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ABSTRACT Robots are expected to replace menial tasks such as housework. Some of these tasks
include nonprehensile manipulation performed without grasping objects. Nonprehensile manipulation is
very difficult because it requires considering the dynamics of environments and objects. Therefore imitating
complex behaviors requires a large number of human demonstrations. In this study, a self-supervised
learning that considers dynamics to achieve variable speed for nonprehensile manipulation is proposed. The
proposed method collects and fine-tunes only successful action data obtained during autonomous operations.
By fine-tuning the successful data, the robot learns the dynamics among itself, its environment, and objects.
We experimentedwith the task of scooping and transporting pancakes using the neural networkmodel trained
on 24 human-collected training data. The proposed method significantly improved the success rate from
40.2% to 85.7%, and succeeded the task more than 75% for other objects.

INDEX TERMS Bilateral control, imitation learning, machine learning, motion planning, nonprehensile
manipulation, self-supervised learning.

I. INTRODUCTION
Robotic manipulation has been widely studied to automate
daily human tasks [1]–[3]. Object manipulation involves
grasping an object to stabilize it and unrestrained manipu-
lation without grasping the object. The latter unrestrained
manipulation is called nonprehensile manipulation, which
allows manipulation beyond the range of motion and manip-
ulation of objects that cannot be grasped [4], [5]. However,
nonprehensile manipulation requires a complex dynamic
model of the object and the environment, in addition to the
relationship between the robot hand and object or tool [6].
Model-based methods that formulate complex dynamics with
mathematical models have been studied [7], [8]. In [8],
Planning for sliding and moving an object considering fric-
tion and for carrying an object with it considering gravity
and inertia are very difficult. Fotheremore, these methods
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assume the use of known object shapes, postures, material,
and desired trajectories. Therefore these methods are compu-
tationally expensive and difficult to adapt to new objects and
environments [9].

Recently, end-to-end learning that directly learns object
manipulation skills from sensor data has been focused. In par-
ticular, imitation learning is known to be one of the most data-
efficient methods. Imitation learning is supervised learning
frommotion data that are demonstrated by humans [10], [11];
therefore, it learns operation skills that require considering
the dynamics of the environment and objects. There are stud-
ies of nonprehensile manipulation using imitation learning
such as pushing objects [12], [13], ball-in-box [14], and
lifting shoes [15]; these approaches learn behaviors from data
without explicitly giving physical properties such as friction
or shape of the manipulated object and without calculating
dynamics. However, the above studies were conducted at a
single speed, which is slower than human daily movements.
This is because these imitation learning methods predicted
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the next response value of the robot and gave it as a command
value. In general, there is no ideal control system, and there
is a delay between the command and response values. There-
fore, conventional imitation learning [12]–[15] requires the
operation to be very slow to ensure negligible control delay
caused during autonomous motion. In particular, fast and
dynamic nonprehensile manipulation is significantly affected
by this control delay, and task execution is impossible as well.

Bilateral control-based imitation learning has been pro-
posed as a method that can compensate for this control
delay [16], [17]. We indicated that this method can generate
variable speed motions that consider the dynamics between
the robot and environment [18], [19]. Although this method
is expected to enable nonprehensile manipulations at high
speed and multiple speeds, it is difficult to learn complex
dynamics between objects and the environment from sen-
sor data and requires a significant amount of training data.
Because imitation learning requires human demonstration to
collect the teacher data, collecting a large amount of teacher
data is costly and becomes an obstruction for complex task
execution.

In contrast, self-supervised learning has been studied
to enhance supervised learning [20], [21]. Self-supervised
learning allows for self-learning without generate and anno-
tate the training data by humans. Self-supervised learning has
also been studied in the field of robotics, such as the feature
extraction of image recognition [22], grasping [23]–[25], and
liquid pouring [26]; however, these studies have focused on
geometric changes such as the grasping position and shape
of the object, and there has been no study focused on speed,
which is a temporal change. When the nonprehensile motion
speed is changed, the dynamics of the object, as well as
the robot itself, can change significantly. Although it is very
difficult to represent these complex relationships as functions
of various speeds, it is expected to be possible to model them
with Neural Networks (NNs) based on a large amount of data
collected by self-supervised learning.

In this study, we propose self-supervised learning consider-
ingmotion speed. The proposedmethod improves the success
rate by performing the task with a trained NN and using only
the success data for self-supervised learning. We performed
the task of scooping and transporting a pancake illustrated in
Fig. 1. The experimental results indicated that the proposed
method improved the success rate and the reproducibility
of the motion speed as well. Finally, the task success rate
was improved from 40.2% to 85.7%, and it achieved higher
accuracy of time reproduction than humans. The proposed
method does not simply linearly expand the trajectory in
response to the speed command but learns the dynamics and
generates an appropriate motion depending on the motion
speed. Furthermore, the proposed method does not explicitly
provide the friction and inertia of the pancake, enabling the
NN to learn appropriate actions that take them in consid-
eration from the human demonstration. The fact that NN
can generate trajectories based on an understanding of the
dynamic characteristics of the environment with dynamics

FIGURE 1. Snapshot of scooping and transporting a pancake task.

