
Received 25 May 2022, accepted 21 June 2022, date of publication 24 June 2022, date of current version 11 July 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3186092

Microgrid Working Conditions Identification
Based on Cluster Analysis—A Case Study
From Lambda Microgrid
MICHAŁ JASIŃSKI 1, (Member, IEEE), LUIGI MARTIRANO 2, (Senior Member, IEEE),
ARSALAN NAJAFI 1, (Senior Member, IEEE), OMID HOMAEE1,
ZBIGNIEW LEONOWICZ 1, (Senior Member, IEEE),
AND MOSTAFA KERMANI 3, (Member, IEEE)
1Faculty of Electrical Engineering, Wocław University of Science and Technology, 50-370 Wocław, Poland
2Department of Astronautical, Electrical and Energy Engineering (DIAEE), Sapienza University of Rome, 00184 Rome, Italy
3Department of Electrical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden

Corresponding author: Michał Jasiński (michal.jasinski@pwr.edu.pl)

This work was supported by the National Science Center of Poland under MINIATURA 4—Grant 2020/04/X/ST8/00194.

ABSTRACT This article presents the application of cluster analysis (CA) to data proceeding from a
testbed microgrid located at Sapienza University of Rome. The microgrid consists of photovoltaic (PV),
battery storage system (BESS), emergency generator set, and different types of load with a real-time
energy management system based on supervisory control and data acquisition. The investigation is based
on the area-related approach - the CA algorithm considers the input database consisting of data from
all measurement points simultaneously. Under the investigation, different distance measures (Euclidean,
Chebyshev, or Manhattan), as well as an approach to the optimal number of cluster selections. Based on
the investigation, the four different clusters that represent working conditions were obtained using methods
to define an optimal number of clusters. Cluster 1 represented time with high PV production; cluster
2 represented time with relatively low PV production and when BESS was charged; cluster 3 represents
time with relatively high PV production and when BESS was charged; cluster 4 represents time without
PV production. Additionally, after the clustering process, a deep analysis was performed in relation to the
working condition of the microgrid.

INDEX TERMS Microgrid, area-related approach, cluster analysis, different measurement distances,
optimal number of clusters.

I. INTRODUCTION
Recently, the approach to energy supply has tended to decen-
tralized control [1], [2]. Thus, different ways to obtain those
solutions are proposed, such as microgrids, power plants,
energy communities [3], [4] or smart grids [5].

Microgrids are small-scale power systems consisting of
distributed power generation, power storage, and load [6].
Recently many real cases of microgrids are indicated in
the literature. The examples of microgrids in Europe are
located in:
• UK [7], [8]
• Germany [9], [10],
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• Austria [11], [12],
• France [13], [14],
• Poland [15], [16],
• Italy [17], [18].

In this paper, the application of cluster analysis (CA) to real
data from a microgrid is presented. Thus, the recent articles
in this area are discussed. Article [19] proposes a demand
data reduction method based on k-means clustering. In the
article, the reduced demand data is considered separately
for weekdays and weekends. The proposed data reduction
approach is tested on the basis of real data from a microgrid
with a 1 hour resolution. Article [20] proposed using k-mean
clustering to identify suitable candidates in a local microgrid
for demand-side management who have insignificant influ-
ence on microgrid peaks. The paper [21] proposes an optimal
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coordination approach for directional overcurrent relays for
the microgrid using the k-means algorithm. The final num-
ber of clusters is defined in the basement of setting groups
number of commercially available relays. The article [22]
proposes the method for optimal network planning of hybrid
microgrid. In this case, the optimal clustering partition was
defined by a combination of k-means cluster analysis with the
particle swarm optimization algorithm. The article proposes
a scheme for island detection of microgrid using data mining.
Themethod is based on fuzzy c-means clustering [23]. In arti-
cle [24], a support management system based on stochastic
mixed-integer linear programming was proposed. To deal
with uncertainty issues, the reduction of scenario was real-
ized. This task was performed using a clustering technique
of k-means and a fast backward scenario reduction method.
In the paper [25], the optimal location to place the data of
the one-year electric vehicle charging station from the real
microgrid is investigated. In this case, k-means clustering
was applied to divide the load data into representatives. Only
those representatives (clusters) were used in simulations. The
final number of clusters was selected using the elbowmethod.
As can be observed from the literature review, the application
of CA, but the main aim of its application is to reduce the
size of the analyzed data [26], as well as to obtain general
knowledge with the maintenance of data features. [27].

In this article, the main aim of the CA application is to
divide the long-term data from the real microgrid to define
its working conditions. The investigated microgrid is the
testbed microgrid located at Sapienza University of Rome.
The microgrid consists of photovoltaic (PV), battery stor-
age system (BESS), emergency generator set, and differ-
ent types of load. There are several points observed at the
point of energy flow in the microgrid. The investigation
is based on four Lambda Microgrid measurement points -
point of common coupling (PCC), the connection point of
the 12 kWh peak 3-phase PV system, the 6.5 kWh battery
energy storage system and the University laboratory as a spe-
cific load. Therefore, to connect these measurement points,
an area-related approach [28] was proposed for long-term
data, 18 months with a resolution of 15 minutes of the data.
It is worth noting that the CA algorithm considers the input
database that consists of data from all measurement points
simultaneously. In this paper, the different aspects of CA are
considered such as distance measure selection (Euclidean,
Chebyshev, or Manhattan), as well as the optimal number
of cluster selection (v-fold validation test). However, the
main element is that after CA application, a deep analysis is
performed at the point of qualitative assessment of clusters.
It’s important to notice that each cluster represents different
microgrid working conditions defined based on multipoint
measurement to assess the system globally (all measurement
points) not locally (each point separately).

