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ABSTRACT In massive machine-type communications (mMTC), grant-free access is a key enabler for a
massive number of users to be connected to a base station with low signaling overhead and low latency.
In this paper, new Fourier-based sequence sets are proposed for user-specific, non-orthogonal, unimodular
sequences for uplink grant-free access in multi-cell massive machine-type communications (mMTC).
A design framework based on a partial Fourier matrix with masking operations is presented for multiple
sets of non-orthogonal sequences, where the correlation matrix is defined to analyze the intra- and inter-cell
correlations simultaneously. We use algorithms to find a subsampling index set for the partial Fourier matrix,
in an effort to reduce the correlations of the resulting sequences of arbitrary length. Simulation results
demonstrate that the Fourier-based non-orthogonal sequences achieve the excellent performance of sparse
activity detection for uplink grant-free access in multi-cell mMTC. Compared to the Zadoff-Chu sequences,
this design framework presents more sets of non-orthogonal sequences of arbitrary length, which can supply
unique signatures for devices in more mMTC cells.

INDEX TERMS Compressed sensing, genetic algorithm, grant-free access, massive machine-type commu-
nications, non-orthogonal sequences.

I. INTRODUCTION
Massive connectivity of wireless devices is essential for
industrial, commercial, and critical applications of massive
machine-type communications (mMTC) [1], [2], which pro-
vides a concrete platform for the Internet of Things (IoT).
Unlike human-type communications (HTC), mMTC is char-
acterized by small size data, infrequent transmission, low cost
devices, low mobility, and so on [3]. In practice, mMTC sys-
tems need to support a massive number of devices with low
control overhead, low latency, and low power consumption
for delay-sensitive and energy efficient communications.

Non-orthogonal multiple access (NOMA) [4], [5] has
received a great deal of attention for massive connectivity in
5G wireless systems. In code-domain NOMA, user-specific
and non-orthogonal spreading sequences are assigned to
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users for their non-orthogonal multiplexing through com-
mon resources. In sparse code multiple access (SCMA) [6],
sparse spreading sequences are assigned to users, where
a message passing algorithm (MPA) [7] and a list sphere
decoding based MPA decoder [8] can be deployed for reli-
able multiuser detection with low complexity. Complex-
valued spreading sequences are employed for multi-user
shared access (MUSA) [9], where the successive interference
cancellation (SIC) can be performed for multiuser detec-
tion. Also, pattern division multiple access (PDMA) [10]
attempted to enable massive connectivity with low complex-
ity through an efficient pattern matrix design and a recur-
sive approach of multiuser detection [11]. For a survey on
existing works of code-domain NOMA, readers are referred
to [5]. Recently, the state-of-the-art technique of deep learn-
ing [12] has been applied for multiuser detection in uplink
code-domain NOMA systems [13]− [15]. Also, the end-
to-end NOMA transceiver designed by [16], [17] utilizes a
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model-driven deep learning method to solve the problem of
NOMA signature classification.

Grant-free access is of great interest to connect a massive
number of devices to mMTC systems with low latency and
low signaling overhead [18]. In uplink grant-free access,
active devices send their data with no access-grant procedure.
Then, a base station (BS) receiver has to identify active
devices with no aid of a grant procedure and detect each active
device’s data from the superimposed signal. The principle of
compressed sensing (CS) [19] can be applied for multiuser
detection in uplink grant-free access, exploiting the sparse
activity that many devices are present in a cell, but only a
small fraction of them are active at a time. Many research
articles [20]− [26] demonstrated that a CS-based detector can
be successfully deployed at BS for sparse activity detection
in uplink grant-free access.

To guarantee reliable activity detection for uplink grant-
free NOMA, it is essential to design good non-orthogonal
sequences with low correlation. In literature, a variety
of non-orthogonal sequences, e.g., quasi-orthogonal [27],
pseudo-random noise [21], random Gaussian [22]–[25],
sinusoidal [28] sequences, etc., have been considered. Also,
complex-valued non-orthogonal sequences with finite ele-
ments have been employed for multi-user shared access
(MUSA) [9]. Golay-based non-orthogonal sequences and
sets [29], [30] have been also studied for low correlation
and low peak power in OFDM-based NOMA. In practice,
the Zadoff-Chu (ZC) sequences [31] have been adopted as
preambles for random access in 3GPP-LTE [32].

Besides the constructive methods, one can find other
classes of non-orthogonal sequences from the efforts of algo-
rithmic optimization of CS matrices [33]− [38], where each
matrix is considered as a collection of non-orthogonal column
sequences. Each algorithmic design produces non-orthogonal
sequences with low correlation by constructing an optimized
CS matrix with low coherence. For example, Elad [33]
launched an algorithmic design for a sensing matrix by
minimizing the average measure of coherence iteratively.
In [34]− [37], each algorithm attempted to optimize a sens-
ing matrix by approximating its Gram matrix to that of an
equiangular tight frame (ETF) [39]. The authors of [38]
presented several algorithms to construct incoherent frames
under various design constraints. Recently, the genetic algo-
rithm (GA) [40] has been applied for optimizing a partial
Fourier matrix in radar imaging [41], finding a frozen bit
position for polar code design [42], maximizing the energy
efficiency of wireless sensor networks [43]. Inspired by these
works, a two-stage GA [44] has been proposed for non-
orthogonal sequence design for multicarrier transmission in
single-cell mMTC.