is a great academic novelty, and we can expect integration
with conventional studies in the control field in the future
because changing commands according to speed is similar
to designing controllers according to frequency responses.
And proposed method is expected to have a significant social
impact in terms of the ease of system implementation and
the ability to perform difficult tasks. This study is the first
approach in imitation learning that makes dynamic behav-
iors such as high-speed nonprehensile manipulation possi-
ble by performing self-supervised learning using bilateral
control-based imitation learning and discusses the limitations
and future of this method. The advantages of the proposed
method are as follows:
• Automatically collects speed-labeled training data and
enables self-supervised learning

• Learns multiple speeds and positions nonprehen-
sile manipulation from small amounts of human
demonstrations

• Is capable of reproducing speeds that exceed human-
given training data

The remainder of this paper is organized as fol-
lows. Section II presents the related work of this study.
Section III explains the robot control system and bilateral
control. In Section IV, we introduce bilateral control-based
imitation learning. Section V introduces our proposed
method of self-supervised learning consideringmotion speed.
Section VI provides the experimental description, results, and
discussion. Finally, in SectionVII, we conclude this study and
discuss future research topics.

II. RELATED WORK
A. NONPREHENSILE MANIPULATION
Nonprehensile manipulation is performed by not directly
grasping the object. Although model-based methods have
been studied, there is no general methodology, and nonpre-
hensile manipulation is still a difficult task [8], [27]. In partic-
ular, it is difficult for model-basedmethods to adapt to change
in the state of contact between the object and environment.
Iterative learning control, which performs repetitive motions
and corrects modeling errors, has also been reported [28].
However, [28] assumes that the desired trajectory is
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FIGURE 2. Definition of robot’s joints (CRANE-X7).

predetermined, which makes it difficult to adapt to changes
in the environment.

Recently, model-free methods using machine learning,
such as reinforcement learning and imitation learning, have
been studied. Reinforcement learning automatically learns
behavior based on a reward function through trial and
error [29], [30]. Yuan et al. performed the task of pushing
and replacing objects [31], and Finn et al. performed the task
of scooping up objects with a spatula [32]. However, rein-
forcement learning requires a huge number of trials to learn
a behavior, and it is difficult to set the reward function [33].
In particular, learning nonprehensile manipulation at multiple
speeds is inefficient because different reward functions need
to be set up and relearned for each speed. In contrast, imita-
tion learning can be applied with less teacher data because it
learns from human motion data. Moreover, it can be easily
used by people who are not experts in robotics or machine
learning because it does not require reward functions or math-
ematical models.

B. IMITATION LEARNING
Imitation learning is one of the most efficient methods of end-
to-end learning. In the past, several methods using probabilis-
tic models such as hidden Markov models [34] and mixed
Gaussian models [35] using NN [36]–[38] and dynamic
movement primitives [39], [40] have been studied and proved
to be effective. However, the movement of these imitation
learnings is slower than humans, owing to control delays that
occur only during autonomous operations.

Bilateral control-based imitation learning predicts the next
command value from the robot’s response value and gives
that command value to the robot [16], [17]. This framework
of predicting the command value from the response value
allows for fast object manipulation considering the control
delay. Because this control delay has a significant effect
on nonprehensile manipulation, this study employs bilateral
control-based imitation learning.

C. SELF-SUPERVISED LEARNING
Self-supervised learning, mainly spread in the field of
image recognition, was used as a pre-training for supervised

learning in [41], and indirectly improved the success rate of
the main task by setting sub-tasks in [42].

Recently, self-supervised learning has also been studied in
the field of robotics. Most of the research has been focused on
image information, such as object pose estimation [43], [44].
Huang et al. applied self-supervised learning to robot motion
data for a task of pouring a specified amount of liquid [26].
In [26], self-learning based on the actual amount of liquid
poured was employed to enable the robot pour a specified
amount of liquid, even if it is a new liquid; however, [26] deals
with the control of one degree of freedom (DOF) and does not
consider the operation time.

Regarding dynamic object manipulation such as nonpre-
hensile manipulation at any speed, it is necessary to consider
the interaction with the environment and the dynamics of the
manipulated object according to the motion speed. There has
been no study on self-supervised learning to learn dynamic
behaviors using a time metric. In this study, we propose a
self-supervised learning method using task completion time
to achieve nonprehensile manipulation at any speed. The
proposed method allows the NN to learn the dynamics of
the entire task through the metric of speed. In the field of
control engineering, it is possible to understand the dynam-
ics of a linear system by drawing a Bode diagram from
input-output data at multiple frequencies. Given that the NN
input and output data of nonprehensile operations performed
at multiple speeds are similar while using Bode diagrams,
it will be possible to learn the dynamics of the entire task.
Our proposal is different from conventional methods in that
it simply changes the parameter of the amount of liquid to
motion speed, because it is capable of learning the dynamics
of the environment and manipulated objects, and it is possible
to generate nonlinear motion in accordance with speed.

III. CONTROL SYSTEM
A. MANIPULATER
We utilized two CRANE-X7 manipulators manufactured by
RT Corporation, as illustrated in Fig. 2. This robot has a
mechanism of 7-DOF joints and a 1-DOF gripper, and the
angle of each joint can be measured. The angles correspond-
ing to each joint θ1, θ2, θ3, θ4, θ5, θ6, θ7, and gripper θ8 are
defined as per Fig. 2.