The article is organized into six sections. Section II
presents the methodology part with details about CA, selec-
tion of distance measurements, and selection of the opti-
mal number of clusters. Section III present the investigated

object – Lambda Microgrid. Section IV presents the results
of CA application and analysis in point of microgrid working
conditions. Section V contains a discussion of the results.
Finally, Section VI concludes the paper

II. METHODOLOGY
The presented in this section methodology is based on cluster
analysis, as a representant of data mining techniques. This
technique assures the division of data based on their fea-
tures. Thus obtained clusters (groups), when obtained from
a set of synchronized and related data assures the general
knowledge about the object considering all input parameters.
In this section, we presented the general aim of clustering
and commonly used algorithms. Then we introduced the
problem of distance selection, which is a measure of sim-
ilarity/dissimilarity of data. Finally, we discussed the main
problem of clustering – the selection of the final (optimal)
number of clusters.

A. INTRODUCTION TO CLUSTER ANALYSIS
Cluster analysis (CA) is a representative technique of data
mining [29], [30]. In general, CA aims to assure the divi-
sion of the data in the point of their features [31], [32].
Cluster analysis can be performed using both a hierarchi-
cal and nonhierarchical approach [33], [34]. The hierarchi-
cal approach is represented as n classes of m observations.
The non-hierarchical method concerns the assignment of
all observations to the earlier assumed number of groups
(clusters). In the case of non-hierarchical clustering is not
assured the tree as a classification result as in the case of
the hierarchical clustering [35], [36]. This approach results
in the division into groups of the database to maximize/
minimize the selected evaluation criteria [37]. In this article,
the application of the non-hierarchical approach is discussed.
The most used in the literature nonhierarchical methods are
based on e.g. [38]–[40]:

• K-mean algorithm,
• K-median algorithm,
• Fuzzy C-means Method
• Expectation maximization (EM) algorithm.

In this paper, the authors suggest using the nonhierarchical
with the k-mean algorithm for different distance measures.
Generally, the K-mean algorithm’s main aim is to find the
extremum value of the specific objective function. The men-
tioned objective is defined as [41]:

ObjecFun (B,MC) =
∑x

a=1

∑y

b=1
eab ∗ distance (1)

where:

• ObejcFun – objective function,
• B – matrix of the object belonging to a cluster,
• MC – matrix in which a row vector represents the cen-
troids of clusters,

• a = 1, 2, 3, . . . , x – number of objects,
• b = 1, 2, 3 . . . , y – number of classes (clusters),
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• eab – element indicating the fact of assignment of a-th
object to the b-th class (cluster),

• distance – a measure of distance.

B. DIFFERENT DISTANCE MEASURES
As it was indicated in equation 1 for k-mean clustering differ-
ent measures of distance can be applied. Under this investi-
gation, three different measures were investigated Euclidean
(equation 2), Manhattan (equation 3), and Chebyshev
(equation 4).

EuclideanD (a, b) =

√∑
i
(ai − bi)2, (2)

ManhattanD (a, b) =
∑

i
|ai − bi| (3)

CzebyshevD (a, b) = Maksimum |ai − bi| (4)

where:
• EuclideanD – Euclidean distance,
• ManhattanD – Manhattan distance,
• CzebyshevD – Chebyshev distance,
• a = 1, 2, 3, . . . , x – number of objects,
• b = 1, 2, 3 . . . , y – number of classes (clusters),
• ai – vector of observations, that belong to cluster a,
• bi – vector of observations, that belong to cluster b.

Note that the Euclidean distances (and the squares of the
Euclidean distances) are calculated from the raw data rather
than from standardized data. This method has some advan-
tages (e.g., the distance between any two objects is not
affected by adding new objects to the analysis, which may
be outliers). However, distances are greatly affected by unit
differences between the dimensions from which distances
are calculated. For example, if one dimension represents a
length measured in centimeters when converted to millime-
ters (by multiplying the corresponding values by 10), we will
most often get distinctly different Euclidean distances and
Euclidean distance squares (calculated for multiple dimen-
sions). This can result in completely different cluster analysis
results. In the general case, it is good to use standardization
so that we have data on comparable scale. Manhattan distance
is simply the sum of differences measured along dimensions.
In most cases, this distance measure produces similar results
as the ordinary Euclidean distance. However, note that with
this measure the effect of individual large differences (outlier
cases) is suppressed (because they are not squared). The
Chebyshev distance measure is appropriate in those cases
where we want to define two objects as ‘‘other’’, then when
they differ in one arbitrary dimension [42].

C. OPTIMAL NUMBER OF CLUSTER DEFINITIONS
The noticeable and indicated in literature disadvantage of
the nonhierarchical approach is a-prior defining the final
number of clusters. The literature indicated different methods
to define optimal number of clusters e.g.:
• k-fold cross-validation test [42]
• gap statistic [43],
• an entropy-based initialization method [44],
• u-control chart [45].

In the following article, the k-fold cross-validation test was
chosen. This type of cross-validation is useful for a situation
where there is no knowledge about the test sample. The user
defines the ‘v’ value for v-fold cross-validation. Normally,
v is equal to a value of 1 to 10. The value v refers to the
number of random subsamples that are used for the learning
part of the data. After that, the tree (with specified size) is
computed v times. After each of the iteration steps, it leaves
out one of the subsamples from the computations.