In this paper, we construct multiple sets of Fourier-based
non-orthogonal sequences for uplink grant-free access in
multi-cell mMTC. We present a design framework based
on a partial Fourier matrix with masking operations and
define the correlation matrix, which gives a novel approach

to analyze the intra- and inter-cell correlations of multiple
sequence sets simultaneously. A subsampling index set for
the partial Fourier matrix can be found to reduce the intra-
and inter-cell correlations of the resulting sequences. In this
work, we use the incoherent harmonic design [38] and the
genetic algorithms (GA) [40], respectively, to find the index
set of an arbitrary set size. We do not focus on the computa-
tional complexity of each algorithm, since each one can be
executed off-line only once to find the index set, with no
need to be implemented in real-time applications. Finally,
we obtain multiple partial Fourier matrices having different
masks, where eachmatrix presents a set of Fourier-based non-
orthogonal sequences to be uniquely assigned to devices in an
mMTC cell.

In CS-based activity detection, simulation results demon-
strate that the Fourier-based non-orthogonal sequences out-
perform random Gaussian, MUSA, and tight-frame (TF)
based sequences [37], while comparable to ZC sequences
of prime length. Our design framework can provide more
sets of the Fourier-based sequences than the ZC sequences,
supplying unique signatures of arbitrary length for devices in
more mMTC cells. To sum up, this paper presents the main
contribution of the design framework for multiple sets of
Fourier-based non-orthogonal sequences of arbitrary length,
which show the outstanding performance of sparse activity
detection and the practical advantages for multi-cell massive
connectivity.

The rest of this paper is organized as follows. Section II
describes a systemmodel of uplink grant-free access in multi-
cell mMTC, where a CS problem is formulated for sparse
activity detection. Section III presents a design framework
for multiple sets of Fourier-based non-orthogonal sequences
and defines the correlation matrix to analyze the intra- and
inter-cell correlations of the sequence sets simultaneously. In
Section IV, we introduce the algorithms used in this paper
to find a subsampling index set for a partial Fourier matrix.
Section V presents simulation results of the Fourier-based
non-orthogonal sequences to demonstrate the performance of
CS-based activity detection for uplink grant-free access in
multi-cell mMTC. Finally, concluding remarks will be given
in Section VI.
Notations: In this paper, ZM = {0, · · · ,M − 1}. A matrix

(or a vector) is represented by a bold-face upper (or a lower)
case letter. FT and F∗ denote the transpose and the conjugate
transpose of a matrix F, respectively. For anM×N matrix F,
F(k, l) is its entry in the kth row and the lth column, where
0 ≤ k ≤ M − 1 and 0 ≤ l ≤ N − 1. F(a:b, :) is a sub-row
matrix of F extracting the row indices from a to b, while
F(:, c:d) is a sub-column matrix of F extracting the column
indices from c to d . Also, F(k, c:d) is a vector of F extracting
the column indices from c to d at the kth row. abs(F) =
[|F(k, l)|] is a matrix taking the magnitude of each element
of F. A matrix whose elements are all 1 is denoted by 1,
where the dimension is determined in the context. diag(h) is
a diagonal matrix whose diagonal entries are from a vector h.
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FIGURE 1. Two-phase grant-free access scheme for a single mMTC cell.

The inner product of vectors x and y is denoted by 〈x, y〉.

The lp-norm of x is denoted by ||x||p =
(∑N

k=1 |xk |
p
) 1
p
for

1 ≤ p < ∞. Also, ‖x‖∞ denotes the maximum magnitude
of the elements of x. The Frobenius norm of a matrix F

is ‖F‖F =
√∑

k,l |F(k, l)|
2. The coherence of a matrix X

is defined by µ(X) = maxk 6=l
|〈xk ,xl 〉|
‖xk‖2‖xl‖2

, where xk and xl
are the kth and the lth columns of X, respectively. Finally,
h ∼ CN (m,6) is a circularly symmetric complex Gaussian
random vector with mean m and covariance 6.

II. SYSTEM MODEL
In this paper, we consider a cellular network of B cells, where
each mMTC cell is denoted by Cb, b = 1, · · · ,B. Each cell
has a base station (BS) equipped with J antennas at the center,
to accommodate totalN devices each of which transmits with
a single antenna. For a fully grant-free access, we assume
that each BS serves a fixed set of static devices, which are
uniformly distributed in a cell.

In each mMTC cell, we consider a two-phase grant-free
access scheme [20], [22] for uplink massive random access.
In the first phase, each active device transmits its unique
signature as a dedicated pilot, and the BS receiver then tries
to identify active devices and estimate their channel pro-
files from the superimposed signatures. Data can be directly
transmitted in the second-phase from active devices with no
grant from BS. In this two-phase scheme, we assume that the
channels and the device activity remain unchanged during L
slots for pilot and data transmissions. Fig. 1 illustrates this
access scheme for a single mMTC cell.

At each access, an activity indicator vector of cell Cb is
defined by α(b) = (α(b)1 , · · · , α

(b)
N )T , where α(b)n = 1 if device

n is active in the cell, and 0 otherwise. Then, S(b)
= {n |

α
(b)
n = 1, n = 1, · · · ,N } is a set of active devices of Cb,

which are synchronized. Each device of Cb is active with
probability p(b)a in an i.i.d. manner, i.e., Pr[α(b)n = 1] = p(b)a
for n = 1, · · · ,N . When device n of Cb is active, it transmits
its unique signature s(b)n = (s(b)1,n, · · · , s

(b)
M ,n)

T for grant-free
access, where M < N . In this paper, we assume that each
active device transmits its signature with the same transmit
power ρ.

