are added in case the obtained QoI value is
less than the required value by the task publisher.

3) After every sensing interval, the group members’
behavioral biometric models are used to predict
whether the touch strokes were generated by a genuine
worker or an impersonator.

4) A trust value is evaluated to find the confidence in
the predictions made by the machine learning model.
If the obtained trust value is negative, then the sys-
tem removes impersonators from the group. Otherwise,
if the trust value is positive or zero, then the worker
gets to stay in the group. The trust metric is further
explained in the next section.

5) The system updates workers’ locations, confidence
parameters, and devices battery levels.

6) Workers who leave the AoI are removed from the
group.

7) Finally, the QoI is checked again and new members are
added to the group in case its value was found to be less
than the required value by the task publisher.

The continuous recruitment system algorithm used is shown
in Algorithm 1. Initially, the genetic algorithm is imple-
mented by trying different combinations to find the best group
of workers. Themaximum group size in the genetic algorithm
was set to 20. Every sensing interval, the marginal QoI of all
workers in the population is evaluated. Based on these values,
the algorithm greedily adds workers to the group whenever
the QoI was found to drop below the required value.

Once a decision is made by the system to keep or remove
each participant in the group every sensing interval, all con-
fidence values are updated, as given in (9), by taking the
weighted sum of the previous and new confidence values.

Confi = (1− α)Confi

+α(1−
duration the worker was impersonated
duration the worker was committed

)

(9)

Furthermore, after every interval, the members of the group
get paid in return for their submitted sensing reports. As a
result, once impersonators get eliminated, they do not get paid
for the subsequent intervals. The total payment made to the
group can be evaluated using (10), where the maximum QoI
represents the maximum QoI value that a group can achieve
if all parameters were maximized, and the maximum interval
budget is the maximum budget assigned by the publisher for
each interval.

TP =
QoI (g)
max QoI

× max interval budget (10)

Every participant in the group is paid based on their contribu-
tion to the QoI(g). The contribution of a worker can be evalu-
ated using (11), by finding themarginal QoI. In equation (11),
g’ is equivalent to the group g but without worker wi. Based
on that, the payment is evaluated for each participant every
sensing interval as given in (12), where paymentawi is the
payment for worker wi at interval a. At the end of the task,
all participants are paid for all the intervals they participated
in using (13).

contribution of workerwi
= QoI (g)− QoI (g′) (11)

paymentawi =
contribution of workerwi × TP

QoI (g)
(12)

TPwi =
num of sensing intervals∑

a=1

paymentawi (13)

C. DATASET
The dataset used in order to obtain users’ locations over
a certain period of time is the vehicular mobility traces of
the city of Cologne dataset [9]. In all experiments, the AoI
boundaries were set to (10000 to 15000) x (10000 to 15000),
which narrowed down the total number of users in the AoI
to 600 users. The remaining user attributes including the
reputation, residual energy, sampling frequency and confi-
dence were randomly generated following a uniform distribu-
tion. In addition, the previously trained behavioral biometrics
models and touchstroke features were assigned for each user
in the dataset at random.

VI. EVALUATION RESULTS
In this section, simulation results of the proposed approach
are provided to validate its efficacy by running the continu-
ous recruitment system with and without integration of the
proposed mechanism for the detection and elimination of
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Algorithm 1 Continuous Recruitment System Algorithm
Input: participants’ dataset, mobility patterns, trained models, required QoI, numOfIntervals, AoI_X_Begin,
AoI_Y_Begin, AoI_X_End, AoI_Y_End, numOfStrokes, numOfYBlocks, numOfXBlocks
Output: best group of participants that can achieve the required QoI
max_group_size= 20;
most_stable_group= GA(participants’ dataset, mobility patterns, AoI_X_Begin, AoI_Y_Begin, AoI_X_End,
AoI_Y_End, max_group_size, numOfYBlocks, numOfXBlocks);
qoi= find_qoi(most_stable_group, participants’ dataset);
population_size= length(participants’ dataset);
for a=1 to numOfIntervals do

while qoi<required_qoi do
for i=1 to population_size do

if i6= most_stable_group then
marginal_qoi_change(i, 1)= i;
temp_group= [most_stable_group; i];
temp_qoi= find_qoi(temp_group, participants’ dataset);
if temp_qoi≥qoi then

marginal_qoi_change(i,2)= temp_qoi- qoi;
end

end
end
index= maxIndex(marginal_qoi_change(:, 2));
most_stable_group=[most_stable_group; marginal_qoi_change(index,1)];
group_size= length(most_stable_group);
qoi= find_qoi(most_stable_group, participants’ dataset); alpha= 0.9;
for g=1 to group_size do

model= get_model(most_stable_group(g), trained models);
TestData= get_test(most_stable_group(g), participants’ dataset, numOfStrokes);
[labels_predicted, scores]= predict(model, TestData);
trust= findTrust(label_predicted, scores);
if trust<0 then

