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ABSTRACT Precise fish metric estimation is essential in providing intelligent aquaculture farm decisions.
Stereo vision has been widely used for size estimation. Still, many factors affect fish metrics accuracy
using a low-cost underwater stereo camera, such as distance, ambient lighting, water velocity, and turbidity.
Although such a system is affordable and energy-efficient, they are less accurate in estimating depths than its
active counterparts. Since power source is always a problem in offshore aquaculture sites, energy-efficient
devices are important. To deal with the accuracy problems of the camera, we propose an effective deep-
learning-based object matching to optimize the fish metric estimation. In terms of the challenges of the
underwater environment, an analysis of the accuracy of the fish 3D position calculation in the aquaculture
cage based on the captured stereo camera images is performed. The analysis assumes a known geometrical
configuration of the rectified camera system. The critical factor limiting the 3D fish metric estimation
accuracy is the resolution of the computed depth maps of fish. An object-based matching is proposed
for underwater fish tracking and depth computing to address this issue using reliable convolutional neural
networks (CNNs). For each stereo video frame, an object classification and instance segmentation CNN
separates the fish objects from their background. The fish objects are then cropped and matched using
sub-pixel disparity computation of the video interpolation CNN. The calculated fish disparities and depth
values are used for fishmetric estimations.We also tracked each fish and computed themetrics across frames.
The median metrics are calculated as the final result to reduce the noises introduced by the different gestures
of the fish. Furthermore, underwater stereo video datasets with the actual metrics of sampled fish measured
by humans are also constructed to verify the effectiveness of our approach. Our proposed method has less
than a 5% error rate for fish length estimation.

INDEX TERMS Convolutional neural network, object tracking, object-based stereo matching.

I. INTRODUCTION
One of the applications of machine learning in computer
vision focuses on the computer’s ability to see and understand
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captured digital images and videos from cameras and sensors.
It involves the acquisition and processing digital images and
uses extracted data to solve problems such as navigation,
tracking, medical visualization, and object recognition with-
out human intervention. It is programmed to process as
a human visual system to understand, detect, and identify
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objects based on their appearance and environment [1].
Recent advances in computer vision combined with AI
and AR are promising areas for research and integration
into underwater environment monitoring and surveillance.
According to Lepetit [2], computer vision (CV) has great
potential for applications in augmented reality. Its ability
to use visual features automatically captured by the camera
makes it possible to create a virtual world taken and based
on a real-world scene, providing high precision and accu-
racy. Three-dimensional (3D) information has been utilized
to improve augmented reality applications. A 3D model of
the environment offers richer interactions with higher-level
engagement. Objects in the 3D model provide greater accu-
racy in being represented in computer-generated elements
and give the users a better sense of these elements in the
real world [3]. 3D modeling in computer vision aims to
recognize 3D objects from visual input. These inputs depend
on the viewer’s direction, the illumination conditions, and the
geometric representations [4]. A 3D model can be used for
measurement and visualizations or a combination of both,
making them applicable to various computer vision prob-
lems [5]. Also, 3D reconstruction deals with producing or
extracting the 3D information of an object through a 3D
point cloud and a depth map or a disparity map. Applications
of 3D reconstruction are evident in robotics [6], [7], [8]],
self-driving cars and navigation [9], [10], object detection
[11], [12], and facility simulations [13], [14], [15]. However,
3D modeling for living or continuously moving fish objects
remains challenging due to the limitation of capturing stereo
images in an underwater environment.

There are two types of 3D reconstruction techniques.
The ‘active’ approach uses an optical sensor and usually
uses LIDAR, which is relatively expensive but requires less
processing to acquire 3D information. The passive tech-
nique uses optical sensors for its 3D reconstruction, but with
many challenging requirements, requiringmore sophisticated
methods [16]. Therefore, many explorations were made using
inexpensive sensors specifically for stereo vision, which is
much cheaper but requires high computational cost. The chal-
lenge for stereo image processing is to provide an accurate
but efficient computational requirement with a faster result
to build the 3D model of the target object or scene.

Stereo vision mimics how the human eye captures and
processes two different views of an object. First, each eye
captures its view of the scene and sends the information to the
brain. Then, it matches and combines the similarities of the
two images and adds the slight differences called disparities
to provide the depth perception [17] needed to generate the
3D information. Using the 3D data and distance from the
camera, the size of an object can be measured. But there
are also many challenges to stereo image processing, such as
estimating the depth of a stereo image pair, occlusions, large
saturate areas, and repetitive patterns [5], [18]. In addition,
the focal axes for camera calibration and image rectification
must be considered to ensure that the epipolar lines of the
two input images are parallel [16]. The generation of accurate

disparity maps in real-time is one of the increasing demands
for stereo image processing. Many existing methods generate
disparity maps at a slow speed but with higher accuracy.
In addition, others generate quickly but with a lower accu-
racy [19]. Nevertheless, the use of stereo systems can be
promising, as they reduce the presence of multipath inter-
ference [20], handle occluded and non-texture regions [21],
and provide robustness over triangulation-based structured
light systems [22]. In stereo vision, there are four stages:
cost matching, cost aggregation, disparity selection, and dis-
parity refinement [23]. The stereo matching problem states
that, given a pair of images taken from a stereo camera and
its epipolar constraints, find the most appropriate matching
patch using the other image [24].

