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ABSTRACT In this article, the feature selection (FS) process is taken as a multi criteria decision mak-
ing (MCDM) problem. Also, to consider the impreciseness arising in the real time data, the values of the
decision matrix procured after the ridge regression is fuzzified into dual hesitant q-rung orthopair fuzzy
set. For the information fusion process, we have proposed various aggregation operators such as the Dual
Hesitant q-rung orthopair fuzzy weighted Dombi arithmetic aggregation operator, Dual Hesitant q-rung
orthopair fuzzy weighted Dombi geometric aggregation operator, Dual Hesitant q-rung orthopair fuzzy
ordered weighted Dombi arithmetic aggregation operator and Dual Hesitant q-rung orthopair fuzzy ordered
weighted Dombi geometric aggregation operator. A multi-label feature selection method is proposed using
these MCDM techniques formed by the aggregation operators. This algorithm, initially, obtains the values
of the decision matrix through the process of ridge regression. The weight vector required for the MCDM
process is calculated using entropy. Further, the data are fuzzified and theMCDMprocess proposed using the
aforementioned aggregation operators are utilized. A rank vector is obtained by utilizing the score function
to select the desired number of features. It should be noted that through changing the aggregation operator,
the algorithm can be altered. Experimental evaluation that compares the proposed method to other existing
methods in terms of evaluation metrics demonstrates the effectiveness of the proposed method and their
significance is also evaluated.

INDEX TERMS Aggregation operators, decision making, dual hesitant q-rung orthopair fuzzy sets, machine
learning, multi label feature selection.

I. INTRODUCTION
In machine learning, the concept of FS is mainly used as
a pre-processing step. These pre-processing approaches are
extremely important when working with high dimensional
datasets. The major advantage of FS is that it can reduce
the data dimensionality thereby improving the speed of the
algorithm which in turn accelerates the performance of the
learning algorithm. Single label learning involves dataset
with only one class. However, due to the evolvement of
multi-label datasets, for instance, there could be one gene
that is associated with multiple functions, several tags may
be incorporated on one image and several topics could be
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covered in a single document. Hence, there is a necessity for
the development of multi-label FS algorithms [1], [2]. Multi
label learning primarily involves two challenges (i) Unlike
the conventional single-label learning that contains classes
which are mutually exclusive, multi-label learning’s classes
are often interdependent and associated, making it more dif-
ficult to anticipate all relevant labels for a particular instance.
(ii) The data involved in multi-label learning are generally
of higher dimension. High-dimensional data is prone to the
dimensionality curse which increases the computational cost
and limits the generalization capacity of the classifier [3], [4].
FS seeks to identify a small subset of features that describes
the dataset as well as, if not better than, the original set of
features, is an efficient technique to lessen the dimensionality
curse. The Binary Relevance approach is compatible with
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the usual multi-label FS approach, which converts multi-label
datasets into single-label datasets before applying classic FS
algorithms [5]. The major issue in this technique is that the
inter-dependency between the labels is frequently overlooked
which in turn causes difficulty to investigate the structure
of labels that improves the performance of the multi-label
learning by reducing the dimensionality [6], [7]. The authors
of [6] used the concept of fuzzy neighborhood rough sets
to handle multi-label datasets. The authors of [7] carried
out reduction of attributes for multi-label learning algorithms
using fuzzy rough sets. Hesitant fuzzy set based approach
was utilized for ensemble of FS algorithms in [8]. FS of
heterogeneous data were carried out in [9] using the fuzzy
neighborhood multigranulation rough sets.

The commonly used FS methods are filter, wrapper and
embedding techniques each of them having their unique
advantages. The filter techniques [10] are independent of the
learning algorithms and choose appropriate features based on
the general properties of training data. Such approaches rate
features based on a set of criteria and delete features with
low scores. The fundamental advantage of these approaches is
that they have a low computational complexity making them
acceptable for usage with high-dimensional data. While the
wrapper technique [11] utilizes a particular algorithm as a
component of their feature selection process whose results are
more efficient, however, their computation cost is high and
cannot always be used. Finally, the embedded technique [12]
combines the advantages of the aforementioned techniques
as they are complementing each other. Other than these tech-
niques, the FS techniques can be classified from their label
perspective into three, namely, supervised, unsupervised and
semi-supervised. Appropriate labeled training subsamples
are provided in supervised feature selection procedures [13]
and feature relevance is established by analyzing feature cor-
relation with the class. Unsupervised algorithms [14], on the
contrary, do not require any labeled training data sets. Semi-
supervised FS [15] strategies are appropriate when there are
only a few labeled examples among the entire training data
set. The authors of [10] proposed a filter based multi-label FS
technique namely MFS-MCDM using the MCDM method,
the technique for order of preference by similarity to ideal
solution. The authors of [16] combined the advantages of
wrapper and filter based techniques for a differential evolu-
tion based FS technique.

Different from the various meta-heuristic approaches such
as the gravitational search algorithm, ant colony optimiza-
tion, and particle swarm optimization that involve complex
optimization process, MCDM techniques are efficient when-
ever we need to specify preferences and achieve desired
results influenced by the opinions of various decision or
criteria. Also, it is important to note that the dataset used for
multi-label learning are real time data that involve vagueness
and imprecision leading to the necessity for the usage of fuzzy
set theory. Fuzzy set theory developed by Zadeh [17] and
further extended to intuitionistic fuzzy sets [18], Pythagorean
fuzzy sets [19], q-rung orthopair fuzzy sets [20], hesitant

fuzzy set [21], q-rung orthopair hesitant fuzzy sets [22],
dual hesitant fuzzy sets [23], dual hesitant q-rung orthopair
fuzzy sets (DHq-ROFSs) [24] etc., found their applications
in diverse fields [25]–[27]. Among them, the concept of
DHq-ROFSs has gained more attention recently due to its
advantage of taking into account more amount of vague-
ness [28]–[30]. The usage of aggregation operators in differ-
ent forms of fuzzy set has been able to handle the MCDM
problems more efficiently. Among the various aggregation
operators, the Dombi aggregation operator has the advantage
of making the process of aggregation simpler through the
alteration of the Dombi parameter [30], [31]. Through alter-
ing the parameter value in the Dombi aggregation operator,
we alter theworking behavior of the parameter resulting in the
change of norm utilized for aggregation. The authors of [33]
handled a decision making problem in the q-rung orthopair
fuzzy environment using Dombi operators. For instance, the
authors of [30] implemented Dombi operators in the Bonfer-
roni mean and used it in the DHq-ROFSs environment and
applied it to a MCDM technique. In [31], Dombi operators
were handled in Pythagorean fuzzy environment and were
used in multi attribute decision making problem. Crop selec-
tionMCDMproblemwas handled in the bipolar neutrosophic
fuzzy environment using Dombi operators by the authors
of [32].

A. MOTIVATION
Based on the aforementioned works, in this article, we pro-
pose the Dombi aggregation operators in the environment of
DHq-ROFSs to aggregate the decision matrix procured after
calculating the correlation between the data and the labels.
The main advantage of this technique is that the vagueness
and imprecision occurring in the real time data are considered
for the evaluation. Also, the problems involved in multi-label
learning such as the correlation and high dimensionality of
the dataset are handled efficiently. The aggregation of data
is a simple yet effective process that can reduce the curse of
dimensionality, hence, reducing the computational cost and
time.

B. CONTRIBUTION
The major contributions of this article are summarized as
follows:

• Dombi aggregation operators on DHq-ROFS are pro-
posed such as the Dual Hesitant q-rung orthopair
fuzzy weighted Dombi arithmetic aggregation opera-
tor (DHq-ROFWDA), Dual Hesitant q-rung orthopair
fuzzy weighted Dombi geometric aggregation opera-
tor (DHq-ROFWDG), Dual Hesitant q-rung orthopair
fuzzy ordered weighted Dombi arithmetic aggregation
operator (DHq-ROFOWDA) and Dual Hesitant q-rung
orthopair fuzzy ordered weighted Dombi geometric
aggregation operator (DHq-ROFOWDG).

• Few basic properties of these operators are discussed.
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TABLE 1. Structure of a multi-label dataset.

• A multi-label filter based feature selection algorithm is
formulated using the proposed aggregation operators.