B. CONTROLLER
The manipulator control system comprised position and
force controllers. The position controller comprised a propor-
tional and differential controller, whereas the force controller
comprised a proportional controller. The control system is
depicted in Fig. 3. In the figure, θ, θ̇ , and τ represent the
angle, angular velocity, and torque of each joint, respec-
tively, and the superscripts cmd , res, ref , and dis represent
the command, response, reference, and disturbance values,
respectively. The caret ©̂ indicates the estimated values. The
joint angle of each joint was obtained by the optical encoder
and angular velocitywas calculated by its pseudo-differential.
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FIGURE 3. Block diagram of controller.

The disturbance torque τ dis was calculated using a distur-
bance observer (DOB) [45] and the torque response value τ res

was calculated using a reaction force observer (RFOB) [46].
Specifically, a force sensor was not utilized in this study. The
details of RFOB are presented in Section III-D.

C. FOUR-CHANNEL BILATERAL CONTROL
Bilateral control is a teleoperation system that utilizes two
robots: a leader and a follower. Bilateral control synchronizes
the positions of the two robots and presents the reaction force
caused by the contact of the follower with the environment
to the leader [47]. Using this technique, the human oper-
ating the leader can execute tasks as if they were directly
controlling the follower. In particular, four-channel bilateral
control, which has position and force controllers in both the
leader and follower, is the best method for imitation learn-
ing using force information [17]. Therefore, four-channel
bilateral control was implemented in this study. The block
diagram of four-channel bilateral control is showed in Fig. 4.
The angle and torque targets for four-channel bilateral control
are defined as follows:

θ resl − θ resf = 0, (1)

τ resl + τ resf = 0. (2)

where θ is the angle vector, τ is the torque vector, and the sub-
scripts l and f represent the leader and follower, respectively.
Because this study utilized a robot with 8-DOF, including
the gripper, the angle response value vector θ res is θ res =

[θ res1 , θ res2 , · · · , θ res8 ]T . The torque response value vector τ res

is τ res = [τ res1 , τ res2 , · · · , τ res8 ]T . The torque reference value
vectors of the controller that satisfies equations (1) and (2)
are represented by the following equations:

τ
ref
l = −

J
2
(Kp + Kds)(θ resl − θ resf )

−
1
2
Kf (τ resf + τ resl ), (3)

τ
ref
f =

J
2
(Kp + Kds)(θ resl − θ resf )

−
1
2
Kf (τ resf + τ resl ). (4)

where Kp and Kd represent the diagonal gain matrix
of proportional and differential control of the position,

FIGURE 4. Block diagram of four-channel bilateral control.

TABLE 1. Gain values for the robot controller.

Kf represents the diagonal proportional control gain matrix
of force, and J is the inertia matrix and s is the Laplace
operator. Thesematrix subscripts represent each joint, and the
interference of the axes was neglected.

Kp = diag[Kp1,Kp2, · · · ,Kp8], (5)

Kd = diag[Kd1,Kd2, · · · ,Kd8], (6)

Kf = diag[Kf 1,Kf 2, · · · ,Kf 8], (7)

J = diag[J1, J2, · · · , J8]. (8)

The gain values adopted are listed in Table 1. The control
gains were determined by trial and error to be the maximum
value within the range in which the robot does not vibrate.
We used the same value for both robots. In this study, θ1 and
θ2 were controlled with a cutoff frequency of 15.0 rad/s, and
the other joints with a cutoff frequency of 20.0 rad/s.

D. ROBOT DYNAMICS AND SENSORLESS REACTION
FORCE MEASUREMENT
In this section, we describe the dynamics of the robot
and torque sensorless measurement of reaction force using
RFOB. In this study, the dynamics of the robot is represented
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TABLE 2. Identified system parameters for the robot controller.

as follows:

J1θ̈1
res
= τ

ref
1 − τ

res
1 − D1θ̇

res
1 , (9)

J2θ̈2
res
= τ

ref
2 − τ

res
2

−M1 sin(θ res2 )+M2 sin(θ res2 + θ
res
4 ), (10)

J3θ̈3
res
= τ

ref
3 − τ

res
3 − D2θ̇

res
3 , (11)

J4θ̈4
res
= τ

ref
4 − τ

res
4 +M3 sin(θ res2 + θ

res
4 ), (12)

J5θ̈5
res
= τ

ref
5 − τ

res
5 − D3θ̇

res
5 , (13)

J6θ̈6
res
= τ

ref
6 − τ

res
6 − D4θ̇

res
6 , (14)

J7θ̈7
res
= τ

ref
7 − τ

res
7 − D5θ̇

res
7 , (15)

J8θ̈8
res
= τ

ref
8 − τ

res
8 − D6θ̇

res
8 . (16)

where D and M are the friction and gravity compensation
coefficients, respectively, and the respective subscripts are
adopted to identify each coefficient. The off-diagonal terms
in the inertia matrix were considered as negligible. The sub-
scripts of the other parameters correspond to the numbers of
the joints. Based on (9)–(16), the physical parameters were
identified. Usingmaximum length null sequence signal input,
measured angular velocity and angular acceleration during
free motion of each joint. Then, assuming that τ res = 0,
each parameter was determined by the least squares method.
The output of DOB, calculated from the torque reference and
response values of acceleration, is represented as follows:

τ̂
dis
= τ ref − τ res − J θ̈

res
, (17)

Using the identified parameters and (9)–(16), the reaction
force was calculated from RFOB without force sensor as
expressed in the following equation.