update_confidence(participants’ dataset, alpha, most_stable_group(g), Impersonator=True);
most_stable_group(g)=[];
else

update_confidence(participants’ dataset, alpha, most_stable_group(g), Impersonator=False);
most_stable_group(g)=[];

end
end

end
most_stable_group= check_X_Y(most_stable_group, participants’ dataset, a+1);
qoi= find_qoi(most_stable_group, participants’ dataset);

end
end
return most_stable_group;

impersonators. First, workers’ behavioral models are trained
and evaluated using different machine learning algorithms
including: Random Forest, decision tree, and Support vector
machines (SVM) with an rbf kernel. Then, the trained models
with the best performance are used with the stability-based
continuous recruitment system.

A. EVALUATION OF THE MACHINE LEARNING MODELS
All workers’ models that were trained using the data obtained
from the first session are tested using data obtained from

the second session. Three metrics are used for performance
evaluation: precision, recall and f1 score, where the positive
class was chosen to be the genuine user class and the negative
class was chosen to be the impersonator class.

To illustrate the effect of combining multiple strokes on
the classification performance using the sliding window
technique, Figure 8 shows the f1 score average value of
all 40 behavioral models over 10 runs for a varying num-
ber of strokes. The performance of three machine learning
algorithms including RF, SVM and decision tree classifier
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was compared. In order to perform the hyperparameter tuning
of the SVMmodels, cross validation with five folds was used.
As shown in the figure, the models trained with RF outper-
formed those trained with SVM and decision tree classifier.
Therefore, these models will be used at the recruitment stage
in order to detect and eliminate the impersonators during
the sensing task. Furthermore, as depicted in the figure, the
performance of the models trained with RF started to con-
verge towards 95% at n= 7 strokes. Therefore, this number
was used to combine the strokes during training and testing.
Table 7 shows the average and the standard deviation of
the precision, recall and f1 scores of the behavioral models
when tested using the data obtained from the second session.
Despite the fact that the models trained using RF showed the
best performance, the system still needs to consider that these
predictions are accompanied with some uncertainties, and
hence, it must ensure that these predictions are trustworthy
beforemaking any decisions about the user during the sensing
task.

FIGURE 8. F1 score value averaged over 10 runs for a varying number of
strokes.

TABLE 7. Evaluation of the machine learning models trained using RF,
SVM and decision tree classifier.

B. EVALUATION OF CONTINUOUS MCS TASKS WITH
BEHAVIORAL BIOMETRICS
In this section, the proposed approach is simulated in an
untruthful environment to prove its robustness. No works
exist in literature that integrate behavioral biometrics with
a continuous MCS recruitment system. Therefore, the per-
formance of the proposed approach is compared with the
stability-based group based recruitment system (stability-
based GRS) proposed in [4] which gives a higher emphasis
to participants’ mobility during the sensing period in order

to ensure a certain QoI value. This selection mechanism is
simulated using the same equations proposed in section V-A.

1) PERFORMANCE EVALUATION OF ONE SENSING TASK
In this experiment, a sensing task with 10 sensing intervals
and a required QoI of 2.5 was simulated where the percentage
of impersonators in the AoI was varied from 10% to 40%. The
simulation results are shown in Figures 9 and 10. As illus-
trated in the figures, it takes the proposed approach one
interval only to meet the required QoI value and achieve a
higher confidence value during the rest of the sensing task
period, even when 40% of the population were impersonated.
This is due to the fact that the system needs to wait to obtain
touchscreen input data from the users during the first sensing
interval. In addition, it is clear from the figures that the pro-
posed approach performs better than the stability-based GRS
since the stability-basedGRS fails to achieve the requiredQoI
during the sensing period due to the decreasing confidence
of the group. The main reasons behind this decrease is that
the impersonators who join from the beginning of the sensing
period get to stay recruited to the task andmore of themmight
also get recruited in the subsequent intervals by the recruit-
ment system in case some group members leave the AoI.

FIGURE 9. Achieved QoI by the group during the sensing task with 10% to
40% impersonators in the population.

FIGURE 10. Achieved confidence by the group during the sensing task
with 10% to 40% impersonators in the population.

Furthermore, the task payoff of the proposed approach was
compared with the task payoff of the stability-based GRS.
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FIGURE 11. Task payoff achieved for a varying percentage of
impersonators in the AoI.

The payoff of a sensing task represents the benefit gained in
contrast to the costs endured by the task. In this work, the task
payoff is defined as the minimum QoI achieved during the
sensing task over the time needed to complete the recruitment
of the users by the system, as shown in (14).

task payoff

=
minimum QoI achieved during the sensing task

running time
(14)

Figure 11 shows the task payoff achieved by the proposed
approach and the stability-based group-based recruitment
system for a varying percentage of impersonators in the area
of interest. As illustrated in the Figure, the proposed approach
outperforms the stability-based group-based recruitment sys-
tem in each scenario which shows the efficacy of the proposed
solution.