• This method is evaluated based on multiple performance
metrics and the significance test is also carried on.

C. STRUCTURE
The basic structure of this paper is as follows: Section 2 deals
with preliminaries of multi-label learning and fuzzy set the-
ory. Section 3 elucidates the proposed operators and their
properties. Section 4 elaborates the proposed methodology.
Section 5 deals with the experimental results and their discus-
sions. A proper conclusion for the article is given in Section 6.

II. PRELIMINARIES
A. MULTI-LABEL LEARNING
When the data of each sample is associated with multi-
ple labels, it is termed as multi-label data. In this type of

data, for every feature vector ˆ̂Xa =

(
ˆ̂
Xa1,

ˆ̂
Xa2, · · · ,

ˆ̂
XaR

)
there is a corresponding binary label vector ˆ̂Wb =(
ˆ̂
Wb1,

ˆ̂
Wb2, · · · ,

ˆ̂
WbS

)
where R and S represents the num-

ber of features and labels respectively. This method primarily
considers the construction of a E training sample which have
the capacity to forecast labels of the newmatrix. The structure
of a multi-label dataset is given in table 1
Definition 1: (Information Entropy) [34] The correlation

between random variables is evaluated using information
entropy whose basic criteria is entropy which procures the
uncertainty degree of the randomvariable. For a set of random

variables ˆ̂C = (c1, c2, . . . , ck), the entropy h(
ˆ̂
C) of the random

variable ˆ̂C whose possible outcomes are cj with probability
P(cj) is

ˆ̂
C = −

∑
j

P(cj) log 2 P(cj) (1)

The value of ˆ̂C lie in the interval [0, 1]. The value 1 depicts
equal distribution between the classes and 0 depicts that
the instances lie in a single class.
Definition 2 (Ridge Regression [35], [36]): It is a widely

used method for regularizing linear least-squares issues in
order to minimize the impact of multicollinearity in linear

regression. For instance, consider a feature matrix ˆ̂X ∈ RE×R

and the label matrix ˆ̂W ∈ RE×S and the coefficient matrix
Q ∈ RR×S that depicts the relationship between R samples

and S labels. The Ridge regression is

ˆ̂
Q = argmax

Q

(
‖
ˆ̂
W−

ˆ̂
XQ‖22 +

ˆ̂
λ‖Q‖22

)
=

(
ˆ̂
X
ˆ̂
XT
+
ˆ̂
λI
)−1
ˆ̂
XT ˆ̂W (2)

Here, I ∈ RE×E is the identity matrix, ˆ̂λ > 0 represents the
parameter that regularizes the coefficients so that the opti-
mization function is penalized when the coefficients take big
values. It is essential to highlight that the coefficient matrix
Q produced by ridge regression utilizing training data might
reflect the relevance of features. The higher the significance
of feature a in predicting the label b, the larger the value
of Qa×b.

B. BASIC DEFINITIONS
Definition 3 ([20]): The q-rung orthopair fuzzy set

(q-ROFS) ˆ̂A on a universe of discourse ˆ̂Z is given as ˆ̂A =

{
ˆ̂X , ˆ̂µ ˆ̂A(

ˆ̂X ), ˆ̂ν ˆ̂A(
ˆ̂X )| ˆ̂X ∈

ˆ̂Z }, where the membership and

non-membership degree of the value ˆ̂X ∈ [0, 1] is denoted

through the functions ˆ̂µ ˆ̂A :
ˆ̂Z → [0, 1] and ˆ̂ν ˆ̂A :

ˆ̂Z →

[0, 1] that satisfy the conditions ˆ̂µq
ˆ̂A
+ ˆ̂µ

q
ˆ̂A
≤ 1 for all

ˆ̂X ∈ [0, 1]. The degree of indeterminacy is given as ˆ̂π ˆ̂A =[
ˆ̂µ
q
ˆ̂A
+ ˆ̂ν

q
ˆ̂A
− ˆ̂µ

q
ˆ̂A
ˆ̂ν
q
ˆ̂A

](1/q)
.

Definition 4 ([24]): The dual hesitant q-rung orthopair

fuzzy set (DHq-ROFS) ˆ̂K on a universe of discourse ˆ̂Z is

defined as ˆ̂K = { ˆ̂X , ˆ̂G ˆ̂K (
ˆ̂X ), ˆ̂F ˆ̂K (

ˆ̂X )| ˆ̂X ∈ ˆ̂Z } such that the
possible degree of membership and non-membership values

of the variable ˆ̂X ∈ ˆ̂Z given through the sets ˆ̂G ˆ̂K (
ˆ̂X ) and

ˆ̂F ˆ̂K (
ˆ̂X ) with the values in the interval [0, 1]. Also, for 0 ≤

ˆ̂µ ˆ̂G
, ˆ̂ν ˆ̂G

≤ 1 for ˆ̂µ ˆ̂G
∈
ˆ̂G ˆ̂K and ˆ̂ν ˆ̂F

∈
ˆ̂F ˆ̂K , the condi-

tion

(
max

ˆ̂µ ˆ̂G
∈
ˆ̂G ˆ̂K
{ ˆ̂µ ˆ̂G
}

)q
+

(
max

ˆ̂ν ˆ̂F
∈
ˆ̂F ˆ̂K
{ ˆ̂ν ˆ̂F
}

)q
≤ 1. The

dual hesitant q-rung orthopair fuzzy number (DHq-ROFN) is

given by 〈 ˆ̂G ˆ̂K (
ˆ̂X ), ˆ̂F ˆ̂K (

ˆ̂X )〉.

Definition 5 ([24]): Let us consider a DHq-ROFN ˆ̂K =

〈
ˆ̂G ˆ̂K (
ˆ̂X ), ˆ̂F ˆ̂K (

ˆ̂X )〉. The score function of this DHq-ROFN is
given as

ˆ̂S( ˆ̂K ) =
1
2

1+
1
l ˆ̂G

∑
ˆ̂µ ˆ̂G
∈
ˆ̂G ˆ̂K

ˆ̂µ ˆ̂G
−

1
l ˆ̂F

∑
ˆ̂ν ˆ̂F
∈
ˆ̂F ˆ̂K

ˆ̂ν ˆ̂F

 (3)

The Accuracy function is given as

ˆ̂A( ˆ̂K ) =

 1
l ˆ̂G

∑
ˆ̂µ ˆ̂G
∈
ˆ̂G ˆ̂K

ˆ̂µ ˆ̂G
+

1
l ˆ̂F

∑
ˆ̂ν ˆ̂F
∈
ˆ̂F ˆ̂K

ˆ̂ν ˆ̂F

 (4)
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where the values l ˆ̂G
and l ˆ̂F

denote the number of elements in
ˆ̂G ˆ̂K and ˆ̂F ˆ̂K respectively.

Definition 6 ([24]): The ordering of two DHq-ROFNs ˆ̂K 1

and ˆ̂K 2 can be carried on using the score function as follows:

•
ˆ̂S( ˆ̂K 1) <

ˆ̂S( ˆ̂K 2) implies ˆ̂K 1 <
ˆ̂K 2

•
ˆ̂S( ˆ̂K 1) >

ˆ̂S( ˆ̂K 2) implies ˆ̂K 1 >
ˆ̂K 2

•
ˆ̂S( ˆ̂K 1) =

ˆ̂S( ˆ̂K 2) implies

- - ˆ̂A( ˆ̂K 1) <
ˆ̂A( ˆ̂K 2) implies ˆ̂K 1 <

ˆ̂K 2

- - ˆ̂A( ˆ̂K 1) >
ˆ̂A( ˆ̂K 2) implies ˆ̂K 1 >

ˆ̂K 2

- - ˆ̂A( ˆ̂K 1) =
ˆ̂A( ˆ̂K 2) implies ˆ̂K 1 =

ˆ̂K 2

III. DUAL HESITANT Q-RUNG ORTHOPAIR FUZZY DOMBI
AGGREGATION OPERATORS
A. DOMBI OPERATORS
Definition 7: The Dombi operations between any two real

numbers ˆ̂α and ˆ̂β such as the Dombi t-norm, ˆ̂T D and

t-conorm, ˆ̂SD are defined as

ˆ̂T D = 1−
1

1+

( ˆ̂α

1−ˆ̂α

) ˆ̂τ
+

(
ˆ̂
β

1− ˆ̂β

) ˆ̂τ 1
ˆ̂τ

ˆ̂SD =
1

1+

( 1−ˆ̂α
ˆ̂α

) ˆ̂τ
+

(
1− ˆ̂β
ˆ̂
β

) ˆ̂τ 1
ˆ̂τ

where
(
ˆ̂α,
ˆ̂
β
)
∈ [0, 1]× [0, 1] and ˆ̂τ > 0.