Without loss of generality, we consider sparse activity
detection at a BS receiver of C1. Assuming the flat Rayleigh
fading channel, let h(b)t,n be the channel gain between the
BS receiver’s antenna t of C1 and device n of Cb, which
remains unchanged during the coherence time interval. Then,
the channel vector for the device n is defined by h(b)n =

(h(b)1,n, · · · , h
(b)
J ,n)

T , where h(b)n ∼ CN (0, β(b)n I). The path-loss
component β(b)n is determined by the device location from the
BS of C1.
Let S(b) = [s(b)1 , · · · , s

(b)
N ] ∈ CM×N be a signature

sequence matrix of Cb. At the BS receiver of C1, the received
signal at antenna t is given by

yt =
√
ξS(1)x(1)t +

√
ξ

B∑
b=2

S(b)x(b)t + wt , (1)

where ξ = ρM and x(b)t = (α(b)1 h(b)t,1, · · · , α
(b)
N h(b)t,N )

T for t =
1, · · · , J . In (1), wt ∼ CN (0, σ 2

wI) is the complex Gaussian
noise vector at the antenna t . Collecting the received signal
of (1) from the J antennas, the BS receiver has a multiple
measurement vector (MMV) problem of

Y =
√
ξS(1)X(1)

+
√
ξ

B∑
b=2

S(b)X(b)
+W, (2)

where X(b)
= [x(b)1 , · · · , x

(b)
J ] ∈ CN×J , Y = [y1, · · · , yJ ] ∈

CM×J , and W = [w1, · · · ,wJ ] ∈ CM×J , respectively.
In (2), the second-term of the right-hand side is the inter-cell
interference from active devices in C2, · · · , CB. Obviously,
X(1) has the row-wise sparsity from the activity indicator α(1).
Thus, the BS receiver of C1 can apply a joint sparse recovery
algorithm to identify the nonzero rows of X(1) from Y for
CS-based detection of active devices in C1. In specific, if the
nonzero rows of X(1) are estimated, the row indices mean a
detected index set of active devices at C1, denoted by Ŝ(1),
while the coefficients of each nonzero row give an estimated
channel vector ĥ(1)n for device n ∈ Ŝ(1). The CS-based
sparse activity detection and channel estimation complete
the first phase of uplink grant-free random access at cell C1.
In the second phase, the BS receiver detects data from active
devices with the knowledge of device identity and channel
profiles obtained from the first phase [20], [22]. In this paper,
we restrict our attention to sparse activity detection in the first
phase by identifying Ŝ(1) via joint sparse recovery under the
CS MMV model.

As in massive MIMO regime of [23], the inter-cell inter-
ference in (2) is treated as noise in CS-based activity detec-
tion at C1. In practice, some advanced techniques such as
beamforming, cooperative MIMO [23], multi-point coordi-
nation [45], etc., can be deployed for mitigating the inter-cell
interference. However, it is noteworthy that the main result
of this paper, i.e., multiple sets of non-orthogonal sequences,
will not be so relevant to whether or not the interference miti-
gation techniques are considered, since the design effort relies
on the correlation properties of non-orthogonal sequences.
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FIGURE 2. Design framework of Construction 1. Each set S(b),b = 1, · · · ,B, has N non-orthogonal
sequences of length M, where M < N .

III. DESIGN FRAMEWORK OF FOURIER-BASED
NON-ORTHOGONAL SEQUENCES
This section presents a design framework based on a partial
Fourier matrix with masking operations for multiple sets of
non-orthogonal sequences, which is the main contribution.
Then, we define the correlation matrix to analyze the intra-
and inter-cell correlations simultaneously.

A. DESIGN FRAMEWORK
Let F be the N -point discrete Fourier matrix of F(k, l) =
exp

(
−
j2πkl
N

)
for 0 ≤ k, l ≤ N − 1, where j =

√
−1.

Then, we define a partial Fourier matrix F� by selecting M
rows out of F, where the selected row indices are specified
by � = {r1, · · · , rM } ⊂ {0, · · · ,N − 1} in unsorted order.
Using F�, we present a framework to construct B (≤ M )
sequence sets, each ofwhich hasN non-orthogonal sequences
of length M .
Construction 1: To construct B (≤ M ) sequence sets,

define a masking sequence v(b) = (v(b)1 , · · · , v
(b)
M )T by v(b)m =

exp
(
j2πa(b)m
M

)
for b = 1, · · · ,B, where

a(b)m ≡ a(1)m + (m− 1)(b− 1) (mod M ), (3)

for m = 1, · · · ,M . In (3), a(1)m is randomly taken from ZM
for each m. Then, a signature sequence matrix S(b) is

S(b) =
1
√
M

diag(v(b)) · F� =
[
s(b)1 , · · · , s

(b)
N

]
, (4)

for b = 1, · · · ,B, where the subsampling index set � can be
found algorithmically or algebraically. Each matrix S(b) is a
set of N sequences of lengthM for cell Cb, where device n is
assigned the unique signature s(b)n for n = 1, · · · ,N .
Construction 1 presents total B (≤ M ) sets of the Fourier-

based sequences of lengthM to supply unique signatures for
B cells, where each one has N devices. From (4), note that
Construction 1 utilizes a common subsampling index set �

(or equivalently F�) for all signature matrices S(1), · · · ,S(B),
while each matrix S(b) has its own masking sequence v(b) for
b = 1, · · · ,M .
Fig. 2 illustrates the design framework of Construction 1.

In this paper, we consider to employ an algorithm to find the
subsampling index set� of an arbitrary set size, which yields
the Fourier-based sequences of arbitrary length. Note that the
algorithm can be executed offline only once to find �, with
no need to be implemented in real-time applications. Also,
the masking sequence v(b) is obtained by (3), not by an algo-
rithm. Thus, the Fourier-based sequences can be efficiently
generated in practice by storing the subsampling index set �
and the masking sequence v(b).