The next step is based on using those subsamples as the
test sample for cross-validation. The cross-validation cost is
computed for each of the v test samples. After that, this cost
is averaged to give the v-fold estimate of the cross-validation
costs [42]. Finally, by analyzing cross-validation cost, the
optimal number of clusters is defined.

III. LAMBDA MICROGRID
The Lambda Microgrid operates at the Department of Astro-
nautical, Electrical and Energy Engineering Sapienza Univer-
sity of Rome in Italy. The main components of that microgrid
are:

• 12 kW three-phase PV system,
• 5.2 kW emergency generator set,
• 6.5 kWh BESS,
• local load including laboratory loads.

In summary about the Lambda MG operation as shown in
Fig. 1, the Com’X 510 (energy server) and Acti Smartlink
collect data from smart meters and PowertTags. Moreover,
PLC is used for the proper as well as faster operation of
Lambda MG. Finally, all data are transferred into the data
center.

FIGURE 1. Load/generation changeability in observed time for different
measurement points.

During normal operation, local sources work syn-
chronously with the power system. PV management is based
on maximum power point tracking control in grid mode.
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FIGURE 2. Load/generation changeability in observed time for different
measurement points.

BESS operations are mounted to avoid power flux from
the microgrid to the external system. The BESS consists of
one battery with an inverter inside, Varta’s model. The setups

for BESS are the depth of discharge in this battery set to
90%, 2.2 kW of possible charging, and 1.8 kW of discharging
capacity. For emergency issues such as external system fail-
ure or blackout, the requirements of the IEEE 1547 standard
are applied [46] - PV and BESS are automatically discon-
nected. Then the emergency generators are started to ensure
the off-grid microgrid mode. Then after 5 minutes, the PV
and BESS are connected, respectively. During the operation
of the microgrid, different monitoring systems are used [47].
The source for data in this paper was Schneider Electric
iEM3150 meters, which are installed in different points of
Lambda microgrid. The location of the meters is presented
in Fig. 1. The data collection was realized within 18 months
from 01.01.2020 to 31.05.2021. The simplified scheme of
Lambda microgrid with the location of smart meters.

IV. RESULTS
A. CHARACTERIZATION OF THE OBJECT IN THE
LONG-TERM APPROACH
Based on the long term measurements (18 months with
15 minutes aggregation) for multipoint measurement, the
following changeability diagrams of active power level are
performed (Fig. 2.):
• PCC of Lambda microgrid (a),
• PV system (b),
• BESS (c),
• Laboratory Load - LAB (d).

As it can be observed in Fig. 2, for such a long period
of time different working conditions are indicated based on
the changeability of all parameters. To define each point in
measurement point in the mean of active power level in the
long term approach the statistical analysis based on normality
charts was performed (Fig. 3). The results are presented in
Fig. 3. As it can be observed for each of the points the specific
similar groups can be indicated. Thus authors decided to
apply cluster analysis to assure the correct division of them
into groups (clusters). The division will be realized in area
related approach – together for all measurement points.

B. COMPARISON IN POINT OF DIFFERENT
DISTANCE DEFINITION
The first step of the investigation was to define the optimal
number of cluster for the investigated multipoint dataset.
Thus the v-fold cross-validation was performed for k-mean
algorithm with different measurement distances: Euclidean,
Manhattan, Chebyshev. The following assumption based on
literature suggestions were performed:
• minimal number of clusters equal to 2 and maximal
number of clusters equal to 10 [48];

• minimal percentage decrease 10% [49];
• the number of subsets: 10 [50].

The results for the v-fold test were presented in Fig. 4 for
Euclidean (a), Manhattan (b), and Chebyshev (c). The v-fold
cross-validation for all investigated distances indicated that
the optimal number of clusters is equal to 4.
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FIGURE 3. Normality charts for the monitored measurement points-
a) PCC, b) PV, c) BESS, d) LAB.

FIGURE 4. Defining the optimal number of clusters based on a v-fold
cross-validation test for different distance measurements.

However, to assure the correctness of indicated division
in the next step was a validation of data assignment to the
same representative cluster based on different distances was
performed. Table 1 presents the mean values of data that
are assignment to clusters based on different distance mea-
surements. Based on the results indicated in Table 1 it can
be assumed that for all distances the obtained classification
is similar. The differences between number of single data
assigned to the same clusters does not exceed 5%. Addition-
ally the mean vale of active power level in clusters do not
exceed 100 W for all measurement points.
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TABLE 1. Comparison of load cluster values for each measurement point
for different distance measurements in case of the optimal number of
clusters equal to 4.

TABLE 2. Comparison of load cluster values for each measurement point
for different distance measurements in case of the optimal number of
clusters equal to 4.

C. CASE STUDY FOR EUCLIDEAN DISTANCE - DEEP
STATISTICAL ANALYSIS
As a representative distance for CA, the Euclidean distance
was selected due to its features as a representative selection
of distance measurement value [51]. Thus, the deep analysis
for the final number of the cluster from 2 to optimal based
on v-fold validation values was performed in this subsection.
As indicated in the previous section (section IV.E) the optimal
number of clusters is equal to 4, thus the qualitative assess-
ment is performed for the number of clusters equal to 2, 3,
and 4. The results in point-of-mean values are presented in
Table 2. However, using only mean values, the analysis of
the results can be misleading. Thus, to justify that results are
correct, the distribution graphs were prepared and presented
in Fig. 5 and Fig. 6.