Definition 8: Basic Dombi operations on any two DHq-

ROFNs ˆ̂K 1 and
ˆ̂K 2 can be given as follows

1)

ˆ̂K 1 ⊕D
ˆ̂K 2

=


∪d=1,2 ˆ̂µd ∈

ˆ̂G ˆ̂K

 q

√√√√√√√√√
1−

1

1+

( ˆ̂µ
q
ˆ̂K1

1− ˆ̂µq
ˆ̂K1

) ˆ̂τ
+

(
ˆ̂µ
q
ˆ̂K2

1− ˆ̂µq
ˆ̂K2

) ˆ̂τ
1
ˆ̂τ


,

∪d=1,2 ˆ̂νd ∈
ˆ̂F ˆ̂K

 q

√√√√√√√√√
1

1+

( 1−ˆ̂νq
ˆ̂K1

ˆ̂ν
q
ˆ̂K1

) ˆ̂τ
+

(
1−ˆ̂νq

ˆ̂K2
ˆ̂ν
q
ˆ̂K2

) ˆ̂τ
1
ˆ̂τ





2)

ˆ̂K 1 ⊗D
ˆ̂K 2

=


∪d=1,2 ˆ̂µd ∈

ˆ̂G ˆ̂K

 q

√√√√√√√√√
1

1+

( 1− ˆ̂µq
ˆ̂K1

ˆ̂µ
q
ˆ̂K1

) ˆ̂τ
+

(
1− ˆ̂µq

ˆ̂K2
ˆ̂µ
q
ˆ̂K2

) ˆ̂τ
1
ˆ̂τ


,

∪d=1,2 ˆ̂νd ∈
ˆ̂F ˆ̂K q

√√√√√√√√√
1−

1

1+

( ˆ̂ν
q
ˆ̂K1

1−ˆ̂νq
ˆ̂K1

) ˆ̂τ
+

(
ˆ̂ν
q
ˆ̂K2

1−ˆ̂νq
ˆ̂K2

) ˆ̂τ
1
ˆ̂τ





3)

ˆ̂
θ
ˆ̂K

=


∪
ˆ̂µd∈
ˆ̂G ˆ̂K

 q

√√√√√√√√
1−

1

1+

 ˆ̂θ ( ˆ̂µ
q
ˆ̂K

1− ˆ̂µq
ˆ̂K

) ˆ̂τ
1
ˆ̂τ


∪
ˆ̂νd∈
ˆ̂F ˆ̂K
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 q

√√√√√√√√
1

1+

 ˆ̂θ ( 1−ˆ̂νq
ˆ̂K

ˆ̂ν
q
ˆ̂K

) ˆ̂τ
1
ˆ̂τ




,
ˆ̂
θ > 0

4)

ˆ̂K
ˆ̂
θ

=


∪
ˆ̂µd∈
ˆ̂G ˆ̂K

 q

√√√√√√√√
1

1+

 ˆ̂θ ( 1− ˆ̂µq
ˆ̂K

ˆ̂µ
q
ˆ̂K

) ˆ̂τ
1
ˆ̂τ


,

∪
ˆ̂νd∈
ˆ̂F ˆ̂K q

√√√√√√√√
1−

1

1+

 ˆ̂θ ( ˆ̂ν
q
ˆ̂K

1−ˆ̂νq
ˆ̂K

) ˆ̂τ
1
ˆ̂τ




,
ˆ̂
θ > 0

Theorem 1: The basic operations using Dombi operators

for the two DHq-ROFNs ˆ̂K 1 and ˆ̂K 2 given in definition 8
satisfy the closure property.

Proof:

1) To prove the closure property of ˆ̂K 1⊕D
ˆ̂K 2, it is enough

if we prove that the values

q

√√√√√√√√√
1−

1

1+

( ˆ̂µ
q
ˆ̂K1

1− ˆ̂µq
ˆ̂K1

) ˆ̂τ
+

(
ˆ̂µ
q
ˆ̂K2

1− ˆ̂µq
ˆ̂K2

) ˆ̂τ
1
ˆ̂τ

∈ [0, 1]

and

q

√√√√√√√√√
1

1+

( 1−ˆ̂νq
ˆ̂K1

ˆ̂ν
q
ˆ̂K1

) ˆ̂τ
+

(
1−ˆ̂νq

ˆ̂K2
ˆ̂ν
q
ˆ̂K2

) ˆ̂τ
1
ˆ̂τ

∈ [0, 1].

First, let us consider the membership term. For
ˆ̂µ ˆ̂K1

, ˆ̂µ ˆ̂K2
∈ [0, 1], it is evident that


 ˆ̂µ

q
ˆ̂K1

1− ˆ̂µq
ˆ̂K1


ˆ̂τ

+

 ˆ̂µ
q
ˆ̂K2

1− ˆ̂µq
ˆ̂K2


ˆ̂τ


1
ˆ̂τ

≥ 0

From this, we can easily conclude that,

q

√√√√√√√√√
1−

1

1+

( ˆ̂µ
q
ˆ̂K1

1− ˆ̂µq
ˆ̂K1

) ˆ̂τ
+

(
ˆ̂µ
q
ˆ̂K2

1− ˆ̂µq
ˆ̂K2

) ˆ̂τ
1
ˆ̂τ

∈ [0, 1]

In a similar manner, we can prove for the non-
membership term also.

2) The closure property of ˆ̂K 1⊗D
ˆ̂K 2 can be proved similar

to the proof of ˆ̂K 1 ⊕D
ˆ̂K 2.

3) The closure property of ˆ̂θ ˆ̂K can be proved similar to the

proof of ˆ̂K 1 ⊕D
ˆ̂K 2.

4) The closure property of ˆ̂K
ˆ̂
θ

can be proved similar to the

proof of ˆ̂K 1 ⊕D
ˆ̂K 2.

�

B. DHq-ROFWDA
Definition 9: Consider a collection of DHq-ROFNs
ˆ̂Km = 〈

ˆ̂G ˆ̂Km
( ˆ̂X ), ˆ̂F ˆ̂Km

( ˆ̂X )〉, (m = 1, 2, · · · , v). The weighted
Dombi arithmetic aggregation of these DHq-ROFNs with
ˆ̂τ > 0 is given as

DHq− ROFWDA
(
ˆ̂K1,
ˆ̂K2, · · · ,

ˆ̂Kv
)
= ⊕

v
m=1
ˆ̂ρm
ˆ̂Km (5)

where ˆ̂ρ represents the weight vector with elements ˆ̂ρ =

{ ˆ̂ρ1, ˆ̂ρ2, · · · , ˆ̂ρv} that satisfies the condition
v∑

m=1

ˆ̂ρm = 1.

Theorem 2: Consider a collection ˆ̂Km = 〈
ˆ̂G ˆ̂Km

( ˆ̂X ),
ˆ̂F ˆ̂Km

( ˆ̂X )〉, (m = 1, 2, · · · , v) with weight vector ˆ̂ρ =

{ ˆ̂ρ1, ˆ̂ρ2, · · · , ˆ̂ρv} that satisfies the condition
v∑

m=1

ˆ̂ρm = 1.