The field of aquaculture has been one of the great con-
tributors to strengthening and ensuring food security, most
especially for high protein sources. As part of aquaculture
production, monitoring fish growth in aquaculture ponds and
cages based on size is very important. The size of the fish is a
crucial parameter for fish stock assessment since it provides
information on the best time for selling, whether the target
fish growth is achieved, and whether fast-growing fish can be
separated from the slow ones [25]. It also helps predict the
daily feed intake to avoid underfeeding or overfeeding, thus
maximizing fish production and farm profit. When combined
with relevant sensors and historical data, images from differ-
ent sites can be used to analyze the fish size, the number of
fish, fish feeding intensity of fish schools, and assessment of
fish diseases.

Traditional approaches to fish length estimation are inva-
sive since it involves directly sampling the fish using a mea-
suring board (ruler) with a scaling unit such as millimeters
or centimeters to measure fish length. Aside from being
laborious, such a method is also prone to inconsistencies
and bias since results are dependent on one’s expertise and
eye direction. Furthermore, invasive procedures to measure
length requires physical capturing and handling of the fish
before adversely affecting their health, growth rate, and qual-
ity of the harvested product due to injury and stress [26].With
the advancement of technology and the integration of com-
puterized systems, specifically computer vision techniques,
fish measurement is now automated. It no longer requires
manual measurement of fish size or length. In the work of
Rahim et al. [27], to lessen the invasive method, the authors
used different types of digital cameras with different camera
positions to perform automatic measurements of fish. The
authors used the fish length from the digital images (FiLEDI)
framework. They used optical theory and image processing
techniques to identify the actual fish size from the captured
image’s pixel value and obtained it. But 2D images are flat
and do not provide the holistic view or volume of the object
and only use length and height as its dimensions; they cannot
accurately measure curved objects. Using an RGB camera,
depth camera, and a remote computer with a centralized
database installed on fishing vessels, Maia et al., [28] inte-
grated fish measurement by auto-detecting the fish boxes
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by acquiring the 3D images. Stereo vision cameras provide
simultaneous views and consider different positions to esti-
mate fish size even in a free-swimming environment such as
ponds/tanks or open cages [29], [30], [31]. Although such a
method works, the cost of equipment, time for image pro-
cessing, and complexity of the camera system are enormous
challenges.

Deep learning methods for stereo image processing are
gaining popularity. Many studies have been involved in stereo
imaging [5], [9], [32], but only a few applications have
been applied to modeling underwater scenes specifically
for fish size estimations. The focus of this paper is the
application of underwater imagery using a low-cost stereo
camera system to capture stereo images from aquaculture
farms and generate 3D objects using deep learning tech-
niques, specifically convolutional neural networks (CNNs)
for fish length estimation. For stereo images, depth infor-
mation and disparity map information are essential for qual-
ity 3D modeling [33], [34], [35]. Underwater images have
more significant challenges, as images that were taken gen-
erally have problems with image degradation, poor con-
trast, blurring, color deviation [36], poor visibility, light
attenuation, and water turbidity [37]. To deal with these
challenges, a low-cost underwater stereo camera system cap-
tures stereo images and matches each fish in the left and
right images using an unsupervised stereo matching neural
network. The dense disparities between the left and right
fishes are computed to obtain the depth map of the 3D
model of each fish. Using this 3D model, the fish’s body
length, height, and width are estimated more accurately. The
estimated values combined with various sensors and weight
regression formulas can establish the growth curve of the
fish.

One potential problem of a low-cost stereo image camera
system is it could be incompletely or incorrectly synchro-
nized, which causes the object’s pose in the left image to be
slightly different from that of the right image. Figure 1 shows
the diagram of our proposed stereo matching for underwater
object reconstruction using the left and right images as the
inputs. The stereo image rectification is a pre-processing
technique to obtain the correct intrinsic and extrinsic parame-
ters by calibrating the stereo camera system. Then, each cor-
rected image is inputted to the instance segmentation neural
network to transform each image frame into a set of fish
objects and background objects. Next, the correspondence
in the left image is searched in the right image to generate
the disparity map for object matching. But a single disparity
value cannot accurately restore the pixel depths of the 3D
object. Also, a more difficult challenge for fish length esti-
mations is that the target fish object has multiple gestures
since it freely swims in the underwater environment, which
brings additional noise inmeasuring the exact 3D information
of the fish. Lastly, the fish might overlap with other fish
in the captured images, degrading the mask accuracy of the
fish objects even with well-designed instance segmentation
CNNs.