2) PERFORMANCE EVALUATION OF MULTIPLE
SENSING TASKS
A total of 100 sensing tasks with different number of sensing
intervals and required QoI values were simulated in an AoI,
with 20% of its population being impersonated. To show how
the proposed approach detects and eliminates impersonators,
Figure 12 shows the total number of impersonators selections
in the selected groups for every set of tasks. The simulation
was repeated 10 times for every task and the average number
of impersonators selection was considered. As shown in the
figure, the number of selections of impersonators made by the
stability-based GRS can reach six time more than the number
of selections made by the proposed approach. Therefore, the
proposed approach outperforms the stability-based GRS in
terms of not selecting impersonators throughout the sensing
period. This is due to the fact that throughout the simulations,
the impersonators’ selections made by the proposed approach
mostly would take place at the beginning of the sensing task,
on the other hand, the stability-based GRS selects imperson-
ators every interval and does not consider reducing their con-
fidence, which causes the number of impersonators selections

FIGURE 12. Number of selections of impersonators in the group for a
different number of tasks.

FIGURE 13. Performance evaluation of the proposed system for a
different number of tasks.

FIGURE 14. Untruthful payment for a varying number of tasks.

to be higher. The performance of the system was evaluated
using recall, precision and f1score as given in Figure 13.
High scores for all metrics indicate that the system was able
to accurately predict whether the user is an impersonator or
not, and as a result, make the right decision of keeping or
eliminating the user from the task. Finally, the untruthful
payment made using the proposed approach is compared to
the untruthful payment made using the stability-based GRS in
Figure 14. As expected, the untruthful payment made to the
workers using the proposed approach is less due to the small
number of impersonators’ selection.
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FIGURE 15. Number of selections of impersonators for a different
number of users in the AoI.

FIGURE 16. Untruthful payment made for a different number of users.

3) PERFORMANCE EVALUATION OF ONE SENSING TASK
FOR A DIFFERENT NUMBER OF USERS
An experiment was conducted to evaluate the proposed
approach with different number of users for a set of 10 tasks
and 20 % impersonators in the AoI. The simulations were all
repeated 10 times and the average number was considered
in each case. First, the number of selections of impersonators
was observed when the number of users in the AoI was varied
from 100 to 600 users as shown in Figure 15. It is clear that
the selections of impersonators made by the proposed system
is significantly less than the selections made by the stability-
based GRS in all scenarios, which proves the scalability of
the proposed system.

Secondly, the untruthful payment made using the proposed
approach is compared against that made by the stability-based
GRS as illustrated in Figure 16. As evident from the figure,
the proposed system outperforms the stability-based GRS for
all scenarios with different number of users in the AoI, since
impersonators get detected and eliminated during the sensing
period. Finally, as shown in Figure 17, the performance of
the system was evaluated using precision recall and f1 score
measures. As depicted in the figure, the average f1 score
achieved by the system in all scenarios is around 97% which
shows the robustness of the proposed trust-based framework
in detecting impersonators due to the fact that it can cope with

FIGURE 17. Performance evaluation of the proposed system for different
number of users in AoI.

the uncertainties accompanied with the predictions made by
the trained models.

VII. CONCLUSION
In this paper, touchscreen input behavioral biometrics was
integrated with continuous MCS recruitment in order to
detect and eliminate impersonators from the group in every
sensing interval. Three machine learning algorithms includ-
ing RF, SVM and decision tree, were used to classify touch
strokes made by a user into genuine strokes or non gen-
uine strokes. The performance of the trained user models
were then evaluated and compared. Subsequently, the models
trained using RF were adopted during MCS recruitment to
detect and eliminate impersonators after every sensing inter-
val based on the data collected from users as they interacted
with the smartphone’s touchscreen. A trust metric was pro-
posed to help the system detect impersonators and genuine
users with higher confidence and cope with the uncertainties
in the predictions. Simulations were performed in untruth-
ful environments for one task and multi-tasks to evaluate
the performance of the proposed approach. The simulations
performed in a sensing task with a specified required QoI
showed that the proposed approach was able to maintain the
required QoI value whenever it received touchscreen input
from the users. This was achieved even when the percent-
age of impersonators in the group would reach 40% of the
entire population. Furthermore, the task payoff, defined as
the minimum QoI to running time ratio, was evaluated for
each approach, and it was shown that proposed system out-
performs the stability-based GRS. On the other hand, the
simulations performed for multiple tasks showed that the
proposed approach makes less number of selections of imper-
sonators and consequently, decreased the untruthful payment
significantly. Finally, to prove the scalability of the proposed
system, its performance was evaluated for a varying number
of users in the AoI.
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