Then, the value obtained after DHq-ROFWDA is again a
DHq-ROFN. Also, DHq-ROFWDA can be written as

DHq− ROFWDA

= 〈∪d=1,2,··· ,v ˆ̂µd ∈
ˆ̂G ˆ̂K q

√√√√√√√√√
1−

1

1+

 v∑
m=1

ˆ̂ρm

(
ˆ̂µ
q
ˆ̂Km

1− ˆ̂µq
ˆ̂Km

) ˆ̂τ
1
ˆ̂τ


,

∪d=1,2,··· ,v ˆ̂νd ∈
ˆ̂F ˆ̂K
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 q

√√√√√√√√√
1

1+

 v∑
m=1

ˆ̂ρm

(
1−ˆ̂νq

ˆ̂Km
ˆ̂ν
q
ˆ̂Km

) ˆ̂τ
1
ˆ̂τ


〉q (6)

Proof: Mathematical induction is used to prove this
assertion. It is obvious that the result is true for m = 1.
Suppose the result holds for m = v− 1, i.e.,

DHq− ROFWDA
(
ˆ̂K1,
ˆ̂K2, · · · ,

ˆ̂Kv−1
)

= 〈∪d=1,2,··· ,v−1 ˆ̂µd ∈
ˆ̂G ˆ̂K q

√√√√√√√√√
1−

1

1+

 v−1∑
m=1

ˆ̂ρm

(
ˆ̂µ
q
ˆ̂Km

1− ˆ̂µq
ˆ̂Km

) ˆ̂τ
1
ˆ̂τ


,

∪d=1,2,··· ,v−1 ˆ̂νd ∈
ˆ̂F ˆ̂K q

√√√√√√√√√
1

1+

 v−1∑
m=1

ˆ̂ρm

(
1−ˆ̂νq

ˆ̂Km
ˆ̂ν
q
ˆ̂Km

) ˆ̂τ
1
ˆ̂τ


〉q

To prove that the result holds good for m = v, let us consider

DHq− ROFWDA
(
ˆ̂K1,
ˆ̂K2, · · · ,

ˆ̂Kv
)

= DHq− ROFWDA
(
ˆ̂K1,
ˆ̂K2, · · · ,

ˆ̂Kv−1
)
⊕D
ˆ̂ρv
ˆ̂Kv

ˆ̂a1 =

 v−1∑
m=1

ˆ̂ρm

 ˆ̂µ
q
ˆ̂Km

1− ˆ̂µq
ˆ̂Km


ˆ̂τ


1
ˆ̂τ

,

ˆ̂b1 =

 v−1∑
m=1

ˆ̂ρm

1− ˆ̂νq
ˆ̂Km

ˆ̂ν
q
ˆ̂Km


ˆ̂τ


1
ˆ̂τ

,

ˆ̂a2 =

 ˆ̂ρv
 ˆ̂µ

q
ˆ̂K v

1− ˆ̂µq
ˆ̂K v


ˆ̂τ


1
ˆ̂τ

,

ˆ̂b2 =

 ˆ̂ρv
1− ˆ̂νq

ˆ̂K v

ˆ̂ν
q
ˆ̂K v


ˆ̂τ


1
ˆ̂τ

DHq− ROFWDA
(
ˆ̂K1,
ˆ̂K2, · · · ,

ˆ̂Kv
)

= 〈∪d=1,2,··· ,v−1 ˆ̂µd ∈
ˆ̂G ˆ̂K

[
q

√
1−

1

1+ ˆ̂a1

]
,

∪d=1,2,··· ,v−1 ˆ̂νd ∈
ˆ̂F ˆ̂K

[
q

√
1

1+ ˆ̂b1

]
〉q ⊕D

〈∪
ˆ̂µv∈
ˆ̂G ˆ̂K

[
q

√
1−

1

1+ ˆ̂a2

]
, ∪
ˆ̂νv∈
ˆ̂F ˆ̂K

[
q

√
1

1+ ˆ̂b2

]
〉q

= 〈∪d=1,2,··· ,v ˆ̂µd ∈
ˆ̂G ˆ̂K

[
q

√
1−

1

1+ ( ˆ̂a1 + ˆ̂a2)

]
,

∪d=1,2,··· ,v ˆ̂νd ∈
ˆ̂F ˆ̂K

[
q

√
1

1+ ( ˆ̂b1 +
ˆ̂b2)

]
〉q

Hence proved. �

Theorem 3: Consider a set of DHq-ROFNs ˆ̂Km =

〈
ˆ̂G ˆ̂Km

( ˆ̂X ), ˆ̂F ˆ̂Km
( ˆ̂X )〉, (m = 1, 2, · · · , v). The following prop-

erties are satisfied by the DHq-ROFWDA operator:

1) Idempotency Let us assume that ˆ̂Km =
ˆ̂K , (m =

1, 2, · · · , v), then

DHq− ROFWDA
(
ˆ̂K1,
ˆ̂K2, · · · ,

ˆ̂Kv
)
=
ˆ̂K

2) Monotonicity Suppose ˆ̂K ′m = 〈
ˆ̂G′
ˆ̂K ′m
( ˆ̂X ),

ˆ̂F ′
ˆ̂K ′m
( ˆ̂X )〉, (m = 1, 2, · · · , v) be another set of

DHq-ROFNs with the condition ˆ̂µd ≤ ˆ̂µ
′

d and ˆ̂νd ≥
ˆ̂ν
′

d , we have

DHq− ROFWDA
(
ˆ̂K1,
ˆ̂K2, · · · ,

ˆ̂Kv
)

≤ DHq− ROFWDA
(
ˆ̂K ′1,
ˆ̂K ′2, · · · ,

ˆ̂K ′v
)

3) Boundedness

K̂− ≤ DHq− ROFWDA
(
ˆ̂K1,
ˆ̂K2, · · · ,

ˆ̂Kv
)
≤ K̂+

where K̂− = 〈 ˆ̂K−, ˆ̂K
′
+
〉q, K̂+ = 〈

ˆ̂K+, ˆ̂K
′
−
〉q,
ˆ̂K− =

∪
ˆ̂µd∈
ˆ̂G ˆ̂K

min
d
{ ˆ̂µd },

ˆ̂K+ = ∪
ˆ̂µd∈
ˆ̂G ˆ̂K

max
d
{ ˆ̂µd },

ˆ̂K
′
−
=

∪ ˆ̂
ν′d∈

ˆ̂G′ ˆ̂K
min
d
{
ˆ̂
ν′d },
ˆ̂K
′
+
= ∪ ˆ̂

ν′d∈
ˆ̂G′ ˆ̂
K ′

max
d
{
ˆ̂
ν′d }

Proof:

1) Suppose that ˆ̂Km =
ˆ̂K , (m = 1, 2, · · · , v), then

DHq− ROFWDA
(
ˆ̂K1,
ˆ̂K2, · · · ,

ˆ̂Kv
)

= ⊕
v
Dm=1
ˆ̂ρm
ˆ̂K

=
ˆ̂K
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2) Two sets of DHq-ROFNs ˆ̂Km = 〈
ˆ̂G ˆ̂Km