Based on both mean values and distribution graphs pre-
pared for each cluster for clustering with the different final

FIGURE 5. Distribution graphs for clustering results for final number of
cluster equal to I) 2 clusters; II) 3 clusters; measurement points where:
a) PCC, b) PV, c) BESS, d) LAB.

number of clusters (from 2 to 4) using Euclidean measure-
ment of distance, the following observation is indicated:
• CA with the final number of clusters equal to 2: cluster

1 represents time with high PV production; cluster
2 represents time without PV production.

• CA with the final number of clusters equal to 3: cluster
1 represents timewith PV production (but not high) and
BESS is charged; cluster 2 represents time with high
PV production; cluster 3 represents time without PV
production.

• CA with the final number equal to 4: cluster 1 repre-
sents timewith high PVproduction; cluster 2 represents
time with relatively low PV production and BESS is
charged; cluster 3 represents time with relatively high
PV production and BESS is charged; cluster 4 repre-
sents time without PV production.
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FIGURE 6. Distribution graphs for clustering results for final number of
cluster equal to 4 cluster for all measurement points where: a) PCC, b) PV,
c) BESS, d) LAB.

V. DISCUSSION
Firstly, it is worth noting that the investigation performed
was based on a real testbed microgrid located at Sapienza

University of Rome. Themicrogrid consists of PV, BESS, and
different types of load. During the observed time, the micro-
grid worked only in grid mode, so the emergency generator
system had no impact on the results.

Four measurement devices were used as the data source.
All the measurement devices were settled in the local micro-
grid, thus under this investigation the area-related approach
was used. The area-relation approach means that we can
analyze the object (microgrid) based on the simultaneous
analysis of all objects that have an impact on each other. This
mutual impact is connected with the fact that all these units
are decentralized managed by the microgrid.

In this investigation, the three different measurement dis-
tances were investigated – Euclidean, Chebyshev, and Man-
hattan. In II.B, all of them were compared and highlights
about the selection of them in point of data features were indi-
cated. Using different measurement distances for the cluster-
ing process, there is also a possibility to verify the character
of data. If the clustering results for Euclidean distance are
noticeable different fromChebyshev andManhattan, it means
that some specific outliners in any of the measurement points
are noticeable. In the case of the investigated object for
18 months period because results for all distances are similar
it can be stated that outliners are not indicated in those data.

The next element of discussion is based on a comparison
of working conditions that are obtained during the clustering
process. The most general division (for 2 clusters) assures
division in point of PV generation. When the final number
of clusters increased into 3 also the operation of BESS was
significant to division. The additional increase in the final
number to cluster to 4 indicated that both PV and BESS had
an impact to indicate additional cluster.

VI. CONCLUSION
In this article, the case study of cluster analysis for real micro-
grid data was performed. The results were based on long-
term data (18 months), so the different working conditions
occurred. The CA performed was realized simultaneously
for all points, thus in fact the investigation was toward the
whole microgrid not only a separated part of it. The results
of the clustering performed are representants of the Lambda
Microgrid working conditions. Generally the working con-
ditions are related to PV generation and operation of BESS.
By analyzing each cluster separately, it is possible to analyze
the general scenarios of working of the microgrid. Such
scenarios can be used to define the microgrid operation rather
than analyzing the entire dataset with maintaining the data
features.

REFERENCES
[1] Y. Hennane, A. Berdai, J.-P. Martin, S. Pierfederici, and F. Meibody-Tabar,

‘‘New decentralized control of mesh AC microgrids: Study, stability, and
robustness analysis,’’ Sustainability, vol. 13, no. 4, p. 2243, Feb. 2021, doi:
10.3390/su13042243.

[2] J. Tavoosi, A. Mohammadzadeh, B. Pahlevanzadeh, M. B. Kasmani,
S. S. Band, R. Safdar, and A. H. Mosavi, ‘‘A machine learning approach
for active/reactive power control of grid-connected doubly-fed induction
generators,’’ Ain Shams Eng. J., vol. 13, no. 2, Mar. 2022, Art. no. 101564,
doi: 10.1016/j.asej.2021.08.007.

VOLUME 10, 2022 70977

http://dx.doi.org/10.3390/su13042243
http://dx.doi.org/10.1016/j.asej.2021.08.007


M. Jasiński et al.: Microgrid Working Conditions Identification Based on Cluster Analysis

[3] S. Zwickl-Bernhard and H. Auer, ‘‘Open-source modeling of a low-
carbon urban neighborhood with high shares of local renewable gen-
eration,’’ Appl. Energy, vol. 282, Jan. 2021, Art. no. 116166, doi:
10.1016/j.apenergy.2020.116166.

[4] Z. Liu, A. Mohammadzadeh, H. Turabieh, M. Mafarja, S. S. Band,
and A. Mosavi, ‘‘A new online learned interval type-3 fuzzy control
system for solar energy management systems,’’ IEEE Access, vol. 9,
pp. 10498–10508, 2021, doi: 10.1109/ACCESS.2021.3049301.

[5] J. Cao, Z. Bu, Y. Y. Wang, H. Yang, J. C. Jiang, and H. J. Li, ‘‘Detect-
ing prosumer-community groups in smart grids from the multiagent
perspective,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 49, no. 8,
pp. 1652–1664, Aug. 2019, doi: 10.1109/TSMC.2019.2899366.

[6] S. Chandak and P. K. Rout, ‘‘The implementation framework of a micro-
grid: A review,’’ Int. J. Energy Res., vol. 45, no. 3, pp. 3523–3547,
Mar. 2021, doi: 10.1002/er.6064.