In solving these difficulties, the left and right image objects
are cropped and aligned to form the input pair. These images
were further processed using the video interpolation CNN
(VICNN) [38] based stereo matching algorithm, which cal-
culates the residual disparity of each pixel in the left object.
The core of our stereo matching algorithm is VICNN, which
synthesizes the intermediate object to establish the pixel cor-
respondences between the left and right objects. Instead of
using a single frame image, based on the proposed object
matching scheme, we tracked each fish across frames and
calculated a sequence of 3D models to reduce the biometric
noise introduced by the gesture variations of a freely swim-
ming fish. This mechanism is nonintrusive and reduces man-
ual handling of the fish to prevent stress [39] and disturbance
and avoids injury caused by fish catching in estimating the
biological information.

FIGURE 1. Block diagram of our stereo matching-based underwater scene
modeling.

The contributions of the proposed approach are as follows.
First, we proposed a deep neural network that establishes a
real-time pixel correspondence between stereo images. Sec-
ond, our system directly trains the raw data video, which
reduces the deep neural networks training complexity for
3D model reconstruction, and large set of human-annotated
label data requirements for training is eradicated. Third,
using traditional stereo matching algorithms, it is difficult to
establish precise pixel correspondences from the texture-less
stereo images. The integration of interpolated signals of the
matched object pairs ensures the correctness of the com-
puted disparity image from precise correspondences with
minimal object matching error. Next, the object-based stereo
matching optimization algorithm contributes to designing the
image warping of the disparity to minimize the resulting
smoothness. Also, incorporating fish tracking enables our
approach to measure the length of a freely swimming fish
directly from the aquatic pool or aquaculture on-site loca-
tion. Finally, we successfully integrated a low-cost stereo
and power-efficient camera system as our sensor for our data
collection.

The remainder of this paper is as follows. Section 2 pro-
vides the Related Works, Section 3 contains the details of
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our Methods, and Section 3 is on the Experimental Results.
Finally, Section 4 is our Conclusions and Future Works.

II. RELATED WORKS
Traditional stereo matching methods use the low-level fea-
tures of the image patches around the pixel to evaluate the
difference. In addition, many use local methods, where the
disparity with the lowest matching cost is selected. The dis-
parity obtained from this method is high-quality but time-
consuming. On the other hand, a semi-global method trades
off the computational requirement and the time the results.
But these two traditional methods are still limited and yield
a poor depth map quality [40]. Also, conventional matching
methods are problematic regarding wide baseline image fea-
ture extraction and the reliability of its feature descriptors and
matching measures [41].

Many successful works progress stereo image processing
systems using neural networks and deep learning to improve
the traditional methods. Deep learning methods have signifi-
cantly gained popularity by contributing impressive results to
improve various computer vision tasks. Although it requires
vast training data sets and high computational power to pro-
duce better results, the availability and improvement of com-
puting resources make it less of a barrier [40]. Convolutional
neural networks (CNNs) have achieved great success in stereo
matching as they can learn more complex, robust, and pow-
erful deep feature representations than conventional stereo
matching methods. Its robust feature representation is very
suitable for the stereo matching problem as it measures the
similarities between pixels of two images using deep features
for more powerful and accurate matching results compared to
handcrafter features [42].

In recent years, challenges involving various stereo match-
ing algorithms for high performance in terms of matching
and reduced processing time apply to real-time require-
ments. There have been trade-offs in quality and processing
time, but developing an algorithm that can do both would
be very promising. In the work of Zhang et al. [43], the
authors proposed an improved binocular stereo matching
algorithm based on Minimum Spanning Tree (MST) cost
aggregation. The height of the MST is used for parallel
processing to speed up computation. Although the process-
ing time has been reduced, one has to consider the quality
of the matching results as an essential attribute. In imple-
menting stereo matching techniques, an adaptive window has
been widely used. The selection of a matching window can
affect the performance of the matching algorithm. In the
work of [44], an adaptive window and semi-global match-
ing algorithm and the sum of absolute differences calculate
the matching cost. Many works also focused on determin-
ing the size of window-based to perform stereo-matching
requirements [45], [46], [47].