τ res1 = τ
dis
1 − D1θ̇

res
1 , (18)

τ res2 = τ
dis
2 −M1 sin(θ res2 )+M2 sin(θ res2 + θ

res
4 ), (19)

τ res3 = τ
dis
3 − D2θ̇

res
3 , (20)

τ res4 = τ
dis
4 +M3 sin(θ res2 + θ

res
4 ), (21)

τ res5 = τ
dis
5 − D3θ̇

res
5 , (22)

FIGURE 5. Collection of training data using bilateral control.

τ res6 = τ
dis
6 − D4θ̇

res
6 , (23)

τ res7 = τ
dis
7 − D5θ̇

res
7 , (24)

τ res8 = τ
dis
8 − D6θ̇

res
8 . (25)

The physical parameters of the robot are listed in Table 2.
In this study, the turner was fixed on the follower, thus the
gravity compensation value of the follower was increased.

IV. BILATERAL CONTROL-BASED IMITATION LEARNING
Bilateral control-based imitation learning can imitate the
subtle force of humans and manipulate objects faster than
other imitation learning methods. In this section, the flow of
bilateral control-based imitation learning is divided into three
phases.

A. COLLECTING TRAINING DATA
In bilateral control-based imitation learning, two robots were
utilized only when collecting training data. We experimented
with nonprehensile manipulation by scooping up a pancake
on a hot plate, and thereafter transporting and placing it
on an adjacent tray at multiple speeds. Therefore, operator
demonstrated nonprehensile manipulation at multiple speeds
using bilateral control. The operator executed the task by
controlling the leader and remotely controlling the follower
that was in the workspace, as illustrated in Fig. 5. Because
the robot in Fig. 2 had a redundant DOF, θ3 was fixed with
position control, and the robot was controlled at a frequency
of 500 Hz, which was the fastest control cycle for this robot.

B. TRAINING THE NN MODEL
In bilateral control-based imitation learning, using NN as
learning model. The basic structure of the NN for bilateral
control-based imitation learning is displayed in Fig. 6.

In bilateral control-based imitation learning, the model
is constructed with the response value of the follower as
the input and that of the leader as the output. This con-
figuration makes it possible to reproduce the same system
in autonomous operation as during training data collection,
but without the human and leader robot. The difference
between bilateral control during collecting training data and
executing a task is illustrated in Fig. 7. Recurrent Neural
Network (RNN) [12], [16]–[19], [26], [38] and Convolutional
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FIGURE 6. Basic structure of learning model in bilateral control-based
imitation learning.

Neural Network (CNN) [12], [13], [15], [36], [37] are mainly
used in the research of robot motion generation using NNs.
RNN was suitable for learning time series information, while
CNN was suitable for learning image information. In this
study, we used RNN because we did not use image informa-
tion for training, and among RNN, we used Long Short-Term
Memory (LSTM), which can handle long time-series data.

C. EXECUTING A TASK
During autonomous operation, the trained NN replaced the
human and the leader robot. In this study, the inference of
NN was done every 20 ms, and the control cycle of the robot
was 2 ms, which was the same as that when collecting the
training data.

V. SELF-SUPERVISED LEARNING CONSIDERING SPEED
Our self-supervised learning fine-tunes the NN using data of
autonomous operations conducted in Section IV-C. There-
fore, this method is regarded as the fourth stage following
those described in Section IV: collecting training data, train-
ing the NN model, and executing a task. The process from
bilateral control-based imitation learning to self-supervised
learning of the proposal is illustrated in Fig. 8. When a task
is executed using an NN that has not been overtrained, the
behavior in each trial is different as though it is similar. In our
method, trying the task multiple times and using only the
successful motions within the variance for learning makes it
possible to learn only the good behaviors from the minute
differences. Repeating this process at multiple speeds will
enable progressive learning of the dynamics of the entire task
and improve the success rate.

To reuse the motion data during autonomous operation,
it is necessary to determine the success or failure of the task,
as well as annotating the generated behavior. In the following,
we explain the automated annotation method, the method of
determining success or failure, and the method of creating a
dataset for relearning.

A. DETERMINE THE TASK COMPLETION TIME
In this study, the task was to scoop up a pancake on a hot plate
and place it on an adjacent tray. Therefore, the time when the
torque response value of θ2, triggered by the movement to
place the pancake on the tray was observed above a threshold,
was defined as the task completion time. The angle response
value of θ1 and torque response value of θ2 during task
execution are illustrated in Fig. 9. The red line in Fig. 9 (b) is
1.2 N·m, which was set as the threshold in this study, and tf is

FIGURE 7. Difference in bilateral control when collecting training data
and executing a task.

the task completion time. The sliding and putting phases are
distinguished using a threshold based on the angular response
value of θ1 in Fig. 9 (a). Based on the accurately labeled
speed, the NN corrects the error of the task completion time.