B. CORRELATION MATRIX
We introduce a correlation measure for the sequences in
S(1), · · · ,S(B), which can be used by an algorithm to find
a subsampling index set �. For 1 ≤ b1, b2 ≤ B and 1 ≤
n1, n2 ≤ N , the correlation1 of s(b1)n1 ∈ S(b1) and s(b2)n2 ∈ S(b2)

is defined by

Cb1,b2 (n1, n2) =

〈
s(b1)n1 , s

(b2)
n2

〉
∥∥∥s(b1)n1

∥∥∥
2

∥∥∥s(b2)n2

∥∥∥
2

, (5)

which denotes the inter-cell correlation if b1 6= b2, and
the intra-cell correlation if b1 = b2 and n1 6= n2.
In Cb1,b2 (n1, n2), we assume b1 ≥ b2 and n1 ≥ n2 without
loss of generality. From Construction 1, (5) yields
Cb1,b2 (n1, n2)

=
1
M

M∑
m=1

e−j
2πrm(n1−1)

N ej
2πrm(n2−1)

N · ej
2π
(
a
(b1)
m −a

(b2)
m

)
M

=
1
M

M∑
m=1

e−j
2πrml
N · ej

2π (m−1)k
M , (6)

1In fact, it is the (normalized) inner product of s(b1)n1 and s(b2)n2 . We call it
the correlation, following the convention of synchronous multiple access.
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for 0 ≤ k = b1 − b2 ≤ B − 1 and 0 ≤ l = n1 − n2 ≤
N − 1, where l 6= 0 if k = 0. Clearly, (6) shows that
the correlation is determined by the M -point inverse discrete
Fourier transform (IDFT) of each column of F�. Let D =
FM (:, 0:B − 1), where FM is the M -point discrete Fourier
matrix. Then, we define a correlation matrix by

C� =
1
M

abs
(
D∗F�

)
∈ CB×N , (7)

where the element C�(k, l) means the correlation magnitude∣∣Cb1,b2 (n1, n2)∣∣, where k = b1−b2 and l = n1−n2. From (6),
the first row ofC�, excludingC�(0, 0) = 1, has the intra-cell
correlation magnitudes, while the remaining submatrix con-
tains the inter-cell correlation magnitudes, denoted by

Cintra
� = C�(0, 1:N − 1),

Cinter
� = C�(1:B− 1, :). (8)

Clearly, (8) shows that the correlation matrix of (7)
has the intra- and inter-cell correlations that need to be
reduced for sequence design. In other words, each element
of C�(0, 1:N − 1) is the correlation magnitude of signatures
s(b)n1 and s(b)n2 , where k = b−b = 0 and l = n1−n2 6= 0, which
indicates the intra-cell correlation of signatures in cell Cb.
On the other hand, each element of C�(1:B − 1, :) is the
correlation magnitude of signatures s(b1)n1 and s(b2)n2 , where k =
b1 − b2 6= 0 and l = n1 − n2, which shows the inter-cell
correlation of signatures in cells Cb1 and Cb2 .
In general, one has to investigate O(B2N 2) correlations to

construct B sets of N sequences with low intra- and inter-
cell correlations. However, we need to deal with only the BN
correlations of C� in Construction 1, which are taken from
the IDFT of F� by (7). Thus, the correlation matrix gives a
novel approach to analyze the intra- and inter-cell correlations
simultaneously for multiple sequence sets under our design
framework.

In what follows, we investigate the average magnitudes of
intra- and inter-cell correlations, respectively.
Theorem 1: For given b1 and b2, 1 ≤ b1 6= b2 ≤ B,

the average (rms-sense) magnitude of inter-cell correlation of
S(b1) and S(b2) from Construction 1 is

Ainter =

√√√√ 1
N 2

N∑
n1=1

N∑
n2=1

∣∣Cb1,b2 (n1, n2)∣∣2 = 1
√
M
, (9)

regardless of �.
For given b, 1 ≤ b ≤ B, the average (rms-sense)magnitude

of intra-cell correlation of S(b) is

Aintra =

√√√√√√ 1
N (N − 1)

N∑
n1=1

N∑
n2=1
n2 6=n1

∣∣Cb,b(n1, n2)∣∣2

=

√
N −M
M (N − 1)

, (10)

regardless of �.

Proof: From (6),

M2
N∑

n1=1

N∑
n2=1

∣∣Cb1,b2 (n1, n2)∣∣2
=

M∑
m=1

M∑
s=1

ej
2π (m−s)(b1−b2)

M ·

N∑
n1=1

N∑
n2=1

e−j
2π (rm−rs)(n1−n2)

N . (11)

If we set k = b1 − b2 and l = n1 − n2, (11) becomes

M∑
m=1

M∑
s=1

ej
2π (m−s)k

M ·

(
N

N−1∑
l=0

e−j
2π (rm−rs)l

N

)

=

M∑
m=1

N 2
+ N

M∑
m=1

M∑
s=1
s 6=m

ej
2π (m−s)k

M ·

(
N−1∑
l=0

e−j
2π (rm−rs)l

N

)
,

= N 2 M , (12)

which is obvious from
∑N−1

l=0 e−j
2π (rm−rs)l

N = 0 for m 6= s.
Therefore, the average magnitude of inter-cell correlation
of (9) is immediate from (11) and (12).

Similarly, if b1 = b2 = b,

N∑
n1=1

N∑
n2=1
n2 6=n1

|Cb,b(n1, n2)|2

=

N∑
n1=1

N∑
n2=1

|Cb,b(n1, n2)|2 −
N∑

n1=1

|Cb,b(n1, n1)|2,

=
N 2

M
− N , (13)

where the first-term is from (11) and (12) with k = 0. Then,
(10) is obvious from (13). �

IV. ALGORITHMS FOR SUBSAMPLING INDEX SET
Section III presented a design framework for Fourier-based
non-orthogonal sequences, where a subsampling index set �
is necessary for Construction 1. In this section, we describe
two different algorithms to find � of an arbitrary set size.