Many works also supported CNN stereo matching
to improve the accuracy of the matching results [48].
Xia et al. [49] optimized the 3D convolution kernel of the
Pyramid Stereo Matching and reduced the computational

complexity without losing its accuracy. A two-branch con-
volutional sparse representation model is proposed by
Cheng et al. [50] to reduce the heavy load of labeling ground
truth disparities. Their proposed approach learns the con-
volutional filter from stereo image pairs and does not rely
on ground truth disparity maps. AdaStereo aims to align
multi-level representations for deep stereo matching net-
works. A non-adversarial progressive color transfer algorithm
is integrated for input image-level alignment. The authors
also designed an efficient parameter-free cost normalization
layer for internal feature-level alignment achieving state-
of-the-art disparity networks fine-tuned with target-domain
ground truths [51]. Wang et al. [52] created a pyramid vot-
ing module (PVM) by first building its multi-scale cost
volume and later adopting a recurrent unit to iteratively
update disparity estimations at high resolution. An improve-
ment in segmentation accuracy of 3% by [53] by extend-
ing DeepLabv3+ for the image segmentation network.
It improved the appearance of the segmented target objects
and retained more feature information. In the work of
Jia et al. [54], the authors used a 2D encoder-decoder network
to generate a rough disparity map and construct a disparity
range for the 3D aggregation network. Their work showed
a significant improvement in accuracy and reduced memory
costs simultaneously. The stacked hourglass structure also
refined the disparity from coarse to fine. Also, a multi-cross
attention model for stereo matching improved the matching
accuracy and effectively provided an end-to-end disparity
regression. The stacked hourglass was utilized to extract
the characteristics of the low-resolution feature images [55].
The datasets used in testing and training the networks were
publicly available stereo image datasets. There is a need to
implement underwater datasets for training and testing to find
their appropriateness for such an environment to generate 3D
models for fish and length estimations.

Some works also integrated deconvolution networks as
an application in stereo matching. Deconvolution methods
are beneficial for eliminating image defects and increasing
resolution. In the work of Cheng et al. [56], their method
help improves the performance of conventional deconvolu-
tion networks (DN) and reduces the computational require-
ments. Also, in the paper of Ma et al. [57], a deconvolutional
network was utilized to enlarge the size of the input feature
map. The de-convolved features of the left and right image
patches are fed into the successive convolutional layers with
max-pooling to obtain its compact features. Although DNs
seem to provide improved results, they demand high compu-
tational requirements when performing multi-layer convolu-
tion sparse decomposition on images, require more powerful
machines to perform efficient processing, and are prone to
blur degradation.

Recently, works on underwater stereo-matching algo-
rithms have also been available. Based on the belief propaga-
tion (BP) network, Xu et al. [58] utilized the Markov random
field (MRF) model. The estimated disparity map is calcu-
lated using BP on an MRF model consisting of an observed
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and hidden node representing the matching cost and dispar-
ity value, respectively. To ensure that the stereo-matching
method reflects the underwater environment, an energy func-
tion based on the degradation of images was added to repre-
sent the brightness change caused by light illumination. Even
though such an approach stimulates an underwater environ-
ment, it still does not cover other factors such as turbulent
water where the image geometry is being distorted, and the
objects are fixed and non-moving, which does not represent
a natural environment for aquaculture farms.

Disparity refinement helps eliminate mismatches caused
by occlusion, low texture, and many others. Popular refine-
ment methods are based on the consistency check of the
left and right two disparity maps [59] to ensure that noise
was reduced or eradicated to achieve a higher accuracy rate.
However, images for stereo vision are prone to texture-less
regions and false matches due to the uniqueness of their
area pixels, which affect the accuracy of disparity maps.
Regularization helps smoother disparity maps by eliminating
and filtering the image noise in the map. Adding TVL1 as
an additional term help eradicates noise and edges for optical
flow optimization. Also, including VICNN specifically inter-
polated signals in our approach helps compute disparity with
increased accuracy using precise correspondence to lessen
object matching error.

Deep learning has been integrated into fish length estima-
tion, especially morphological features [60]. A deep learning-
based segmental analysis was used [61] to determine the
length feature of fish by analyzing the completely visible fish
(CVF) segments such as head, body, and tail. Fish length is
estimated using the CVF. The work of Yu et al. [62], [63]
usedMask-RCNN to implement pixel-level instance segmen-
tation to segment fish morphological features. The fish body
image is first pre-processed and augmented and then fed
into the Mask-RCNN for training to obtain the segmented
image and parameters of the target frame. The fish length is
generated by calculating the number of pixels in the detection
frame and mapping it to the actual fish feature parameters.
Also, a CNN classifier was developed to detect the regions
of the fish head, tail fork, and color plate. The fish body
length is estimated using the distance between the snout and
fork points using a pixel-to-distance ratio and an accuracy
of 98.78% [64]. Another morphological feature was used to
estimate fish measurement using U-Net. In the work of [65],
the U-Net structure was improved by using 3 × 3 dilated
convolution with a dilation rate of 3 and 1 × 1 convolution
that replaced the 3 × 3 convolution of the original network.
The result shows that the improvedU-net has a better segmen-
tation effect on the fish edge and reached 97.6% accuracy.
The results of these approaches are promising, but the authors
used an image of a captured and un-moving fish in training
their neural networks. The underwater environment with a
free-swimming fish was not considered.