B. JUDGING THE SUCCESS OR FAILURE OF A TASK
The image on the tray was acquired at the end of the task,
and after binarization using HSV color space, the area of
the yellow object was calculated to determine its success
or failure. An example of the binarization is illustrated in
Fig. 10 (b). As the threshold for binarization using HSV color
space, pixels in the range of 15 < h < 35.5, 100 < s, and
v< 180 were set as white. Five hundred pixels or more of the
binarized image were considered successful.

C. GENERATE POSITION COMMAND
To demonstrate that the proposed method can be employed
with self-supervised learning focused on spatial information,
we considered the initial position of the pancake. The image
of the workspace at the start was obtained, image was bina-
rized by color as in Section V-B, coordinates of the center
on the pixel were calculated, and these were adopted as the
position coordinates (x,y) of the pancake. The calculated
position coordinates were adopted as position command val-
ues. Fig. 10 illustrates the coordinates were calculated.

D. CREATING A DATA SET FOR RETRAINING
In self-supervised learning, there is no difference between a
method that repeatedly collects and trains a small amount of
data and a method that collects and trains a large amount of
data at once [26]. Therefore, we assume that only a significant
amount of data was collected and trained at a time. In short,
we performed several actions with the same model and added
the obtained action data to the original training dataset to
create a new dataset.

VI. EXPERIMENT & EVALUATION
Weexamined the task of scooping and transporting a pancake,
and this task has different difficulties in each phase. In the
reaching and sliding phases, the robot needed to learn suffi-
cient spatial information, because the robot needed to reach
an appropriate position and then slide it to the edge of the
hot plate. In the lifting phase, the turner needed to be pressed
against the edge of the hot plate with a proper force and
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FIGURE 8. Flowchart of the proposed method. (i)–(iii) are bilateral control-based imitation learning, and (iv) is the
proposed method. (iv) includes success/failure determination, teacher label generation, and fine-tuning.

FIGURE 9. Definition of task completion time.

lifted at the right angle and angular velocity. If the pancake is
lifted more than necessary, the pancake will be thrown away;
however, if it is not lifted sufficiently, the pancake will slip off
the turner. In the transporting phase, it was necessary to move
the pancake in an appropriate trajectory that considers inertia
and friction. In particular, at high speeds, if the turner is not
properly tilted, the pancake will fall in the opposite direction.

We inspected whether repeating the loop of self-supervised
learning and executing a task twice, as illustrated in Fig. 8,
would improve the success rate for failed positions and
speeds, as well as the reproducibility of task completion
times. Moreover, as an additional experiment, we conducted
tests on untrained objects to investigate whether generaliza-
tion performance could be obtained.

A. DESIGN & SETUP
The experimental environment is illustrated in Fig. 11 (a).
The camera was an Intel RealSense D415. The turner was
fixed to the robot hand. In the human-collected training data
condition, the pancakes were located in four locations: lower
left, upper left, lower right, and upper right, as illustrated in
Fig. 11 (b). In addition, the task completion times were 4, 8,
and 12 s, and the mass of the pancake was 30 g and 90 g.

The pancakes were uniform in size, illustrated in Fig. 11 (c).
In all these combinations, we collected the teacher data twice
each. Thus, the number of teacher data was 48 (4 [position]×
3 [completion time] × 2 [mass] × 2 [trial]). Among these,
24 data were used as training data, and the remaining 24 data
were used as validation data. The collected teacher data was
downsampled to 50 Hz data with [48], and the number of
training data was made 10 times larger.

Autoregressive learning is less affected by covariate shifts
and can be more efficient; therefore, the S2SMmodel of [49]
was implemented. The NN utilized in this study is illustrated
in Fig. 12. It comprises a LSTM 8 layers and follows a fully
connected layer. The number of layers of NNs was set to a
same number with the reference [19], which achieved vari-
able speed motion generation with contact with the environ-
ment. However, the number of units was set to 200 to enable
learning of more complex expressions and to avoid a signif-
icant increase in computation time, since this study learned
a 7-DOF joint, whereas the 3-DOF joint in [19] was learned.
Max-min normalization was applied to all 24 dimensions of
the input information, and mean squared error was adopted
as the loss function. In addition, we utilized Adam [50] as
the optimizer, and mini-batch training was applied to a batch
of 100 data.

B. PRELIMINARY EXPERIMENT
1) DESCRIPTION
As a preliminary experiment, we performed the task with
the original model learned using 24 training data. The test
was performed thrice for each combination of all 9 positions
illustrated in Fig. 11 (b) and 11 speeds (3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13 s). Therefore, the total number of tests was 594
(9 [position] × 11 [completion time] × 2 [mass] × 3 [trial]).
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FIGURE 10. Determination of the center coordinates of the pancake.

FIGURE 11. Experiment setup.

The number of training times of the NN was determined
regarding the validation loss, and 8000 times was adopted.
This model is referred to as the original model. The loss graph
for the original model is illustrated in Fig. 13 (a)

2) RESULT
The task success rates for the original model are presented in
Table 3. Because no significant difference was observed in
the results depending on the mass of the pancake, a summary
table is presented here. The individual results are provided
in the appendix. The success rate of the original model was
40.2% and the task success rates at untrained positions were
remarkably low. We determined that successes and failures
depend on the task completion time command even if the
position command was the same. Most of the failures of
the original model were that it operated in a different posi-
tion from what was commanded. Furthermore, the pancake
slipped off when it started to be transported at high speed,
and was thrown away during the lifting phase.