( ˆ̂X ), ˆ̂F ˆ̂Km
( ˆ̂X )〉q,

ˆ̂K ′m = 〈
ˆ̂G′
ˆ̂K ′m
( ˆ̂X ), ˆ̂F ′

ˆ̂K ′m
( ˆ̂X )〉, (m = 1, 2, · · · , v) are

considered with the condition ˆ̂µd ≤ ˆ̂µ
′

d and ˆ̂νd ≥ ˆ̂ν
′

d .
First, let us take the membership term,

1+

 v∑
m=1

ˆ̂ρm

 ˆ̂µ
q
ˆ̂Km

1− ˆ̂µq
ˆ̂Km


ˆ̂τ


1
ˆ̂τ

≤ 1+


v∑

m=1

ˆ̂ρm

 ˆ̂µ
′q
ˆ̂Km

1− ˆ̂µ
′q
ˆ̂Km


ˆ̂τ


1
ˆ̂τ

⇔

q

√√√√√√√√√
1−

1

1+

 v∑
m=1

ˆ̂ρm

(
ˆ̂µ
q
ˆ̂Km

1− ˆ̂µq
ˆ̂Km

) ˆ̂τ
1
ˆ̂τ

≤

q

√√√√√√√√√
1−

1

1+

 v∑
m=1

ˆ̂ρm

 ˆ̂µ
′q
ˆ̂Km

1− ˆ̂µ
′q
ˆ̂Km

 ˆ̂τ


1
ˆ̂τ

Next, consider the non-membership term

1+

 v∑
m=1

ˆ̂ρm

(
1−ˆ̂νq

ˆ̂Km
ˆ̂ν
q
ˆ̂Km

) ˆ̂τ
1
ˆ̂τ

≥ 1+

 v∑
m=1

ˆ̂ρm

 1−ˆ̂ν
′q
ˆ̂Km

ˆ̂ν
′q
ˆ̂Km

 ˆ̂τ


1
ˆ̂τ

⇔

q

√√√√√√√
1

1+

 v∑
m=1

ˆ̂ρm

 1−ˆ̂νq
ˆ̂Km

ˆ̂ν
q
ˆ̂Km

 ˆ̂τ


1
ˆ̂τ

≥

q

√√√√√√√
1

1+

 v∑
m=1

ˆ̂ρm

 1− ˆ̂µ
′q
ˆ̂Km

ˆ̂ν
′q
ˆ̂Km


ˆ̂τ


1
ˆ̂τ

3) The proof is similar to (2). Hence omitted.
�

Example 1: Consider two DHq-ROFNs ˆ̂K1 = 〈{0.4935,

0.5035, 0.5135}, {0.4875, 0.4975, 0.5075}〉 and ˆ̂K2 =

〈{0.4960, 0.5060, 0.5160}, {0.4850, 0.4950, 0.5050}〉. Their

aggregation using equation (6) for the weight vector ˆ̂O =
{0.3, 0.7} and ˆ̂τ = 3 are

DHq− ROFWDA

= 〈{0.4953, 0.5406, 0.5683, 0.5878,

0.6033, 0.6163, 0.6273, 0.6370, 0.6457}

{0.4857, 0.4450, 0.4224, 0.4069, 0.3955,

0.3865, 0.3790, 0.3728, 0.3675}〉

C. DHq-ROFWDG
Definition 10: Consider a collection of DHq-ROFNs
ˆ̂Km = 〈

ˆ̂G ˆ̂Km
( ˆ̂X ), ˆ̂F ˆ̂Km

( ˆ̂X )〉, (m = 1, 2, · · · , v). The weighted
Dombi geometric aggregation of these DHq-ROFNs with
ˆ̂τ > 0 is given as

DHq− ROFWDG
(
ˆ̂K1,
ˆ̂K2, · · · ,

ˆ̂Kv
)
= ⊗

v
m=1
ˆ̂ρm
ˆ̂Km (7)

where ˆ̂ρ represents the weight vector with elements ˆ̂ρ =

{ ˆ̂ρ1, ˆ̂ρ2, · · · , ˆ̂ρv} that satisfies the condition
v∑

m=1

ˆ̂ρm = 1.

Theorem 4: Consider a collection ˆ̂Km
= 〈
ˆ̂G ˆ̂Km

( ˆ̂X ), ˆ̂F ˆ̂Km
( ˆ̂X )〉, (m = 1, 2, · · · , v) with weight vector

ˆ̂ρ = { ˆ̂ρ1, ˆ̂ρ2, · · · , ˆ̂ρv} that satisfies the condition
v∑

m=1

ˆ̂ρm = 1.

Then, the value obtained after DHq-ROFWDG is again a
DHq-ROFN. Also, DHq-ROFWDG can be written as

DHq− ROFWDG

= 〈∪d=1,2,··· ,v ˆ̂µd ∈
ˆ̂G ˆ̂K q

√√√√√√√√√
1

1+

 v∑
m=1

ˆ̂ρm

(
1− ˆ̂µq

ˆ̂Km
ˆ̂µ
q
ˆ̂Km

) ˆ̂τ
1
ˆ̂τ


,

∪d=1,2,··· ,v ˆ̂νd ∈
ˆ̂F ˆ̂K q

√√√√√√√√√
1−

1

1+

 v∑
m=1

ˆ̂ρm

(
ˆ̂ν
q
ˆ̂Km

1−ˆ̂νq
ˆ̂Km

) ˆ̂τ
1
ˆ̂τ


〉q (8)

Theorem 5: Consider a set of DHq-ROFNs ˆ̂Km =

〈
ˆ̂G ˆ̂Km

( ˆ̂X ), ˆ̂F ˆ̂Km
( ˆ̂X )〉, (m = 1, 2, · · · , v). The following prop-

erties are satisfied by the DHq-ROFWDG operator:

1) Idempotency Let us assume that ˆ̂Km =
ˆ̂K , (m =

1, 2, · · · , v), then

DHq− ROFWDG
(
ˆ̂K1,
ˆ̂K2, · · · ,

ˆ̂Kv
)
=
ˆ̂K
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2) Monotonicity Suppose ˆ̂K ′m = 〈
ˆ̂G′
ˆ̂K ′m
( ˆ̂X ), ˆ̂F ′

ˆ̂K ′m
( ˆ̂X )〉,

(m = 1, 2, · · · , v) be another set of DHq-ROFNs with
the condition ˆ̂µd ≤ ˆ̂µ

′

d and ˆ̂νd ≥ ˆ̂ν
′

d , we have

DHq− ROFWDG
(
ˆ̂K1,
ˆ̂K2, · · · ,

ˆ̂Kv
)

≤ DHq− ROFWDG
(
ˆ̂K ′1,
ˆ̂K ′2, · · · ,

ˆ̂K ′v
)

3) Boundedness

K̂− ≤ DHq− ROFWDG
(
ˆ̂K1,
ˆ̂K2, · · · ,

ˆ̂Kv
)
≤ K̂+

where K̂− = 〈 ˆ̂K−, ˆ̂K
′
+
〉q, K̂+ = 〈

ˆ̂K+, ˆ̂K
′
−
〉q,
ˆ̂K− =

∪
ˆ̂µd∈
ˆ̂G ˆ̂K

min
d
{ ˆ̂µd },

ˆ̂K+ = ∪
ˆ̂µd∈
ˆ̂G ˆ̂K

max
d
{ ˆ̂µd },

ˆ̂K
′
−
=

∪ ˆ̂
ν′d∈

ˆ̂G′ ˆ̂K
min
d
{
ˆ̂
ν′d },
ˆ̂K
′
+
= ∪ ˆ̂

ν′d∈
ˆ̂G′ ˆ̂
K ′

max
d
{
ˆ̂
ν′d }

Example 2: Consider two DHq-ROFNs ˆ̂K1= 〈{0.4935,

0.5035, 0.5135}, {0.4875, 0.4975, 0.5075}〉 and ˆ̂K2 =

〈{0.4960, 0.5060, 0.5160}, {0.4850, 0.4950, 0.5050}〉. Their

aggregation using equation (8), for the weight vector ˆ̂O =
{0.3, 0.7} and ˆ̂τ = 3 are

DHq− ROFWDG

= 〈{0.4952, 0.4542, 0.4314, 0.4156,

0.4041, 0.3950, 0.3873, 0.3810, 0.3757}

{0.4858, 0.5309, 0.5587, 0.5781,

0.5936, 0.6066, 0.6176, 0.6274, 0.6361}〉

D. DHq-ROFOWDA
Definition 11: Consider a collection of DHq-ROFNs
ˆ̂Km = 〈

ˆ̂G ˆ̂Km
( ˆ̂X ), ˆ̂F ˆ̂Km

( ˆ̂X )〉, (m = 1, 2, · · · , v). The
ordered weighted Dombi arithmetic aggregation of these
DHq-ROFNs with ˆ̂τ > 0 is given as

DHq− ROFOWDA
(
ˆ̂K1,
ˆ̂K2, · · · ,

ˆ̂Kv
)
= ⊕

v
m=1
ˆ̂ρm
ˆ̂K ˆ̂σ (m)

(9)

where ˆ̂ρ represents the weight vector with elements ˆ̂ρ =

{ ˆ̂ρ1, ˆ̂ρ2, · · · , ˆ̂ρv} that satisfies the condition
v∑

m=1

ˆ̂ρm = 1 and

ˆ̂σ denotes the permutation of m = 1, 2, · · · , v such that
ˆ̂K ˆ̂σ (m−1) ≥

ˆ̂K ˆ̂σ (m).

Theorem 6: Consider a collection ˆ̂Km
= 〈
ˆ̂G ˆ̂Km

( ˆ̂X ), ˆ̂F ˆ̂Km
( ˆ̂X )〉, (m = 1, 2, · · · , v) with weight vector

ˆ̂ρ = { ˆ̂ρ1, ˆ̂ρ2, · · · , ˆ̂ρv} that satisfies the condition
v∑

m=1

ˆ̂ρm = 1.