On the other hand, three-dimensional (3D) references have
also been utilized to estimate the fish size. Risholm et al. [66]
used an underwater 3D ranged-gated camera to perform fish

length estimation of free-swimming fish with an algorithmic
pipeline to detect, track and estimate fish length stages with a
length estimation error of 1%. DBScan clustering algorithm
takes the depth frame and produces a segmentation of the
detected fish. The results are expected to have a high accuracy
rate since they used a ranged-gated underwater 3D camera
with high-resolution underwater intensity and depth images,
which requires a much higher implementation cost and more
energy to operate, which is a challenge in the open sea
aquaculture environment. Our approach used a low-cost and
power-efficient stereo camera system to estimate fish length.

III. MATERIALS AND METHODS
A. RELIABLE OBJECT MATCHING WITH SEMANTIC
SEGMENTATION CNN
As shown in Figure 1, our approach integrates camera cali-
bration for preprocessing as the first stage to obtain the stereo
system’s correct intrinsic and extrinsic parameters. Then, the
internal and external parameters are inputted into the image
rectification process to obtain the rectified images. This rec-
tification process projects images using a common horizontal
image plane as it twists back the left and right image pixels
to have the exact coordinates in the horizontal plane. Image
rectification yields all epipolar lines to be parallel in the
image plane. For illustration, we assumed that the input stereo
images were rectified before being applied to the proposed
system for further processing.

FIGURE 2. The capturing theory of the stereo camera system: (a) an
example of the captured stereo images; (b) the theory to compute the
disparity and depth of the object. The y-axis is perpendicular to the
page [67].

Each rectified left and right image pair is first inputted to
a semantic segmentation neural network [68] with excellent
object detection and segmentation performance. The seman-
tic segmentation CNN transforms each frame image into a
set of reliable fish objects and the background object. Let OL

t
(OR

t ) and O
L
t+1 (OR

t+1) be the tracked object in frames t and
t+1 of the left (right) video, respectively. The object pair (OL

t ,
OR
t ) is a stereo object if the matched cost between OL

t and
OL
t+1 is small, and their motion vectors are similar. Given the

objectOL
t , the basic processing of object matching is to search

the corresponding object OR
t in the right image along the

x-axis since the images have been rectified to have a
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horizontal epipolar geometry. Figure 2 depicts the basic
concept of image capturing using a stereo camera system.
In Figure 2, the foreground object, i.e., the fish, is overlapped
with different backgrounds in the rectified left and right
images, which decreases the accuracy of object matching.
Thus, we perform the semantic segmentation CNN to obtain
the masks of OL

t and OR
t , in which the backgrounds are

removed.
The object matching scheme first computes the motion

vector between OL
t (O

R
t ) and O

L
t+1(O

R
t+1) based on the com-

putation of the matching cost with the object pair (OL
t ,O

L
t+1)

((OR
t ,O

R
t+1)) as the input. The matching cost between objects

Ot andOt+1 is measured by aggregating pixel-wise matching
costs in both objects with the support weights [69]. Let xt
(xt+1) be the center of the object Ot (Ot+1). The support
weight between pixels x1 and x2 is defined as

w (xt , xt+1) = exp(−((1cxt ,xt+1
/
σc)+ (1gxt ,xt+1

/
σg)))

(1)

where 1cxt ,xt+1 and 1gxt ,xt+1 represents the color difference
and the spatial distance between pixels xt and xt+1, respec-
tively; σ c is the variance of color difference; σ g is determined
according to the size variance of all the objects. The value
of w (xt , xt+1) measures the strength of the pixel correspon-
dence (xt , xt+1). Notice that the motion vector of the pixel xt
can be computed as uxt = xt+1−xt . To assume every pixel in
Ot would have a similar motion vector, we can compute the
matching cost of the object pair (Ot ,Ot+1) by combining the
pixel-wise support-weights in both objects:

E (xt , xt+1)

=

∑
pt∈Ot ,pt+1∈Ot+1 w (xt , pt)w (xt+1, pt+1)1cpt ,pt+1∑

pt∈Ot ,pt+1∈Ot+1 w (xt , pt)w (xt+1, pt+1)
(2)

where the pixel pair (pt , pt+1) is constrained to have the
motion vector uxt . Using (2), for each object Ot in frame t,
we can define the matched objectO∗t+1 with the center at x

∗

t+1
in frame t + 1 as

O∗t+1 = arg max
Ot+1∈St+1(xt )

E (xt , xt+1) (3)

where St+1(xt ) is the set of all possible objects within the
search window with xt as the center in frame t + 1.
Once the motion vector uLt (uRt ) of the object O

L
t (OR

t ) is
determined, the matching cost defined in (2) for stereo object
searching can be refined as