A. INCOHERENT HARMONIC DESIGN ALGORITHM
In [38], several algorithms for incoherent frames with var-
ious design constraints have been proposed. In particular,
Algorithm 2 of [38] returns a subsampling row index set for
an incoherent harmonic frame, which is equivalent to a partial
Fourier matrix with low coherence. In this paper, we give
a brief sketch of the algorithm, and readers are referred to
Section 5 of [38] for more details.

Let g = (g1, · · · , gN )T ∈ {0, 1}N be a binary indicator
vector, where a subsampling index set is determined by � =
{k − 1 | gk = 1, k = 1, · · · ,N }. From F∗�F� = F∗diag(g)F,
it is clear that the Gram matrix is a circulant matrix in which
the first column is ĝ = 1

M F∗g = (̂g1, · · · , ĝN )T . Thus,
each element of ĝ \ {̂g1} corresponds to the correlation of
a distinct column pair of F�. The essence of the algorithm
is to find g to minimize the maximum magnitude of ĝ \ {̂g1},
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which ultimately minimizes the coherence of a partial Fourier
matrix F�.
In [38], an algorithmic approach has been used to find g

for incoherent harmonic design. Algorithm 2 of [38] starts by
randomly generating an initial subsampling index set �0 of
size dζ (N − M )e. Then, it tries to find a solution x =
(x1, · · · , xN )T ∈ RN to a convex optimization problem [38]
formulated by

minimize
x∈RN

1
M
‖Ux‖∞ + λ‖diag(w)x‖1

subject to x1 = 1, ‖x‖1 = M , xk = 0 for k − 1 ∈ �0,

0 ≤ xk ≤ 1 for 2 ≤ k ≤ N , (14)

whereU = F∗(1:bN/2c, :) is a sub-row matrix of F∗. In (14),
‖diag(w)x‖1 is a regularization term to promote the sparsity
for the solution x, where each element ofw = (w1, · · · ,wN )T

is wk = (xk + ε)−1 for a small ε > 0.
If (14) finds a solution x, the algorithm determines a sub-

sampling index set by � = {k − 1 | |xk | > ε, k =
1, · · · ,N }. If |�| > M , it eliminates some indices one by
one until onlyM indices remain in�, in such a way that each
elimination causes a minimal increase in the coherence [38].
In addition, the algorithm conducts a local search for updating
the index set, where some l indices of � can be replaced
by new ones in {0, · · · ,N − 1} \ � for further reduction of
coherence. The entire steps of this algorithm are repeated by
a predefined number of iterations Ih, which yields Ih index
sets. Finally, we select a subsampling index set � with the
lowest coherence among them.

In this paper, we use Algorithm 2 of [38] to find the index
set � for Construction 1, where the optimization problem
of (14) is solved via CVX [46]. We modify the algorithm
slightly to obtain a subsampling index set � that has the
indices in an unsorted order, by taking into account the mag-
nitudes of the elements of x in (14). While its minimizing the
coherence of a partial Fourier matrix ultimately guarantees
low intra-cell correlation for the Fourier-based sequences,
the algorithm in itself makes no effort to reduce the inter-
cell correlation. Under our design framework, we found that
it is a non-trivial task to modify the algorithm for reducing
the intra- and inter-cell correlations simultaneously using
the correlation matrix of (7), which will remain as a future
research issue.

B. GENETIC ALGORITHM (GA)
The genetic algorithm (GA) [40] is an effective evolution-
ary technique to find a subsampling index set for a good
partial Fourier matrix [41], which motivates us to use GA
to find � in Construction 1. While the GA of [44] is used
for a single sequence set, the GA of this paper is to design
multiple sequence sets considering the intra- and inter-cell
correlations. Also, the GA of [44] can be applied to an
arbitrary unitary matrix, but this GA is only for the Fourier
matrix, which facilitates our correlation analysis through the
correlation matrix of (7).

We now describe the evolutionary steps of GA used in this
paper to find �.

1) INITIALIZATION
A population is initialized by P = (�1, · · · , �T ), where
�t ⊂ {0, · · · ,N −1} is a randomly selected (unsorted) index
set with |�t | = M for t = 1, · · · ,T .

2) COST FUNCTION
We propose a cost function of

f (F�t ) =
√
d2intra + d

2
inter (15)

for each �t in P , where dintra = 1
√
N−1

∥∥∥Cintra
�t
− Aintra1

∥∥∥
F

and dinter = 1
√
N (B−1)

∥∥∥Cinter
�t
− Ainter1

∥∥∥
F

are the average

distances from intra- and inter-cell correlation magnitudes
to their averages, respectively. In (15), Cintra

�t
and Cinter

�t
are

computed for F�t by (7) and (8). Attempting to minimize
the cost function of (15), this GA seeks a subsampling index
set that makes the intra- and inter-cell correlations closer to
their averages, which will contribute to constructing good
Fourier-based sequences by trying to reduce the correlations
simultaneously.

3) CROSSOVER
In population P , let us consider a pair of index sets �t1
and �t2 , 1 ≤ t1 6= t2 ≤ T . Then, d1 = d0.5 · Me and
d2 = M−d1 indices are randomly selected from�t1 and�t2 ,
respectively. Finally, the selected indices, which should be all
distinct, are combined to generate a new index set through
crossover. Applying the crossover for every pair of index sets
in P , we obtain a new population C.

4) MUTATION
In this step, µ indices are randomly selected from each index
set of P , and then replaced by new (random) ones through
mutation. We apply the mutation to all index sets in P , which
yields a new population M.