Fig. 14 illustrates the reproducibility of completion time.
In this figure, the black line is the ideal line, and only suc-
cessful trials are plotted. Therefore, the position command
of Upper with a task completion time of 4 s is not adopted
to calculate the mean and variance. From Fig. 14 (a), we can
observe that the unlearned speeds of 5 to 6 s and 10 to 11 s are
far from the commanded values, and the variance is also very
large. The task completion time entirely tended to be slower
than the command time.

C. SELF-SUPERVISED LEARNING(1ST TIME)
1) DESCRIPTION
To evaluate the effectiveness of self-supervised learning,
we conducted an experiment using the autonomous action

FIGURE 12. Structure of the NN implemented in this study.

FIGURE 13. Training loss and validation loss for each neural network.

data from Section VI-B. For all patterns that were successful
at least once during the trials in Section VI-B, we collected
additional data so that the success data would be thrice each.
Therefore, the total number of autonomous motion data col-
lected was 300. Among these, 200 data and 100 data were
used as training and validation data, respectively. Therefore,
the new training dataset comprised 224 data and the val-
idation dataset comprised 124 data. The number of trials
was 594, the same as in Section VI-B. The number of training
times of the NN was determined considering the validation
loss, and 23000 times was adopted. This model is referred to
as the self-supervised learningmodel 1. The loss graph for the
self-supervised learning model 1 is illustrated in Fig. 13 (b)

2) RESULT
The task success rates for the self-supervised learning
model 1 are listed in Table 4. We determined that the suc-
cess rate of the self-supervised learning model 1 improved
to 81.6%,whichwas approximately double the success rate of
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TABLE 3. Task success rate of the original model.

FIGURE 14. Comparison of the reproducibility of task completion time using the proposed method. In (b) and (c), the results of the
model before fine tuning are plotted.

the original model. With the increase in autonomous motion
data, both spatial interpolation and dynamics learning pro-
gressed, allowing the robot to complete tasks at task comple-
tion times and positions that were unsuccessful in the original
model. The major improvement in the spatial direction was
the achievement of a task success rate of 56.1 % in the
upper, where the original model had a low success rate. In the
temporal direction, the robot could rotate its wrist joint with
an appropriate force and angular velocity, which reduced the
number of failures when the pancake was dropped during the
lifting phase.

In the experimental results, there are only a few conditions
in which the original model has a higher success rate than
the self-supervised learning model 1. This is thought to be
because the number of trials per condition was 6 times, which
caused a variance in the success rate. However, the success
rate for the overall speed is clearly lower for the faster speeds.
This indicates that fast operation is more complex than slow
operation. Future training with increased amounts of appro-
priate autonomous data will enable high speed operation.

For position commands, there was no difference in success
rate between positions demonstrated by humans and positions
not demonstrated by humans. However, for the task comple-
tion time command, the success rate was lower for the speed
that was not demonstrated by a human compared to the speed
demonstrated by a human. These results indicate that it is

difficult to learn the dynamics of the change in speed from
autonomous motion data, and it is necessary to collect more
autonomous motion data at various speeds for learning.

The reproducibility of the task completion time of the
self-supervised learning model 1 is illustrated in Fig. 14 (b).
Here, as 2) in Section VI-B, only the results of successful tri-
als are employed to calculate the mean and variance.Whereas
the error of the original model was 0.65 s on average and
1.04 in variance, the error of the self-supervised learning
model 1 was 0.2 s on average and 0.72 in variance, indicating
that the reproducibility of task completion time was greatly
improved. In particular, for the task completion time com-
mands of 5, 6 s and 10, 11 s, which had large errors in the
original model, the plot points are closer to the commanded
values and improvement is remarkable. Although the original
model tended to operate slowly in response to commands, this
issue has been resolved.

D. SELF-SUPERVISED LEARNING(2ND TIME)
1) DESCRIPTION
To test the case of collecting more autonomous motion data,
an experiment was conducted using the data collected in
Section VI-C. For each of the 180 patterns that were suc-
cessful at least once in Section VI-C, we obtained additional
data so that there were three successful data. The total number
of autonomous action data was 540. Among these, 180 data
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TABLE 4. Task success rate of the self-supervised learning model 1.

TABLE 5. Task success rate of the self-supervised learning model 2.

and 360 data were used as training data and validation data,
respectively. Thus, the total number of data for training
was 404, and that for validation was 484. The total number of
trials was 594, the same as in Sections VI-B and VI-C. The
number of training times of the NNwas determined consider-
ing the validation loss, and 25000 times was used. This model
is referred to as the self-supervised learningmodel 2. The loss
graph for the self-supervised learning model 2 is illustrated
in Fig. 13 (c).

2) RESULT
The task success rates for the self-supervised learning
model 2 are presented in Table 5. The overall task success
rate was 85.7%, which is a further improvement from the
self-supervised learning model 1. The position commands
bottom, lower right, lower and lower left were less successful
than the other position commands, and there were many fail-
ures to put the turner on top of the pancake. As anticipated in
2) of Section VI-C, the increase in autonomous operation data
improved the success rate at high speeds. This result indicates
that learning the dynamics changing with speed progressed,
and NN generated appropriate behaviors.