[7] L. Mariam, M. Basu, and M. F. Conlon, ‘‘Microgrid: Architecture, policy
and future trends,’’ Renew. Sustain. Energy Rev., vol. 64, pp. 477–489,
Oct. 2016, doi: 10.1016/j.rser.2016.06.037.

[8] T. T. Teo, T. Logenthiran, W. L. Woo, K. Abidi, T. John, N. S. Wade,
D. M. Greenwood, C. Patsios, and P. C. Taylor, ‘‘Optimization of fuzzy
energy-management system for grid-connected microgrid using NSGA-
II,’’ IEEE Trans. Cybern., vol. 51, no. 11, pp. 5375–5386, Nov. 2021, doi:
10.1109/TCYB.2020.3031109.

[9] M. C. Pulcherio, A. A. Renjit, M. S. Illindala, A. S. Khalsa, J. H. Eto,
D. A. Klapp, and R. H. Lasseter, ‘‘Evaluation of control methods to pre-
vent collapse of a mixed-source microgrid,’’ IEEE Trans. Ind. Appl.,
vol. 52, no. 6, pp. 4566–4576, Nov. 2016, doi: 10.1109/TIA.2016.
2599139.

[10] N. Beg, H. Biechl, and A. Rosin, ‘‘Stability issues with inverter loads
and their control in low inertia islanded microgrids,’’ in Proc. 2nd Global
Power, Energy Commun. Conf. (GPECOM), Oct. 2020, pp. 196–201, doi:
10.1109/GPECOM49333.2020.9247913.

[11] M. Mansoor, M. Stadler, H. Auer, and M. Zellinger, ‘‘Advanced optimal
planning for microgrid technologies including hydrogen and mobility
at a real microgrid testbed,’’ Int. J. Hydrogen Energy, vol. 46, no. 37,
pp. 19285–19302, May 2021, doi: 10.1016/j.ijhydene.2021.03.110.

[12] M. Mansoor, M. Stadler, M. Zellinger, K. Lichtenegger, H. Auer, and
A. Cosic, ‘‘Optimal planning of thermal energy systems in amicrogridwith
seasonal storage and piecewise affine cost functions,’’ Energy, vol. 215,
Jan. 2021, Art. no. 119095, doi: 10.1016/j.energy.2020.119095.

[13] V. H. Nguyen, Q. T. Tran, H. Buttin, and M. Guemri, ‘‘Implementation of
a coordinated voltage control algorithm for a microgrid via SCADA-as-a-
service approach,’’ Electr. Eng., vol. 104, no. 2, pp. 389–399, Apr. 2022,
doi: 10.1007/s00202-021-01247-z.

[14] S. J. Ben Christopher and M. Carolin Mabel, ‘‘A bio-inspired approach for
probabilistic energy management of micro-grid incorporating uncertainty
in statistical cost estimation,’’ Energy, vol. 203, Jul. 2020, Art. no. 117810,
doi: 10.1016/j.energy.2020.117810.

[15] V. Suresh, P. Janik, J. M. Guerrero, Z. Leonowicz, and T. Sikorski, ‘‘Micro-
grid energy management system with embedded deep learning forecaster
and combined optimizer,’’ IEEE Access, vol. 8, pp. 202225–202239, 2020,
doi: 10.1109/ACCESS.2020.3036131.

[16] V. Suresh and D. Kaczorowska, ‘‘Energy savings approach to optimal
location of EV charging stations in microgrids,’’ Renew. Energy Power
Qual. J., vol. 19, pp. 33–38, Sep. 2021, doi: 10.24084/repqj19.207.

[17] M. Kermani, B. Adelmanesh, E. Shirdare, C. A. Sima, D. L. Carnì, and
L. Martirano, ‘‘Intelligent energymanagement based on SCADA system in
a real microgrid for smart building applications,’’ Renew. Energy, vol. 171,
pp. 1115–1127, Jun. 2021, doi: 10.1016/j.renene.2021.03.008.

[18] E. Bompard, S. Bruno, A. Cordoba-Pacheco, C. Diaz-Londono,
G. Giannoccaro, M. La Scala, A. Mazza, and E. Pons, ‘‘Connecting
in real-time power system labs: An Italian test-case,’’ in Proc. IEEE
Int. Conf. Environ. Electr. Eng. IEEE Ind. Commercial Power Syst.
Eur. (EEEIC/ICPS Europe), Jun. 2020, pp. 1–6, doi: 10.1109/EEEIC/
ICPSEurope49358.2020.9160505.

[19] K. Fahy, M. Stadler, Z. K. Pecenak, and J. Kleissl, ‘‘Input data reduction
for microgrid sizing and energy cost modeling: Representative days and
demand charges,’’ J. Renew. Sustain. Energy, vol. 11, no. 6, Nov. 2019,
Art. no. 065301, doi: 10.1063/1.5121319.

[20] G. H. Philipo, Y. A. Chande Jande, and T. Kivevele, ‘‘Clustering and
fuzzy logic-based demand-side management for solar microgrid operation:
Case study of ngurudoto microgrid, Arusha, Tanzania,’’ Adv. Fuzzy Syst.,
vol. 2021, pp. 1–13, Feb. 2021, doi: 10.1155/2021/6614129.

[21] S. D. Saldarriaga-Zuluaga, J. M. López-Lezama, and N. Muñoz-Galeano,
‘‘Optimal coordination of over-current relays in microgrids using principal
component analysis and K -means,’’ Appl. Sci., vol. 11, no. 17, p. 7963,
Aug. 2021, doi: 10.3390/app11177963.