ES
(
xLt , x

R
t

)
= E

(
xLt , x

R
t

)
+ λ

∥∥∥uLt − uRt ∥∥∥2 (4)

where xLt and xRt be the center pixels of OL
t and OR

t , respec-
tively;

∥∥uLt − uRt ∥∥2 is theL2 distance betweenmotion vectors
uLt and uRt ; λ > 0 is the Lagrange multiplier. Using (4),
for each object OL

t in the left image, we can define the
best-matched object OR∗

t with the center at (xR,∗t , y) in

the right image as

OR∗
t = arg min

ORt ∈SO
ES
(
xLt , x

R
t

)
(5)

where SO is the set of all possible objects in the right image
for matching the object OL

t . Notice the disparity of object O
L
t

with the center pixel xLt can be computed as dOLt = xLt −x
R,∗
t .

FIGURE 3. Establishing the stereo matching algorithm for residual
disparity computation based on the video interpolated CNN: (a) the
underwater stereo imaging system; (b) the schematic diagram of using
the stereo imaging system to monitor underwater fish; (c) given a pair of
rectified stereo underwater images (O′,L

t ,O′,R
t ), the video interpolation

CNN (VICNN) [9] produces a set of pixel-wise kernels KL and KR for
synthesizing the middle object O′

t+1/2 and the displacement
image DL→R

t .

B. PIXEL-WISE RESIDUAL DISPARITY ESTIMATION WITH
VIDEO INTERPOLATION CNN
Obviously, the pixel-wise motion vectors (optical flow) in an
object are similar but not the same because individual parts
of the object might perform different actions. Similarly, the
pixel-wise disparities of an object are not the same as that of
center pixel since the depth information of a real-world 3D
object is not the same everywhere. Asmentioned above, given
a detected object pair (OL

t ,O
R
t ), Equation (5) can compute the

basic disparity for each pixel inOL
t . Obviously, for each pixel

x in OL
t , this disparity difference 1dx should be estimated to

model the disparity of x as

dx = dOLt +1dx (6)

where dOLt is the disparity value of the center pixel x
L
t defined

by Eq. (5). Suppose we translate the centers of matched
objects into the common original point (0,0). In that case, the
left and the right object are aligned with each other and form
a new object pair (O′,Lt ,O′,Rt ) which can be used to estimate
the pixel disparity difference 1dx of the pixel x∈ OL

t .
Figure 3 shows the proposed stereo matching algorithm

based on the video interpolated CNN (VICNN) [38], syn-
thesizing the middle object O′t+1/2 with the object pair

(O′,Lt ,O′,Rt ) as the input. For each pixel x in O′t+1/2, the
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VICNN computes a pixel-wise kernel pair (KL(x),KR(x)) to
interpolate the pixel value of x = (x, y) in O′L,R using the
following equation:

f (x) = < KL (x) ,PL (x) > + < KR (x) ,PR (x) > (7)

where 〈·, ·〉 is the inner product operator; PL (x) ∈ O′,tt
and PR (x) ∈ O′,Rt are patches with the common center x.
The kernel pair can also be used to compute the disparity
difference of x:

1dx = < KR (x) ,Ux (x) > −< KL (x) ,Ux (x) (8)

whereUx is the x-displacement matrix withUx
(
x ′
)
= x ′−x.

Eq. (8) defines the displacement image as

DL→R
t = {1dx}x∈O′,L

t
. (9)

Although CNN-based video interpolation can generate
accurate interpolated images for both uniform regions and
edges, it cannot ensure the correctness of displacement vec-
tors for pixels in the uniform areas. Therefore, instead of
proposing a new architecture for VICNN, we modified the
loss function used by VICNN by adding additional metrics
to improve or optimize and further re-train VICNN using our
own set of underwater training videos to precisely generate
the displacement imageDL→R

t for the underwater image pair
(O′,Lt ,O′,Rt ).

We revised the training procedure of the original VICNN
by integrating the total variation of the detected displacement
vectors to ensure that the estimated displacement vectors will
be very smooth. The authors of VICNN [9] used two input
receptive patches Ri,1Ri,2 at the center of

(
xi, yi

)
with the

corresponding input patches P i,2P i,2 which are smaller than
the receptive field patches where both are also centered in
the same location. C̃ i is the ground truth color and Gi is the
ground-truth gradient at

(
xi, yi

)
. Initially, the loss function

measures the difference between the interpolated pixel color
and its corresponding ground-truth defined as:

EC =
∑
i

∥∥∥[P i,1P i,2] ∗ K i − C̃ i

∥∥∥
L1

(10)

where subscript i is the ith training example and K i is the
output of the neural network’s convolutional kernel. Using
only the color loss and even with the integration of L1 norm,
which is the sum of the absolute values of the distances in the
original space to preserve the edges of the image [70], still
leads to a blurry result. The integration of gradients in the
loss function corrects the shortcoming of the color loss. The
gradients of the input patches are first computed, followed by
convolution using the estimated kernel, which generates the
gradient of the interpolated image at the pixel interest. Based
on the eight immediate neighboring pixels, eight versions of
gradients were computed using finite difference and all added
into the gradient loss function defined as:

Eg =
∑

i

∑8

k=1

∥∥∥[Gk
i,1G

k
1,2

]
∗ K

i
− G̃

k
i

∥∥∥
l1

(11)

where k belongs to the eight ways to compute the gradient.
Meanwhile, Gk

i,1 and Gk
i,2 are the gradients based on input

patches P i,2P i,2 and the input ground-truth gradient is in G̃k
i .