Then, the value obtained after DHq-ROFOWDA is again a
DHq-ROFN. Also, DHq-ROFOWDA can be written as

DHq− ROFOWDA

= 〈∪d=1,2,··· ,v ˆ̂µd ∈
ˆ̂G ˆ̂K q

√√√√√√√√√√
1−

1

1+

 v∑
m=1

ˆ̂ρm

 ˆ̂µ
q
ˆ̂K
ˆ̂σ (m)

1− ˆ̂µq
ˆ̂K
ˆ̂σ (m)


ˆ̂τ


1
ˆ̂τ


,

∪d=1,2,··· ,v ˆ̂νd ∈
ˆ̂F ˆ̂K q

√√√√√√√√√√
1

1+

 v∑
m=1

ˆ̂ρm

 1−ˆ̂νq
ˆ̂K
ˆ̂σ (m)

ˆ̂ν
q
ˆ̂K
ˆ̂σ (m)


ˆ̂τ


1
ˆ̂τ


〉q (10)

Theorem 7: Consider a set of DHq-ROFNs ˆ̂Km =

〈
ˆ̂G ˆ̂Km

( ˆ̂X ), ˆ̂F ˆ̂Km
( ˆ̂X )〉, (m = 1, 2, · · · , v). The following prop-

erties are satisfied by the DHq-ROFOWDA operator:

1) Idempotency Let us assume that ˆ̂Km =
ˆ̂K , (m =

1, 2, · · · , v), then

DHq− ROFOWDA
(
ˆ̂K1,
ˆ̂K2, · · · ,

ˆ̂Kv
)
=
ˆ̂K

2) Monotonicity Suppose ˆ̂K ′m = 〈
ˆ̂G′
ˆ̂K ′m
( ˆ̂X ), ˆ̂F ′

ˆ̂K ′m
( ˆ̂X )〉,

(m = 1, 2, · · · , v) be another set of DHq-ROFNs with
the condition ˆ̂µd ≤ ˆ̂µ

′

d and ˆ̂νd ≥ ˆ̂ν
′

d , we have

DHq− ROFOWDA
(
ˆ̂K1,
ˆ̂K2, · · · ,

ˆ̂Kv
)

≤ DHq− ROFOWDA
(
ˆ̂K ′1,
ˆ̂K ′2, · · · ,

ˆ̂K ′v
)

3) Boundedness

K̂− ≤ DHq− ROFOWDA
(
ˆ̂K1,
ˆ̂K2, · · · ,

ˆ̂Kv
)
≤ K̂+

where K̂− = 〈 ˆ̂K−, ˆ̂K
′
+
〉q, K̂+ = 〈

ˆ̂K+, ˆ̂K
′
−
〉q,
ˆ̂K− =

∪
ˆ̂µd∈
ˆ̂G ˆ̂K

min
d
{ ˆ̂µd },

ˆ̂K+ = ∪
ˆ̂µd∈
ˆ̂G ˆ̂K

max
d
{ ˆ̂µd },

ˆ̂K
′
−
=

∪ ˆ̂
ν′d∈

ˆ̂G′ ˆ̂K
min
d
{
ˆ̂
ν′d },
ˆ̂K
′
+
= ∪ ˆ̂

ν′d∈
ˆ̂G′ ˆ̂
K ′

max
d
{
ˆ̂
ν′d }

Example 3: Consider two DHq-ROFNs ˆ̂K1 = 〈{0.4935,

0.5035, 0.5135}, {0.4875, 0.4975, 0.5075}〉 and ˆ̂K2 =

〈{0.4960, 0.5060, 0.5160}, {0.4850, 0.4950, 0.5050}〉. Their

aggregation using equation (10) for the weight vector ˆ̂O =
{0.3, 0.7} and ˆ̂τ = 3 are

DHq− ROFOWDA
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= 〈{0.4953, 0.5406, 0.5683, 0.5878,

0.6033, 0.6163, 0.6273, 0.6370, 0.6457}

{0.4857, 0.4450, 0.4224, 0.4069,

0.3955, 0.3865, 0.3790, 0.3728, 0.3675}〉

E. DHq-ROFOWDG
Definition 12: Consider a collection of DHq-ROFNs
ˆ̂Km = 〈

ˆ̂G ˆ̂Km
( ˆ̂X ), ˆ̂F ˆ̂Km

( ˆ̂X )〉, (m = 1, 2, · · · , v). The
ordered weighted Dombi geometric aggregation of these
DHq-ROFNs with ˆ̂τ > 0 is given as

DHq− ROFOWDG
(
ˆ̂K1,
ˆ̂K2, · · · ,

ˆ̂Kv
)
= ⊗

v
m=1
ˆ̂ρm
ˆ̂K ˆ̂σ (m)

(11)

where ˆ̂ρ represents the weight vector with elements ˆ̂ρ =

{ ˆ̂ρ1, ˆ̂ρ2, · · · , ˆ̂ρv} that satisfies the condition
v∑

m=1

ˆ̂ρm = 1 and

ˆ̂σ denotes the permutation of m = 1, 2, · · · , v such that
ˆ̂K ˆ̂σ (m−1) ≥

ˆ̂K ˆ̂σ (m).

Theorem 8: Consider a collection ˆ̂Km = 〈
ˆ̂G ˆ̂Km

( ˆ̂X ),
ˆ̂F ˆ̂Km

( ˆ̂X )〉, (m = 1, 2, · · · , v) with weight vector ˆ̂ρ =

{ ˆ̂ρ1, ˆ̂ρ2, · · · , ˆ̂ρv} that satisfies the condition
v∑

m=1

ˆ̂ρm = 1.

Then, the value obtained after DHq-ROFOWDG is again a
DHq-ROFN. Also, DHq-ROFOWDG can be written as

DHq− ROFOWDG

= 〈∪d=1,2,··· ,v ˆ̂µd ∈
ˆ̂G ˆ̂K q

√√√√√√√√√√
1

1+

 v∑
m=1

ˆ̂ρm

 1− ˆ̂µq
ˆ̂K
ˆ̂σ (m)

ˆ̂µ
q
ˆ̂K
ˆ̂σ (m)


ˆ̂τ


1
ˆ̂τ


,

∪d=1,2,··· ,v ˆ̂νd ∈
ˆ̂F ˆ̂K q

√√√√√√√√√√
1−

1

1+

 v∑
m=1

ˆ̂ρm

 ˆ̂ν
q
ˆ̂K
ˆ̂σ (m)

1−ˆ̂νq
ˆ̂K
ˆ̂σ (m)


ˆ̂τ


1
ˆ̂τ


〉q (12)

Theorem 9: Consider a set of DHq-ROFNs ˆ̂Km =

〈
ˆ̂G ˆ̂Km

( ˆ̂X ), ˆ̂F ˆ̂Km
( ˆ̂X )〉, (m = 1, 2, · · · , v). The following prop-

erties are satisfied by the DHq-ROFOWDG operator:

1) Idempotency Let us assume that ˆ̂Km =
ˆ̂K , (m =

1, 2, · · · , v), then

DHq− ROFOWDG
(
ˆ̂K1,
ˆ̂K2, · · · ,

ˆ̂Kv
)
=
ˆ̂K

2) Monotonicity Suppose ˆ̂K ′m = 〈
ˆ̂G′
ˆ̂K ′m
( ˆ̂X ), ˆ̂F ′

ˆ̂K ′m
( ˆ̂X )〉,

(m = 1, 2, · · · , v) be another set of DHq-ROFNs
with the condition ˆ̂µd ≤ ˆ̂µ

′

d and ˆ̂νd ≥ ˆ̂ν
′

d ,
we have

DHq− ROFOWDG
(
ˆ̂K1,
ˆ̂K2, · · · ,

ˆ̂Kv
)

≤ DHq− ROFOWDG
(
ˆ̂K ′1,
ˆ̂K ′2, · · · ,

ˆ̂K ′v
)