[22] T. Wang and X. Yang, ‘‘Optimal network planning of AC/DC hybrid
microgrid based on clustering and multi-agent reinforcement learning,’’
J. Renew. Sustain. Energy, vol. 13, no. 2, Mar. 2021, Art. no. 025501, doi:
10.1063/5.0034816.

[23] A. Damanjani, M. Hosseini Abardeh, A. Azarfar, and M. Hojjat, ‘‘A novel
scheme for island detection in microgrids based on fuzzy c-means clus-
tering technique,’’ Int. Rev. Appl. Sci. Eng., vol. 12, no. 2, pp. 157–165,
May 2021, doi: 10.1556/1848.2021.00215.

[24] I. L. R. Gomes, R. Melicio, and V. M. F. Mendes, ‘‘A novel micro-
grid support management system based on stochastic mixed-integer lin-
ear programming,’’ Energy, vol. 223, May 2021, Art. no. 120030, doi:
10.1016/j.energy.2021.120030.

[25] V. Suresh, N. Bazmohammadi, P. Janik, J. M. Guerrero, D. Kaczorowska,
J. Rezmer, M. Jasinski, and Z. Leonowicz, ‘‘Optimal location of an elec-
trical vehicle charging station in a local microgrid using an embedded
hybrid optimizer,’’ Int. J. Electr. Power Energy Syst., vol. 131, Oct. 2021,
Art. no. 106979, doi: 10.1016/j.ijepes.2021.106979.

[26] D. J. Vergados, I. Mamounakis, P. Makris, and E. Varvarigos, ‘‘Pro-
sumer clustering into virtual microgrids for cost reduction in renewable
energy trading markets,’’ Sustain. Energy, Grids Netw., vol. 7, pp. 90–103,
Sep. 2016, doi: 10.1016/j.segan.2016.06.002.

[27] M. Jasiński, T. Sikorski, D. Kaczorowska, J. Rezmer, V. Suresh,
Z. Leonowicz, P. Kostyła, J. Szymańda, P. Janik, J. Bieńkowski, and
P. Prus, ‘‘A case study on a hierarchical clustering application in a
virtual power plant: Detection of specific working conditions from
power quality data,’’ Energies, vol. 14, no. 4, p. 907, Feb. 2021, doi:
10.3390/en14040907.

[28] M. Jasiński, ‘‘Combined correlation and cluster analysis for long-term
power quality data from virtual power plant,’’ Electronics, vol. 10, no. 6,
p. 641, Mar. 2021, doi: 10.3390/electronics10060641.

[29] R. J. Roiger, Data Mining. Boca Raton, FL, USA: CRC Press, 2017.
[30] I.-C. Chang, T.-K. Yu, Y.-J. Chang, and T.-Y. Yu, ‘‘Applying text mining,

clustering analysis, and latent Dirichlet allocation techniques for topic
classification of environmental education journals,’’ Sustainability, vol. 13,
no. 19, p. 10856, Sep. 2021, doi: 10.3390/su131910856.

[31] K. Vehkalahti and B. S. Everitt, Multivariate Analysis for the Behavioral
Sciences. 2nd ed. Boca Raton, FL, USA: CRC Press, 2019.

[32] P. Tavallali, P. Tavallali, and M. Singhal, ‘‘K -means tree: An optimal
clustering tree for unsupervised learning,’’ J. Supercomput., vol. 77, no. 5,
pp. 5239–5266, May 2021, doi: 10.1007/s11227-020-03436-2.

[33] X. Ai, Z. Yang, H. Hu, Z. Wang, D. Peng, and Z. Zhao, ‘‘A load curve
clustering method based on improved k-means algorithm for virtual power
plant and its application,’’ Dianli Jianshe/Electr. Power Constr., vol. 41,
no. 5, pp. 28–36, 2020, doi: 10.12204/j.issn.1000-7229.2020.05.004.

[34] Z. Bu, H.-J. Li, C. Zhang, J. Cao, A. Li, and Y. Shi, ‘‘Graph K -means
based on leader identification, dynamic game, and opinion dynamics,’’
IEEE Trans. Knowl. Data Eng., vol. 32, no. 7, pp. 1348–1361, Jul. 2020,
doi: 10.1109/TKDE.2019.2903712.

[35] S. Payne, E. Fuller, G. Spirou, and C.-Q. Zhang, ‘‘Automatic quasi-clique
merger algorithm—A hierarchical clustering based on subgraph-density,’’
Phys. A, Stat. Mech. Appl., vol. 585, Jan. 2022, Art. no. 126442, doi:
10.1016/j.physa.2021.126442.

[36] C. Wu, H. Li, and J. Ren, ‘‘Research on hierarchical clustering method
based on partially-ordered Hasse graph,’’ Future Gener. Comput. Syst.,
vol. 125, pp. 785–791, Dec. 2021, doi: 10.1016/j.future.2021.07.025.

[37] P. Filzmoser, K. Hron, and M. Templ, Applied Compositional Data Anal-
ysis. Cham, Switzerland: Springer, 2018.

[38] M. Jasiński, T. Sikorski, and K. Borkowski, ‘‘Clustering as a tool to
support the assessment of power quality in electrical power networks with
distributed generation in the mining industry,’’ Electr. Power Syst. Res.,
vol. 166, pp. 52–60, Jan. 2019, doi: 10.1016/j.epsr.2018.09.020.

[39] S. Wierzchoń and M. Kłopotek, Modern Algorithms of Cluster Analysis,
vol. 34. Cham, Switzerland: Springer, 2018.