The final loss of VICNN combines the color and gradient
loss as

Ef = Ec + λ · Eg (12)

where (λ= 1) determines the smoothness of the output.
To verify the quality of the displacement vector estimation
of the original loss function (Ef ) of VICNN, we also add
TVL1 [71] factor as an additional term of (12), a popu-
lar approach to remove impulse noise and preserve image
edges [70] to optimize the optical flow detection. We inte-
grated the sum of the gradient values of the displacement
vectors, i.e.,

∣∣∇DL→R
x

∣∣ + ∣∣∣∇DL→R
y

∣∣∣ as the total variation
function for x, y to smoothen the results of the detected
displacement vectors. The final loss function EF is denoted
as

EF = (Ec + λ · Eg)+ (
∣∣∣∇Dul→r

t,x

∣∣∣+ ∣∣∣Dul→r
t,y

∣∣∣). (13)

The gradient provides shape information and TVL1
for temporal information and will increase its dis-
placement vector estimation’s overall robustness and
reliability.

In training the neural network, image ground truth is
needed to train the parameters of the neural network.
We follow the concept of VICNN using three consecu-
tive video frames of both the left (ILt , I

L
t+1, I

L
tC2) and right

(IRt , I
R
t+1,I

R
tC2) incorporating the second frame (IRt+1) as our

ground truth and will help determine the final parameters
of VICNN to generate the displacement vectors using (8).
Figure 4 shows an example to estimate the final disparity
image of the target based on the object-based stereo matching
algorithm.

FIGURE 4. An example of the underwater fish object disparity estimation
using the proposed approach: (a) the original stereo images; (b) the
rectified stereo images; (c) the interpolated image of (b); (d) the
computed disparity image of the fish object in (c) [67].
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C. 3D OBJECT RECONSTRUCTION FOR FISH METRIC
ESTIMATION
Once the disparity value of pixel i in OL

t has been computed,
the depth value of the pixel and its 3D coordinates can be
calculated as

[Xi,Y ,Zi] =
[
(xi − cx) ∗ Zi

/
f ,
(yi − cy) ∗ Zi

/
f ,
f ∗ b/

di

]
(14)

where f is the camera’s focal length; b is the baseline, defined
as the distance between the centers of the left and right
cameras; (cx , cy) is the optical center in the image plane; di is
the computed disparity value of pixel i. For each pixel in the
object OL

t , we use Eq. (14) to compute its corresponding 3D

point. This also defines the point cloudPLt = {(Xi,Yi,Zi)}
|OLt |
i=1

of the fish contained inOL
t . Then we perform Singular Values

Decomposition (SVD) for the 3D point cloud PLt and the
matrix can be disassembled to generate the following:

PLt = U6VT (15)

where 6 is a diagonal matrix composed of three eigenval-
ues λi = 1, . . . , 3; the columns of U and V are called
the left-singular vectors and right-singular vectors of PLt ,
respectively. Without loss of the generality, we often have
V = [vi]3i=1, where vi is the i-th eigenvector of the matrix PLt .

FIGURE 5. The fish objects are labeled either ‘side’ or ‘front’ view for
training our semantic segmentation CNN: (a) example of the ‘side view’
fish; (b) example of the ‘front view’ fish; (c) the body length L and body
height H of (a); (d) body height H and body width W of (b);
(e) segmented fish objects with correct posture labels from the input
image in the testing phase.

For each point p ∈ PLt , we project p onto the three eigen-
vectors v1, v2, v3 (defined by the matrix V ) to get the new
3D coordinate points:

[X ′i ,Y
′
i ,Z
′
i ] =

[
< X ′i , v1 >,< Y ′i , v2 >,< Z ′i , v3 >

]
,

i = 1, . . . , |OLt |. (16)

The converted coordinate points estimate the body length L,
body heightH , and bodywidthW of the fish based on the fish
posture recognition result. As shown in Figure 5, the training
fish objects are labeled either ‘side view’ or ‘front view’
to train our semantic segmentation CNN to segment fish
objects with correct posture labels from the input image in

the testing phase. Based on the posture label and the converted
coordinate points using (16), the formula to estimate the fish
metrics is as follows: L
H
W

=

max
i
(xi)−min (xi)

max
i
(yi)−min (yi)

max
i
(zi)−min (zi)

 , if OLt is′ side view′. (17)

In this work, the objects identified as ‘side view’ class are
considered the reliable ones for fish metric estimation, while
the ‘front view’ objects are skipped to avoid extra noise in the
fish metric measurement results.