The reproducibility of the task completion time of
the self-supervised learning model 2 is illustrated in
Fig. 14 (c). Here, as 2) in Section VI-B, only the results of

successful trials are used to calculate the mean and vari-
ance. The self-supervised learning model 2 exhibits very high
reproducibility, with a mean error of 0.01 s and variance
of 0.43 for the task completion time. In particular, the task
completion time commands of 6, 10, and 11 s, for which the
variance was large in the self-supervised learning model 1,
indicated very small variance. In the self-supervised learning
models 1 and 2, the number of operation data used to calculate
the variance of 6, 10, and 11 s was 36, 51, 42 and 36, 50, 49,
indicating that the variability did not decrease with the
increase in the number of successful data. These results indi-
cate that both temporal and spatial learning can be advanced
using the proposed method, and variable speed nonprehensile
manipulation can be performed considering the dynamics of
the environment and object.

E. EVALUATION OF GENERALIZATION PERFORMANCE
FOR UNTRAINED OBJECTS
1) DESCRIPTION
Using the self-supervised learning model 2, we evaluated
the generalization performance for untrained objects. The
untrained objects used in this study were the fried egg and
the hamburger-steak shown in the Fig. 15, which weighed
42 g and 89 g, respectively. Three trials each were conducted
under the same conditions of position and task completion
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FIGURE 15. Unlearned objects. left;fried egg,right;hamburger-steak.

TABLE 6. Task success rate for untrained objects.

time as in Section VI-B. Therefore, 297 trials (9 [position]×
11 [completion time] × 3 [trial]) were conducted for each
object. Furthermore, we examined whether fine-tuning the
self-supervised learning model 2 with the autonomous action
data performed on each object would improve the success rate
of the task by learning the physical properties of untrained
objects. In this fine-tuning, only the motion data of a specific
object was used, not the pancake data.

2) RESULT
As shown on the left side of Table 6, the task success rates
for self-supervised learning model 2 were 72.1% for the fried
egg and 73.1% for the hamburger-steak. Because the mass,
friction of the fried egg or the hamburger-steak are very
different from those of a pancake, it is difficult for them to
succeed in the task. However, the self-supervised learning
model 2, which had been sufficiently trained in nonprehensile
manipulation, could successfully perform the task with a high
success rate of more than 70% for unlearned objects.

Furthermore, the task success rates of the NN after
fine-tuning with the fried egg and hamburger-steak
autonomous behavior data is also shown on the right side
of Table 6. The numbers of times the NNs were trained was
8000 for the fried egg task and 8500 for the hamburger-steak
task, and the loss graphs are shown in Figs. 13 (d), (e). The
success rate of the self-learning model with the fried egg
was 78.8%, and the success rate of the self-learning model
with the hamburger-steak was 73.4%, both of which were
slightly better than the results before self-learning. However,
the success rate was below 80%, and the improvement in
task success rate was less significant when compared to the
self-learning of pancakes. Therefore, under the conditions of
this study, it was possible to improve the task success rate of
nonprehensile manipulation by using the proposed method,
though the growth rate was shown to decrease as learning
progressed.

F. DISCUSSION
Fig. 16 illustrates the angular velocity response values of
θ6, θ7 when the task is performed at multiple speeds using

the self-supervised learning model 2. We performed the task
in the posture illustrated in Fig. 17. From Fig. 16 (a), it can
be confirmed that the wrist joints of θ6 are rotated rapidly as
the task completion time becomes shorter. θ6 corresponds to
the snap of the wrist that moves the turner horizontally, and
high-speed rotation of the wrist prevents the pancake from
flying away owing to centrifugal force during the transporting
phase. It was confirmed that the NN learns the inertia caused
by the fast transportation motion. In the angular velocity
response values for θ7 illustrated in Fig. 16 (c), θ7 corresponds
to the snap of the wrist that moves the turner up and down.
Fig. 16 (c) illustrates that the angular velocity in the lifting
phase changes according to the task completion time, and that
the NN generates appropriate motions to prevent the pancake
from slipping off and being thrown away in the lifting phase.

From the above data, it is confirmed that the proposed
method can learn the environment, pancake, and dynamics
between them from the autonomous operation data. More-
over, the results of 2) in Section VI-C indicate that provid-
ing various conditions in the spatio-temporal direction of
interpolation could learn efficient self-learning. Therefore,
we speculate that it is important to train NNs considering both
time and space to efficiently learn the dynamic behavior of
robots.

The experimental results indicated that the self-supervised
learning model 2 was able to reproduce the speed with very
high accuracy, with an error of 0.01 s on average and a
variance of 0.43. However, the error of 48 datasets collected
by humans at 4, 8, and 12 s had a mean of 0.17 s and variance
of 0.46. Hence, self-supervised learning model 2 can perform
the task with higher accuracy than humans. In conventional
imitation learning, all demonstrations have to be taught at
approximately the same speed ofmovement to stabilize learn-
ing. In fact, in our conventional method [19], a human demon-
strated the task while listening to the sound of a metronome,
so that the task execution time would be the same; however,
this was very laborious, and it was also impossible to repro-
duce demonstrations with the same motion speeds. On the
contrary, using the proposed method, accurate speed labels
can be generated later, andmotion speed can be adjusted from
the autonomous motion data obtained from the trained NN.
Hence, humans are freed from collecting data at the exact rate,
and the model itself can be fitted to the exact speed through
self-learning.