[40] M. Jadidbonab, B. Mohammadi-Ivatloo, M. Marzband, and P. Siano,
‘‘Short-term self-scheduling of virtual energy hub plant within thermal
energy market,’’ IEEE Trans. Ind. Electron., vol. 68, no. 4, pp. 3124–3136,
Apr. 2021, doi: 10.1109/TIE.2020.2978707.

[41] S. Wierzchoń and M. Kłopotek, Algorithms of Cluster Analysis, vol. 3.
Warsaw, Poland: Institute of Computer Science Polish Academy of Sci-
ences, 2015.

70978 VOLUME 10, 2022

http://dx.doi.org/10.1016/j.apenergy.2020.116166
http://dx.doi.org/10.1109/ACCESS.2021.3049301
http://dx.doi.org/10.1109/TSMC.2019.2899366
http://dx.doi.org/10.1002/er.6064
http://dx.doi.org/10.1016/j.rser.2016.06.037
http://dx.doi.org/10.1109/TCYB.2020.3031109
http://dx.doi.org/10.1109/TIA.2016.2599139
http://dx.doi.org/10.1109/TIA.2016.2599139
http://dx.doi.org/10.1109/GPECOM49333.2020.9247913
http://dx.doi.org/10.1016/j.ijhydene.2021.03.110
http://dx.doi.org/10.1016/j.energy.2020.119095
http://dx.doi.org/10.1007/s00202-021-01247-z
http://dx.doi.org/10.1016/j.energy.2020.117810
http://dx.doi.org/10.1109/ACCESS.2020.3036131
http://dx.doi.org/10.24084/repqj19.207
http://dx.doi.org/10.1016/j.renene.2021.03.008
http://dx.doi.org/10.1109/EEEIC/ICPSEurope49358.2020.9160505
http://dx.doi.org/10.1109/EEEIC/ICPSEurope49358.2020.9160505
http://dx.doi.org/10.1063/1.5121319
http://dx.doi.org/10.1155/2021/6614129
http://dx.doi.org/10.3390/app11177963
http://dx.doi.org/10.1063/5.0034816
http://dx.doi.org/10.1556/1848.2021.00215
http://dx.doi.org/10.1016/j.energy.2021.120030
http://dx.doi.org/10.1016/j.ijepes.2021.106979
http://dx.doi.org/10.1016/j.segan.2016.06.002
http://dx.doi.org/10.3390/en14040907
http://dx.doi.org/10.3390/electronics10060641
http://dx.doi.org/10.3390/su131910856
http://dx.doi.org/10.1007/s11227-020-03436-2
http://dx.doi.org/10.12204/j.issn.1000-7229.2020.05.004
http://dx.doi.org/10.1109/TKDE.2019.2903712
http://dx.doi.org/10.1016/j.physa.2021.126442
http://dx.doi.org/10.1016/j.future.2021.07.025
http://dx.doi.org/10.1016/j.epsr.2018.09.020
http://dx.doi.org/10.1109/TIE.2020.2978707


M. Jasiński et al.: Microgrid Working Conditions Identification Based on Cluster Analysis

[42] S. Polska. (2016). StatSoft Electronic Statistic Textbook. [Online]. Avail-
able: http.:/www.statsoft.pl/textbook/stathome.html

[43] J. Yang, J.-Y. Lee, M. Choi, and Y. Joo, ‘‘A new approach to determine the
optimal number of clusters based on the gap statistic,’’ in Proc. Int. Conf.
Mach. Learn. Netw., 2020, pp. 227–239.

[44] K. Chowdhury, D. Chaudhuri, and A. K. Pal, ‘‘An entropy-based initial-
ization method of K -means clustering on the optimal number of clus-
ters,’’ Neural Comput. Appl., vol. 33, pp. 6965–6982, Nov. 2020, doi:
10.1007/s00521-020-05471-9.

[45] J. Silva, O. B. P. Lezama, N. Varela, J. G. Guiliany, E. S. Sanabria,
M. S. Otero, and V. Á. Rojas, ‘‘U-control chart based differential evolution
clustering for determining the number of cluster in k-means,’’ in Proc. Int.
Conf. Green, Pervasive, Cloud Comput., 2019, pp. 31–41.

[46] Standard for Interconnection and Interoperability of Distributed Energy
Resources With Associated Electric Power Systems Interfaces, IEEE Stan-
dard 1547-2018 (Revision of IEEE Standard 1547-2003), IEEE Standard
Association, 2018.

[47] L. Martirano, M. Jasinski, A. Najafi, V. Cocira, and Z. Leonowicz,
‘‘Integration of supervision and monitoring systems of microgrids—
A case study from lambda microgrid for correlation analysis,’’ in
Proc. IEEE Int. Conf. Environ. Electr. Eng. IEEE Ind. Commer-
cial Power Syst. Eur. (EEEIC/ICPS Europe), Sep. 2021, pp. 1–4, doi:
10.1109/EEEIC/ICPSEurope51590.2021.9584689.

[48] R. Claeys, H. Azaioud, R. Cleenwerck, J. Knockaert, and J. Desmet,
‘‘A novel feature set for low-voltage consumers, based on the temporal
dependence of consumption and peak demands,’’ Energies, vol. 14, no. 1,
p. 139, Dec. 2020, doi: 10.3390/en14010139.

[49] J. Lei, ‘‘Cross-validation with confidence,’’ J. Amer. Stat. Assoc.,
vol. 115, no. 532, pp. 1978–1997, Oct. 2020, doi: 10.1080/01621459.
2019.1672556.