3) Boundedness

K̂− ≤ DHq− ROFOWDG
(
ˆ̂K1,
ˆ̂K2, · · · ,

ˆ̂Kv
)
≤ K̂+

where K̂− = 〈 ˆ̂K−, ˆ̂K
′
+
〉q, K̂+ = 〈

ˆ̂K+, ˆ̂K
′
−
〉q,
ˆ̂K− =

∪
ˆ̂µd∈
ˆ̂G ˆ̂K

min
d
{ ˆ̂µd },

ˆ̂K+ = ∪
ˆ̂µd∈
ˆ̂G ˆ̂K

max
d
{ ˆ̂µd },

ˆ̂K
′
−
=

∪ ˆ̂
ν′d∈

ˆ̂G′ ˆ̂K
min
d
{
ˆ̂
ν′d },
ˆ̂K
′
+
= ∪ ˆ̂

ν′d∈
ˆ̂G′ ˆ̂
K ′

max
d
{
ˆ̂
ν′d }

Example 4: Consider two DHq-ROFNs ˆ̂K1 = 〈{0.4935,

0.5035, 0.5135}, {0.4875, 0.4975, 0.5075}〉 and ˆ̂K2 =

〈{0.4960, 0.5060, 0.5160}, {0.4850, 0.4950, 0.5050}〉.
Their aggregation using equations (12) for the

weight vector ˆ̂O = {0.3, 0.7} and ˆ̂τ = 3
are

DHq− ROFOWDG

= 〈{0.4952, 0.4542, 0.4314, 0.4156,

0.4041, 0.3950, 0.3873, 0.3810, 0.3757}

{0.4858, 0.5309, 0.5587, 0.5781,

0.5936, 0.6066, 0.6176, 0.6274, 0.6361}〉

IV. PROPOSED METHODOLOGY
The methodology of the proposed technique is elucidated
in this section. The flow chart of the proposed algo-
rithm is provided in figure 1. The proposed method is
filter based which involves conversion of the multi-label
FS problem into a MCDM problem and using dual hesi-
tant q-rung orthopair fuzzy Dombi aggregation operators to
solve them.

A. ALGORITHM
In a multi-label data, there are features and label
matrix similar to the structure given
below

ˆ̂
X =


ˆ̂
X11

ˆ̂
X12 · · ·

ˆ̂
X1R

ˆ̂
X21

ˆ̂
X22 · · ·

ˆ̂
X2R

...
...

. . .
...

ˆ̂
XE1

ˆ̂
XE2 · · ·

ˆ̂
XER

 ,
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FIGURE 1. Flow chart of the proposed algorithm.

ˆ̂
W =


ˆ̂
W11

ˆ̂
W12 · · ·

ˆ̂
W1S

ˆ̂
W21

ˆ̂
W22 · · ·

ˆ̂
W2S

...
...

. . .
...

ˆ̂
WE1

ˆ̂
WE2 · · ·

ˆ̂
WES


Step 1: An empty vector is defined as the feature ranking

vector so that the features can be added to it.
Step 2: Ridge regression is used to determine the corre-

lation between the features and the labels. The
decision matrix is obtained as follows:

ˆ̂
Q =

(
ˆ̂
X
ˆ̂
XT
+
ˆ̂
λI
)−1
ˆ̂
XT ˆ̂W

=


ˆ̂
Q( ˆ̂X1,

ˆ̂
W1)

ˆ̂
Q( ˆ̂X1,

ˆ̂
W2) · · ·

ˆ̂
Q( ˆ̂X1,

ˆ̂
WS )

ˆ̂
Q( ˆ̂X2,

ˆ̂
W1)

ˆ̂
Q( ˆ̂X2,

ˆ̂
W2) · · ·

ˆ̂
Q( ˆ̂X2,

ˆ̂
WS )

...
...

. . .
...

ˆ̂
Q( ˆ̂XR,

ˆ̂
W1)

ˆ̂
Q( ˆ̂XR,

ˆ̂
W2) · · ·

ˆ̂
Q( ˆ̂XR,

ˆ̂
WS )



Algorithm 1 Proposed MCDM Methodology Using Dual
Hesitant q-Rung Orthopair Fuzzy Dombi Aggregation Oper-
ators
Input: R× S matrix and a 1× S weight vector

Output: ˆ̂Z vector of score values of the aggregated value

1:
ˆ̂
Z← ∅

2: [R, S]← size( ˆ̂Q)
3: The values are fuzzified using equations (13), (14).
4: The values are normalized.
5: Values are aggregated using the equations (6), (8), (10)

and (12).

6:
ˆ̂
Z vector is obtained using score function (3) for the
aggregated value.

Algorithm 2 The Proposed Multi-Label Feature Selection
Using Dual Hesitant q-Rung Orthopair Fuzzy Dombi Aggre-
gation Operators
Input: Feature matrix, target matrix, regularization parame-

ter.
Output: Ranking vector of features ˆ̂F.

1:
ˆ̂
F = ∅

2: The importance of each feature is obtained through the

coefficient matrix ˆ̂Q given in eq. (2).
3: for k = 1:S do
4:

ˆ̂
O =

ˆ̂
H( ˆ̂W(:, i))

5: end for
6: The weight vector is normalized ˆ̂O = ˆ̂O/sum( ˆ̂O)

7:
ˆ̂
Z vector of score values of the aggregated value from the
algorithm 1.

8: Values are aggregated using the equations (6), (8), (10)
and (12).

9:
ˆ̂
F =Rank the vectors based on score function in descend-
ing order.

Here, ˆ̂Q( ˆ̂Xa,
ˆ̂
Wb) denotes the importance of

the feature a to the label b and ˆ̂λ denotes
the regularization parameter which is assumed
as 10 after examining the data for multiple
values.

Step 3-7: The weight vector is calculated utilizing the infor-

mation entropy and its structure is given as in ˆ̂O
and in step 7, it is normalized.

ˆ̂
O =


ˆ̂
H( ˆ̂W(:, 1))
ˆ̂
H( ˆ̂W(:, 2))

...
ˆ̂
H( ˆ̂W(:, S))


Step 8: As we have obtained the decision matrix and

the weight vector, we proceed with the MCDM
methodology.
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1) Fuzzification: The obtained data is converted into
dual hesitant q-rung orthopair fuzzy set. The mem-
bership and non-membership values are obtained
using the sigmoidal function

ˆ̂µ ˆ̂
A
( ˆ̂X ) =

(
1

1+ exp−
ˆ̂t( ˆ̂b)−ˆ̂v

)
+ ˆ̂ε (13)

ˆ̂µ ˆ̂
A
( ˆ̂X ) = 1−

(
1

1+ exp−
ˆ̂t( ˆ̂b)−ˆ̂v

)
(14)

Here, ˆ̂ε � 1, ˆ̂v and ˆ̂t denote the distance
of the point from origin, steepness of the func-

tion respectively and ˆ̂b ∈
ˆ̂
A. Next, con-

vert them into triangular fuzzy set with equal
intervals. The final form as DHq-ROFN of the

crisp element is ˆ̂K = 〈 ˆ̂µ1, ˆ̂µ2, ˆ̂µ3, ˆ̂ν1, ˆ̂ν2, ˆ̂ν3〉q

that satisfies the condition

(
max

ˆ̂µ ˆ̂G
∈
ˆ̂G ˆ̂K
{ ˆ̂µ ˆ̂G
}

)q
+(

max
ˆ̂ν ˆ̂F
∈
ˆ̂F ˆ̂K
{ ˆ̂ν ˆ̂F
}

)q
≤ 1.

2) Normalization: As there are two types of criteria

namely the cost ˆ̂δc and benefit ˆ̂δb, it is essential to
normalize them into a single criterion which can be
done using the following

ˆ̂K

=

 ˆ̂K , if ˆ̂K ∈ ˆ̂δb,
ˆ̂K c
= 〈ˆ̂ν1, ˆ̂ν2, ˆ̂ν3, ˆ̂µ1, ˆ̂µ2, ˆ̂µ3〉, if ˆ̂K ∈ ˆ̂δc.

3) Aggregation: The values are aggregated using the
equations (6), (8), (10), (12) and the values are
ranked after the values obtained from the score
function (3).

V. EXPERIMENTAL STUDIES
In this section, we consider three multi-label FS algorithms
MLACO [36], BMFS [37] andMFS-MCDM [7] and compare
their performance with the proposed techniques. These use
different approaches such as ant colony optimization, bipar-
tite matching based strategy and MCDM approach.