5) POPULATION UPDATE
Through crossover andmutation, we have a new, intermediate
population I = P∪C∪M, which contains at most T+

(T
2

)
+

T = T (T+3)
2 index sets. From I, we select the T index sets

with the T lowest cost functions of (15). Then, P is updated
by the T selected index sets.

6) ITERATION AND SELECTION
The evolution steps of crossover, mutation, and population
update are repeated by a predefined number of iterations,
denoted by Imax. In the end, the fittest index set of P , which
has the lowest cost function of (15), will be selected as a
subsampling index set �. Unlike the incoherent harmonic
design algorithm, the GA using the cost function (15) makes
an effort to find � for reducing the intra- and inter-cell
correlations simultaneously.
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FIGURE 3. Evolution of the cost function of GA for Fourier-based
sequences of various lengths, where T = 20 and µ = 1.

With the iterative procedures, the incoherent harmonic
design and the genetic algorithms may find the subsampling
index set slowly with high computational complexity. Thus,
it would be inefficient to implement the algorithms in real-
time applications. As discussed in Section III.A, each algo-
rithm can be executed offline only once to find the index
set. Then, the Fourier-based sequences can be generated effi-
ciently in practice by storing the index set and the masking
sequence.

V. SIMULATION RESULTS
This section presents simulation results of the Fourier-based
non-orthogonal sequences to demonstrate the performance
for uplink grant-free access in multi-cell mMTC.

A. TESTED NON-ORTHOGONAL SEQUENCES
In simulations, we construct B = 19 sets of the Fourier-
based sequences, where each set has N = 500 sequences.
We use three different methods to find the subsampling index
set� for Construction 1. First, we use a random subsampling
by taking a subset � randomly from {1, · · · ,N }. Second,
we employ the incoherent harmonic design algorithm intro-
duced in Section IV.A, where λ = 1

M , ε = 10−7, ζ = 0.1,
l = 1, and Ih = 50.

Third, the GA of Section IV.B is used to find �, where
the parameters are empirically determined for N = 500 and
B = 19. Fig. 3 displays the evolution of the cost function
of (15) for several sequence lengthsM ∈ [60, 100, 140, 180],
where T = 20 and µ = 1. From the figure, we set
Imax = 2000, which confirmed the convergence of the GA for
the sequence lengths through numerical experiments. Given
Imax, we then examined the cost function of the subsampling
index set � found by the GA, with the parameters of T ∈
[5, 10, 15, 20, 25] and µ ∈ [1, 2, 3, 4]. Fig. 4 sketches the

FIGURE 4. Lowest cost function of GA for Fourier-based sequences over
various T and µ, where Imax = 2000.

lowest cost function among all the tested T for eachµ. As can
be seen from the figure, T = 20 and µ = 1 show the lowest
cost function for all the testedM . Consequently, we construct
the Fourier-based sequences of Construction 1 by finding the
subsampling index set � using the GA with Imax = 2000,
T = 20, and µ = 1.
Table 1 gives some examples of the Fourier-based

sequences of length M = 100, where the subsampling
index set � has been found by GA. Recall that a set of the
Fourier-based sequences for cell Cb is denoted by S(b) =
[s(b)1 , · · · , s

(b)
N ], where N = 500. Then, each element of

s(b)n can be represented by s(b)m,n = 1
√
M
ej

2πu(b)m,n
N with u(b)m,n ∈

ZN for 1 ≤ n ≤ N and 1 ≤ m ≤ M . Table 1 gives

u(1)2 = (u(1)1,2, · · · , u
(1)
M ,2)

T for s(1)2 at cell C1, and u(2)3 =

(u(2)1,3, · · · , u
(2)
M ,3)

T for s(2)3 at cell C2, respectively. Note that
each sequence may have duplicate elements, due to the oper-
ation of random masking in the design framework.

For comparison, we consider some known sequences
of flexible lengths. First, we generate random Gaussian
sequences of length M , where each element is drawn from
the i.i.d. complex Gaussian distribution with zero mean and
variance 1/M .We also use theMUSA sequences of lengthM ,
where each element is randomly taken from the 3-level signal
constellation [9]. Generating 420, 020 sets2 of N random
Gaussian (or MUSA) sequences each, we choose B sets with
the B lowest maximum intra-cell correlations for simulation.
In addition, we construct B sets of the tight-frame (TF) based
sequences of length M , where each set is obtained from an
M × N optimized sensing matrix by running the iterative
algorithm of [37].

2For a fair comparison, this number is the sum of total population sizes of
our GA, i.e., T + Imax · T (T + 1)/2 with T = 20 and Imax = 2000.
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FIGURE 5. Intra- and inter-cell correlation distributions of tested non-orthogonal sequences over sequence length, where N = 500 and B = 19.

TABLE 1. Examples of Fourier-based sequences obtained from GA, where N = 500, M = 100, and B = 19.