The proposed method can learn from all the time-series
data of successful actions, whereas reinforcement learning
learns from rewards determined only by the final states.
Therefore, the proposed method is more sample efficient than
reinforcement learning.Moreover, because imitation learning
limits the range of action by human demonstration, the gen-
erated actions are relatively safe and can be subtly adjusted
with similar autonomous action data. Reinforcement learning
struggles with setting up a reward function that corresponds to
task-related parameters, such as arbitrary motion speed, and
is prone to overlearning for a specific motion speed.
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FIGURE 16. Comparison of angular velocity response values when executing a task at each speed. The dashed lines in (a) and (c) represent
the duration of the transporting and lifting phases, respectively. (b) and (d) focus on the time of the dashed boxes in (a) and (c),
respectively.

FIGURE 17. State of each joint of θ6 and θ7 during task execution.

In the experimental results of Section VI-E, self-learning
for unlearned objects did not significantly improve the suc-
cess rate. We consider that this result is caused by the fact that
the self-supervised learning model 2 has already overlearned
for the pancake. In particular, in the structure of the NN used
in this study, information about the physical properties of
the manipulated object was not input. This means that the
task is being executed with information such as shape and
size unknown. Therefore, when a command with the same
position and task completion time was input, the samemotion
with very little variation was generated without considering
the size and shape of the object. Recently, methods using
raw images have been studied [51], [52]. These studies add
raw images to the NN input and learn to generate appropriate
motions in response to changes in the position, and shape of
the object. Therefore, we consider that the proposed method
will be able to learn motions that consider various sizes, and
shape by adding raw image data to the learning process.
It may improve the success rate of 80% or more for new
objects. However, the input of images makes learning more
difficult. In this case, curriculum learning [53], [54], which
improves the prediction accuracy of the model by initially
learning with data under simple conditions and gradually

making the model more difficult, could be introduced to
solve the problem. The combination of these methods and
the proposed method is expected to be effective for untrained
objects, because it considers the shape and size of the manip-
ulated object and avoids overlearning for a specific object.

As mentioned in the introduction, the field of machine
learning has focused on geometric problems and has insuf-
ficiently considered temporal information such as speed.
However, because several physical phenomena have been
formulated and understood using differential equations, time
information is an important factor in dynamic object manipu-
lation. In the proposedmethod, the dynamics to be considered
in nonprehensile manipulation can be learned by self-learning
using a time index. In addition, the proposed method can
be widely employed for several tasks using the task com-
pletion time as the time index. Therefore, our method is
highly compatible with conventional self-supervised learning
focusing on geometric problems, and when combined with
conventional methods, it is expected to enable more complex
and dynamic behaviors, depending on the environment and
situation. In recent years, research has been conducted to
understand concepts such as color and shape in language and
images from the physicality of the robot using self-supervised
learning [55]. Further development of the proposed method
may lead to the understanding of complex and abstract con-
cepts correlated with speed, such as ‘‘fast or slow,’’ ‘‘strong
or weak,’’ and ‘‘heavy or light,’’ through the dynamic body
movements of the robot.

VII. CONCLUSION
Weproposed a self-supervised learningmethod that considers
speed. In the proposed method, the NN was fine-tuned using
only successful actions among the autonomous action data
generated by the trained NN. Using the proposed method was
able to improve the success rate in both spatio-temporal con-
ditions. Although nonprehensile manipulation requires con-
sidering the dynamics between the environment and object,
and it is difficult to perform the task at multiple speeds,
the proposed method was feasible with as few as 24 pieces
of supervised data. Furthermore, the proposed method was
able to complete the task in a more accurate time than the
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given training data. After self-learning, the NN appropri-
ately altered its force and trajectory according to the task
completion time, confirming that it is capable of learning
the dynamics between itself, the environment, manipulated
objects, and these from automatically generated autonomous
motion data.

In the past, self-supervised learning focused on spatial
information and did not fully utilize temporal information.
The proposed method is compatible with these conventional
methods, expanding the possibilities of self-supervised learn-
ing and contributing greatly to the understanding of dynamic
phenomena in robotic tasks. However, the spatial information
in this study is limited to the center position of the pancake

at the beginning of the task, and the shape and size of the
object were not considered. Therefore, our future work is to
integrate the proposed method with a real-time image-based
motion generation method [51] and a method that consid-
ers the shape and size of multiple objects [52] to expand
the tasks that can be performed by the robot in space and
time.

APPENDIX
The experimental results for the 30 g and 90 g individ-
ual pancakes are presented Tables 7–12. As shown in the
Tables 7–12, task success rates for each model did not differ
significantly with pancake mass.

TABLE 7. Task success rate of the original model for pancake of 30g.

TABLE 8. Task success rate of the original model for pancake of 90g.

TABLE 9. Task success rate of the self-supervised learning model 1 for pancake of 30g.
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TABLE 10. Task success rate of the self-supervised learning model 1 for pancake of 90g.

TABLE 11. Task success rate of the self-supervised learning model 2 for pancake of 30g.

TABLE 12. Task success rate of the self-supervised learning model 2 for pancake of 90g.
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