A. DATASETS
The datasets considered here are 5 real world datasets
namely Scene, Image, Coffee, Enron and Medical. These
were obtained from Mulan (http://mulan.sourceforge.
net/datasets.html) and Meka (https://waikato.github.io/meka/
datasets/) repository.

B. EVALUATING THE PERFORMANCE
Accuracy, Average Precision, Ranking Loss, Coverage, One
Error [39] and Hamming Loss [40] are the performance
metrics considered for evaluating the performance of the
proposed methods and the existing methods. Suppose the test

set ˆ̂t = {( ˆ̂Xp,
ˆ̂w)p, p = 1, 2, · · · , z} where ˆ̂wp ⊆ L, t and

ˆ̂zp ⊆ L are the actual subset and predicted set to ˆ̂Xp. The
score given to label b for the sample a is given as F(a, b)
• Accuracy is the percentage of labels that are correctly
predicted.

Accuracy(ˆ̂t) =
1
z

z∑
p=1

| ˆ̂wp ∩
ˆ̂zp|

| ˆ̂wp ∪
ˆ̂zp|

• HammingLoss calculates the amount of times there had
been wrong classification of the instance-label pair.

HammingLoss(ˆ̂t) =
1
z

z∑
p=1

| ˆ̂wp1
ˆ̂zp|

L

• Ranking Loss calculates the average error while rank-
ing the sample label that takes the average fraction for
those pairs ordered in reverse.

RankingLoss(ˆ̂t) =
1
z

z∑
p=1

|
ˆ̂
Dp|

| ˆ̂wp||
ˆ̂wp|

Here, the misjudged label matrix is ˆ̂Dp and ˆ̂wp is the
complementary set of ˆ̂wp.

• Coverage calculates the number of steps required on
average to advance down the label list and cover all the
instance’s proper labels.

Coverage(ˆ̂t) =
1
z

z∑
p=1

max
ˆ̂w∈
ˆ̂
W

rankF (ˆ̂xa, ˆ̂wb)− 1

• One Error calculates the number of times an irrelevant
label is top-ranked.

OneError(ˆ̂t) =
1
z

z∑
p=1

[[
arg max
ˆ̂w∈
ˆ̂
W

F(ˆ̂xp, ˆ̂w)

]
/∈ ˆ̂wp

]
• Average Precision determines the average proportion of
relevant labels that are considered better than a given
label.

AveragePrecision(ˆ̂t)

=
1
z

z∑
p=1

1

| ˆ̂wp|

∑
ˆ̂w∈
ˆ̂
W

×
{ ˆ̂w′|rankF (ˆ̂xp, ˆ̂w′) ≤ rankF (ˆ̂xp, ˆ̂w), ˆ̂w ∈ ˆ̂w}

rankF (ˆ̂xp, ˆ̂w)

VI. RESULTS AND DISCUSSIONS
The parameter values for the multi-label FS methods
MLACO, BMFS and MFS-MCDM were given the values
that were suggested in the corresponding article. MLKNN
[31] classifier was utilized for this process and the number
of neighbors was assigned the value 10 for every procedure.
60% of the samples were allotted for training and 40% of
the samples were allotted for testing in each test. The results

VOLUME 10, 2022 67781



S. Kavitha et al.: Multi Label FS Through Dual Hesitant q-Rung Orthopair Fuzzy Dombi Aggregation Operators

FIGURE 2. Coffee dataset.

FIGURE 3. Image dataset.

that are procured is the average of 20 iterations on each
method. The feature subset was altered from 10 to 100 in
ranges of 10. It is essential to note that the proposed method
can choose the number of features. The figures 2 - 6 are the
results procured for the proposed methods and other methods
considered for comparison in terms of the metrics accuracy,
average precision, coverage, Hamming loss, One-Error and
Ranking loss. The x axis in these graphs reflects the amount
of features extracted, while the y axis represents performance
of the classifier.

The features are evaluated based on labeled data in the
multi-label feature selection. As a result, the information
from labels should bemerged to construct an effectivemethod
and features should be assessed based on how they relate
with all labels, not just one. The MCDM is one of the most
effective strategies for dealing with such issues. Also, as the
datasets are real time data, incorporating fuzzy set theory
into this becomes essential. In this article, we have used
dual hesitant q-rung orthopair fuzzy set to consider more
amount of vagueness in the datasets. Since, the multi-label
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FIGURE 4. Enron dataset.

FIGURE 5. Scene dataset.

feature selection involves the necessity to aggregate the deci-
sion depending on the criteria, we propose the MCDM tech-
nique based on Dombi aggregation operators that involves the
Dombi parameter to analyze the correlation between the data.
The decision matrix is formed considering the labels as crite-
ria.We employed a Ridge Regression approach, which is built
on a subspace learning strategy that represents the relevance
of the associated feature. Indeed, we may acquire the gradient
of a line relative to a feature with Ridge Regression, and if the
resultant value is substantial, we can conclude that the line

variations on that feature are substantial. It denotes a strong
link between the characteristic and the label. For the proposed
technique, the data acquired byRidge Regressionwas utilized
as the decision matrix and weight was considered from the
entropy of each label. From the figures 2-6, we can infer that
the proposed methods show efficient performance in most of
the datasets. Only in the medical dataset, their performance
was ranked second. Among the proposed techniques, we can
see that MFS-ODG and MFS-ODA showed efficient perfor-
mance in most of the cases. It can be seen that the ordered
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FIGURE 6. Medical dataset.

operators performed efficiently. Hence, we can infer that
the operators DHq-ROFOWDA and DHq-ROFOWDG per-
formed efficiently. Thus, the proposed techniques were able
to consider the impreciseness and also perform efficiently.

Sensitivity analysis was carried out for the algorithm
through altering the values of ˆ̂τ = 1, 2, 3, 10, 100. From
the results of accuracy, average precision, coverage, Ham-
ming loss, One-Error and Ranking loss, we can infer that the
alteration of the parameter ˆ̂τ , altered these results based on
the dataset. The results procured for ˆ̂τ = 3 was efficient
on average and henceforth, in the figures 2-6, the values of
the methods plotted for MFS-DA, MFS-ODA, MFS-DG and
MFS-ODG is given for ˆ̂τ = 3.
The significance of the proposed algorithm is evaluated

by utilizing the Friedman test [42] and the post hoc-Conover
test [43] for comparison with the existing methods. The sig-
nificance value is considered as 0.05. In the Friedman test,
the proposed method is said to as significant as the existing
methods, if the p-value is greater than the existing methods.
If the p-value of the Friedman test lies below this significance
level, we proceed with the post-hoc Conover test. In the post-
hoc Conover test, if the p-value lies above the significance
level, we conclude that the proposed method is as significant
as the existing techniques, otherwise, we conclude that the
there is no significance. We have obtained significance for
our proposed techniques after performing the test. The tables
are omitted here.

VII. CONCLUSION
In this article, filter based FS algorithms are proposed.
This method transfers the features and labels space to
a Multi-Criteria Decision Making problem and utilizes a
subspace learning technique to determine the correlation
among features and labels. Upon measuring the correlation

among features and labels, we supply this data as our
decision-making data in this approach to the MCDM tech-
nique using the proposed aggregation operators. For the first
time, fuzzy aggregation operations are utilized in a multi-
label learning. To consider the impact of different labels,
entropy was used as the weighting technique. Various eval-
uation metrics were used to emphasize the efficiency of
the proposed technique and the significance tests were also
carried on. The limitation of this work is that it doesn’t
consider the interrelationship between the membership and
non-membership terms.

The future direction of this work could concentrate in
the development of the Frank t- norm and t- conorm for
this fuzzy environment and applying it in various feature
selection problems. Inspired from the works of [44], one can
also consider the interrelationship between the membership
and non-membership values using the Archimedian t-norm
and t-conorm and build interactive aggregation operators.
The researchers can develop various FS methods such as
the ensemble FS method etc., using the proposed aggrega-
tion operator. Various distance measures and similarity mea-
sures and other aggregation operators can be used to build a
MCDM methodology and further apply it to multi-label FS
problems.
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