The last one for comparison is the ZC-based non-
orthogonal sequences of length MZC, where MZC is an odd
prime number closest toM .We begin with anMZC×MZC uni-
tarymatrixZu whose columns are all cyclic shifts of a uth root
Zadoff-Chu (ZC) sequence [31] of length MZC, where the

kth element is exp
(
jπuk(k+1)

MZC

)
and u is a root number between

1 and MZC − 1. Due to the perfect autocorrelation of the ZC
sequence, each column pair ofZu are mutually orthogonal for
any u. Then, we construct a matrix Z ∈ CMZC×NrMZC by con-
catenating the matrices Zv, where v = (u− 1) (mod MZC −

1) + 1 for u = 1, · · · ,Nr with Nr = d BNMZC
e. If Nr ≥ MZC,

some submatrices Zv are reused in Z, due to the shortage
of available roots. Finally, writing by Z = [Z′1,Z

′

2, · · · ],
we obtain a set of N sequences of length MZC, or Z′b ∈
CMZC×N , b = 1, · · · ,B, to be assigned to cell Cb. With
MZC < N , the maximum magnitude of intra-cell correlations
of Z′b is

1
√
MZC

, due to the cross-correlation of ZC sequences
with distinct roots [47]. Also, the maximum magnitude of
inter-cell correlations of Z′b1 and Z′b2 for b1 6= b2 is 1

√
MZC

if Nr < MZC, and 1 otherwise, since some ZC sequences are
reused if Nr ≥ MZC.
Remark 1: All cyclic shifts of the ZC sequences with

MZC − 1 roots can present at most NZC =
⌊MZC(MZC−1)

N

⌋

sequence sets, i.e., Z′1, · · · ,Z
′

NZC
, where each set is assigned

to a cell of N devices. If N = LMZC, then NZC <

MZC/L ≈ M/L, where L > 1. Thus, the Fourier-based
sequences of length M , offering up to M distinct sets, can
support more cells than the ZC ones. Also, if sequences
are to be assigned to B cells with no reuse, each cell can
accommodate at most

⌊MZC(MZC−1)
B

⌋
devices with the ZC

sequences, whereas the Fourier-based sequences have no
such limit, as long as B ≤ M . To support more devices
in a cell, we can increase the number of Fourier-based
sequences of a set by choosing F with a larger N , until
the performance degradation due to high overloading (N/M )
can be tolerated for activity detection in uplink grant-free
access.

Table 2 shows the maximum number of cells that can be
supported by the ZC and the Fourier-based sequences with
no reuse, denoted by BZC and BFR, respectively. In the table,
the length of Fourier-based sequences is set toM = MZC − 1.
As stated in Remark 1, the maximum number of cells

with no reuse of ZC sequences is BZC =
⌊MZC(MZC−1)

N

⌋
,

which decreases as each cell requires more unique signa-
tures with an increasing number of devices. In contrast, the
Fourier-based sequences can supply unique signatures with
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TABLE 2. Maximum number of cells supported by ZC and Fourier-based
sequences with no reuse.

no reuse for up to M cells, regardless of N ,3 which demon-
strates the practical advantage over the ZC sequences.

Fig. 5 depicts the distributions of intra- and inter-cell cor-
relation magnitudes of tested non-orthogonal sequences over
the sequence length, M ∈ [60, 100, 140, 180] and MZC ∈

[61, 101, 139, 179], where N = 500 and B = 19. The figure
shows that all the sequences have no significant difference
in the average correlations, but they are quite different in
the maxima. Random Gaussian and MUSA sequences have
relatively high maxima in the intra- and inter-cell correla-
tions, respectively. The intra-cell correlations of TF-based
sequences are fairly low for the optimization effort, but the
maximum inter-cell correlations are high due to no attempt
for reduction. The ZC sequences of prime length MZC > 61
exhibit the lowest maxima in the correlations, which are the-
oretically bounded by 1

√
MZC

[47] if no sequences are reused.

However, if MZC = 61, only
⌊MZC(MZC−1)

N

⌋
= 7 distinct sets

are available, which requires some ZC sequences to be reused
to support 19 cells, yielding the trivially high maximum
inter-cell correlation of 1.

Meanwhile, Fig. 5 shows that the intra- and inter-cell
correlations of the Fourier-based non-orthogonal sequences
are sufficiently low with no shortage of sequence sets for
each M , whether the subsampling index set � is found by
(e) random subsampling, (f) incoherent harmonic design, or
(g) genetic algorithm. In contrast to the random subsampling,
using the algorithms for � reduces the maxima of intra-cell
correlations significantly for the Fourier-based sequences,
which justifies the efforts of the algorithms. In particular,
the incoherent harmonic design algorithm presents the lowest
maxima among them in the intra-cell correlation, since the
algorithm attempts to minimize the correlation. However,
the maxima of the corresponding inter-cell correlations are
not so low, since the algorithm makes no attempt to reduce
the correlation, as mentioned in Section IV.A. By contrast,
the GA shows a good balance of low intra- and inter-cell
correlations for the Fourier-based sequences, by attempting
to reduce the correlations simultaneously.

Consequently, it is expected from Fig. 5 that the ZC
and the Fourier-based non-orthogonal sequences will have

3As N increases, the intra- and inter-cell correlations of the Fourier-based
sequences will increase gracefully, but not reach the maximum 1, as long as
B ≤ M .

FIGURE 6. Multi-cell network structure of B = 19 hexagonal cells. Total
BN = 19× 500 = 9500 devices are present in this multi-cell network,
where N = 500 devices are uniformly distributed in each cell.
In simulation, we consider sparse activity detection to be performed at
the BS of C1.

good performance of sparse activity detection for multi-cell
mMTC, thanks to their low intra- and inter-cell correlations.