[50] B. G. Marcot and A. M. Hanea, ‘‘What is an optimal value of k in k-fold
cross-validation in discrete Bayesian network analysis?’’ Comput. Statist.,
vol. 36, no. 3, pp. 2009–2031, Sep. 2021, doi: 10.1007/s00180-020-
00999-9.

[51] S. Kapil and M. Chawla, ‘‘Performance evaluation of K -means clustering
algorithm with various distance metrics,’’ in Proc. IEEE 1st Int. Conf.
Power Electron., Intell. Control Energy Syst. (ICPEICES), Jul. 2016,
pp. 1–4, doi: 10.1109/ICPEICES.2016.7853264.

MICHAŁ JASIŃSKI (Member, IEEE) received
the M.S. and Ph.D. degrees in electrical engineer-
ing from the Wrocław University of Science and
Technology, in 2016 and 2019, respectively. Since
2018, he has been with the Electrical Engineer-
ing Faculty, Wrocław University of Science and
Technology, where he is currently an Assistant
Professor. He is an author and coauthor of over
100 scientific publications. His research interests
include using big data in power systems especially

in point of power quality, as well as optimization in multicarrier energy
systems. Currently, he is a Guest Editor for the special issues of Energies,
Electronics, Sustainability, and Frontiers in Energy Research.

LUIGI MARTIRANO (Senior Member, IEEE)
received the M.S. and Ph.D. degrees in electri-
cal engineering from the Sapienza University of
Rome, Rome, Italy, in 1998 and 2003, respectively.
In 2000, he joined the Department of Electrical
Engineering, Sapienza University of Rome, where
he is currently an Associate Professor of electrical
power systems. He is currently the Coordinator
of the Ph.D. course in ‘‘engineering and applied
science for energy and industry’’ and the Secretary

of the National Research Group in Power Systems GUSEE. He has authored
more than 180 papers in international journals and conference proceedings.
He is the Founder of a startup, operating in the fields of building automation
and energy monitoring systems. His research interests include safety and
reliability in power systems, MV/LV power networks, building automation,
domotics, lighting, smart buildings, and microgrids.

ARSALAN NAJAFI (Senior Member, IEEE)
received the B.S. degree in electrical engineer-
ing from the University of Kurdistan Hewlêr,
Sanandaj, Iran, in 2009, and the M.S. and Ph.D.
degrees in electrical engineering from the Uni-
versity of Birjand, Birjand, Iran, in 2011 and
2016, respectively. He is supported by the Pol-
ish National Agency for Academic Exchange
(NAWA) under the Ulam Program Grant. He is
currently an Assistant Professor with the Wrocław

University of Science and Technology, Wrocław, Poland. His research inter-
ests include operation and planning of multi-energy systems, stochastic
programming, electricity market, as well as optimization theory and its
application in power systems.

OMID HOMAEE received the B.Sc. degree in
electrical engineering from the University of
Birjand, Birjand, Iran, in 2011, and the M.Sc.
and Ph.D. degrees in electrical engineering from
the Iran University of Science and Technology,
Tehran, Iran, in 2013 and 2020, respectively.
He is currently a Researcher with the Wocław
University of Science and Technology, Wocław,
Poland, supported by the Polish National Agency
for Academic Exchange (NAWA) under the Ulam

Program Grant. His current research interests include smart grids and
electromagnetic transient analysis.

ZBIGNIEW LEONOWICZ (Senior Member,
IEEE) received the M.S. and Ph.D. degrees in
electrical engineering from the Wocław Univer-
sity of Science and Technology, in 1997 and
2001, respectively, and the Habilitation degree
from the Bialystok University of Technology,
in 2012. Since 1997, he has been with the Elec-
trical Engineering Faculty, Wocław University of
Technology. He also received the two titles of Full
Professor from the President of Poland and the

President of the Czech Republic, in 2019. Since 2019, he has been a Professor
with the Department of Electrical Engineering, where he is currently the
Head of the Chair of Electrical Engineering Fundamentals.

MOSTAFA KERMANI (Member, IEEE) received
the M.S. degree in electrical engineering from the
University of Birjand, Birjand, Iran, in 2013, and
the Ph.D. degree in electrical engineering from
the Sapienza University of Rome, Rome, Italy,
in 2019. He is currently a Postdoctoral Researcher
with the Department of Electrical Engineering,
Chalmers University of Technology, Gothenburg,
Sweden. He has authored several papers in interna-
tional journals and conferences. His research inter-

ests include power systems operation and planning, energy storages systems,
energy optimization, electrical and energy systems for port, and intelligent
energy management systems. He is a member of the Scientific Committee in
EEEIC conference. He is also a Reviewer of IEEE TRANSACTIONS ON INDUSTRY
APPLICATIONS, IEEE OPEN JOURNALOF INDUSTRYAPPLICATIONS, and Elsevier and
MDPI journals.

VOLUME 10, 2022 70979

http://dx.doi.org/10.1007/s00521-020-05471-9
http://dx.doi.org/10.1109/EEEIC/ICPSEurope51590.2021.9584689
http://dx.doi.org/10.3390/en14010139
http://dx.doi.org/10.1080/01621459.2019.1672556
http://dx.doi.org/10.1080/01621459.2019.1672556
http://dx.doi.org/10.1007/s00180-020-00999-9
http://dx.doi.org/10.1007/s00180-020-00999-9
http://dx.doi.org/10.1109/ICPEICES.2016.7853264