B. PERFORMANCE OF CS-BASED ACTIVITY DETECTION
For multi-cell massive connectivity, we assume a cellular net-
work ofB = 19 hexagonal cells, as illustrated in Fig. 6, where
each cell has a BS at its center and the BS-to-BS distance
between neighbor cells is 2 km. Total N = 500 devices are
uniformly distributed in an mMTC cell, where each device
has its unique signature of length M for uplink grant-free
access. As a result, total BN = 9500 distinct sequences
are uniquely assigned to all devices in 19 cells. At each
access trial, the probability p(b)a of device activity for cell Cb,
1 ≤ b ≤ B, is uniformly at random between 0.05 and 0.15.
Assuming that the cell C1 is at the center of the 19 cell cluster,
we perform the sparse activity detection at the BS receiver
of C1. The path loss of the wireless channel is modeled
by β(b)n = −128.1 − 36.7 log10 d

(b)
n in dB, where d (b)n is

the distance in km from device n of Cb to the BS of C1.
The transmit power of each active device is ρ = 23 dBm
and the power spectral density of AWGN at the BS receiver
of C1 is −169 dBm/Hz over 1 MHz. In simulations, the
BS receiver of C1 performs CS-based activity detection by
treating the inter-cell interference from C2, · · · , C19 as noise.
We would like to point out that the CS-based detection with
no interference mitigation may not be practical, but it will
make little difference in the order of performance among the
tested non-orthogonal sequences.

For CS-based activity detection, the BS receiver of
C1 deploys the simultaneous orthogonal matching pur-
suit (SOMP) algorithm [48], where the number of active
devices in C1 is assumed to be known a priori at each access.
Running the SOMP with the prior knowledge cannot be
realistic in practice, but it will show the best achievable
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FIGURE 7. Performance of CS-based activity detection for tested
non-orthogonal sequences over the number of BS antennas, where
M = 140 and MZC = 139.

performance of tested sequences by the algorithm. Treating
both undetected and false-alarmed devices as errors, we eval-
uate the activity error rate (AER), defined by the average of∣∣∣S(1)

\Ŝ(1)
∣∣∣+∣∣∣Ŝ(1)

\S(1)
∣∣∣∣∣∣S(1)∪Ŝ(1)

∣∣∣ , whereS(1) and Ŝ(1) are true and detected

sets of active devices at C1, respectively. In simulations, the
AER is averaged over 105 access trials.
Fig. 7 shows the performance of CS-based activity detec-

tion at C1 for tested non-orthogonal sequences over the num-
ber of BS antennas, where M = 140 and MZC = 139.
Also, Fig. 8 sketches the performance for J = 32 over
the sequence length, where M ∈ [60, 100, 140, 180] and
MZC ∈ [61, 101, 139, 179]. In the figures, the Fourier-based
sequences from our design show significantly lower AER
than random Gaussian, MUSA, and TF-based sequences.
If the subsampling index set � is found by the incoher-
ent harmonic design or the genetic algorithm in Section IV,
the Fourier-based sequences outperform those with random
subsampling, which demonstrates the effectiveness of the
algorithms. Moreover, the performance of the Fourier-based
sequences using the GA is slightly better than those with the
incoherent harmonic design algorithm, since the GA attempts
to find � for reducing the intra- and inter-cell correlations
simultaneously.

In Fig. 7, it appears that the Fourier-based sequences using
the GA work better than the ZC sequences, but it comes
from the difference of their sequence lengths, i.e., M =

140 and MZC = 139. As shown in Fig. 8, the detection
performance of the Fourier-based sequences using the GA
is similar to that of the ZC sequences for various sequence
lengths. Note that we chose the sequence length M of the
Fourier-based sequences as a non-prime integer from which
no ZC-based non-orthogonal sequences can be obtained,

FIGURE 8. Performance of CS-based activity detection for tested
non-orthogonal sequences over the sequence length, where J = 32. For
the Zadoff-Chu sequences, MZC ∈ [61,101,139,179].

which is to emphasize the benefit of taking arbitrary sequence
length. In summary, the results of Figs. 7 and 8 show that
the Fourier-based non-orthogonal sequences using the GA
are comparable to the well known, algebraically designed ZC
sequences for sparse activity detection in multi-cell massive
connectivity, while providing the practical advantages of arbi-
trary sequence length and more sequence sets.

VI. CONCLUSION
In this paper, multiple sets of Fourier-based non-orthogonal
sequences have been presented for uplink grant-free access
in multi-cell mMTC. We constructed up to M distinct sets
of the Fourier-based non-orthogonal sequences of length M ,
which are uniquely assigned to devices of up to M mMTC
cells. We presented a design framework based on a partial
Fourier matrix with masking operations and defined the cor-
relation matrix to analyze the intra- and inter-cell correla-
tions of multiple sequence sets simultaneously. Simulation
results confirmed that the Fourier-based sequences show the
excellent performance of sparse activity detection for uplink
grant-free access in multi-cell mMTC, comparable to alge-
braically designed ZC sequences of prime length. In prac-
tice, this design framework provides additional advantages
over the ZC sequences, taking arbitrary sequence lengths
and offering more sequence sets for multi-cell mMTC. The
main contribution of this paper is the design framework for
multiple sets of Fourier-based non-orthogonal sequences of
arbitrary length, which achieve the excellent performance
of sparse activity detection and the practical advantages for
multi-cell mMTC.

This paper employed the incoherent harmonic design
and the genetic algorithms to find a subsampling index
set for our design framework, in an effort to reduce the
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intra- and inter-cell correlations of the Fourier-based
sequences. In practice, each algorithm can be executed offline
only once, with no need to be implemented with high com-
plexity in real-time applications. Instead, the Fourier-based
sequences can be efficiently generated by storing the index
set and the masking sequence. We would like to point out
that one can use any other algorithm or algebraic method to
find the subsampling index set under our design framework.
For example, a more advanced GA [49] or the reinforcement
learning (RL) [50] can be considered to find the index set.
Since using another method to find the index set makes little
difference in the novelty of the contribution of this paper, we
will leave it for future work. The design framework can also
be applicable to tackle the pilot contamination problem [51]
along with a novel pilot assignment method, e.g., [52], by
providing a large number of non-orthogonal pilots for multi-
cell massive MIMO, which will also be a future work.
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