Another factor that affects the estimation accuracy of
underwater fish metrics is the distance b between the left
and right camera lenses. The larger the value of b, the more
accurate the fish metrics will be. However, increasing the
distance requires a large stereo camera which is difficult to
use in offshore cages. Thus, we used a small value of b
(b = 11.4 cm) to set up the camera though it is limited in
measuring the metrics of the fish far away from the camera.

FIGURE 6. Images of fake fish at distances of 70, 90, 120, 150, 180, and
200 cm from the stereo camera lens.

We perform different experiments with this set of cameras
to determine effective ranges. First, we used a fake fish with
a body length of 30 cm with a distance of 70 cm and 90 cm
from the lens. To test further, we also used shooting distances
of 120 cm, 150 cm, 180 cm, and 200 cm, as shown in Figure 6.
After calibrating the captured images, we used the method
proposed in this paper to estimate the body length and use the
error between the estimated body length and the actual body
length for comparison. Finally, we compared the results of
the estimated body length of the fish using our captured fake
fish images using different distances to get the best result.
Based on Table 1, the highest error rate (9.6%) is at a 200 cm
distance and is considered the maximum effective distance
range from the camera lens. Therefore, fish more than 200 cm
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away from the camera lens are discarded in the body length
estimation due to a higher error rate.

TABLE 1. The percentage error in estimating the body length of the fake
fish using different distance.

IV. EXPERIMENTAL SET-UP AND DATASETS
We used two GoPro cameras to attain the stereo camera
lens setup, as shown in Figure 3(a). The computer used
for training the neural network for object detection, image
matching, and 3D reconstruction is an Intel Core i7 -8700
3.2GHz CPU, 32.0GB RAM, and NVIDIA GeForce GTX
1080ti GPU using the Python environment. The Pool 13 of
the University Aquatic Center is located at the National
Taiwan Ocean University in Keelung City, with 150 porphyry
sculptures, and the Pingtung Hengchun Aquaculture site with
approximately 40,000 golden pomfret was the experimental
environment. Two environments were considered to ensure
that our approach works for less dense and highly dense
aquaculture tanks or cages. The video collected from these
locations was used to train and test the neural network using
the stereo camera to capture the left and right images.

Figure 7 shows the labeled images for training our semantic
segmentation CNN and the video interpolation CNN. Four
videos with a total of 2 hours, 25 minutes, and 3 seconds were
taken from the A13 Aquatic Center Pond, while four videos
with a total of 1 hour, 29 minutes, and 41 seconds from taken
from the Henchun Ocean open-sea cage for the experiment.
Leave-one-out cross-validation technique was employed for
the distribution of our training and testing datasets which is
very appropriate for small datasets. We utilized n - 1 video
data for training while the remaining video was used for
testing. The same process is repeated until the last video is
utilized. The video used for test data in the previous iteration
is no longer used for the next iteration.

V. EXPERIMENTAL RESULTS
The stereo camera captured the left and right underwater
images and passed through the Mask_RCNN neural network,
where the fish and the background are segmented through
instance segmentation. The experiment uses two fish species:
the ponds contain porphyria sea bream, and the Hengchun
ocean has the golden pomfret. In training the Mask-RCNN
neural network to perform instance segmentation, we manu-
ally labeled the images and utilized 200 images for the train-
ing data and 500 images for the testing data taken from the
Aquatic Center with an accuracy rate of 90%. The segmenta-
tion results are shown in Figure 8. Meanwhile, from the data

FIGURE 7. Stereo video datasets for training and testing: (a) images from
the Aquatic Center; the upper row is the original image, and the bottom is
the labeled data; (b) images captured from A13 Aquatic Center Pond; and
(c) images captured from Henchun Ocean open-sea cage.

collected from the Hengchun aquaculture site, 500 images
were used for the training and 800 images for the testing with
an accuracy rate of 85%, and segmentation results are shown
in Figure 8(b).

FIGURE 8. Segmentation results: (a) A13 pool in the Aquatic Center and
(b) from the Hengchun offshore fish cage.

The Mask-RCNN training and testing loss result is shown
in Figure 9. As reflected in the loss curves for training and
testing, the loss value close to zero is at the 200th iteration.
Segmenting underwater target objects from their background
is challenging considering fish’s continuous or active move-
ment, varied textures, quality of water, and luminosity. These
problems should be regarded as a requirement to create a
robust and accurate fish detection for fish length and density
estimation.

The detection accuracy results for the two data collection
sites for Mask-RCNN are shown in Table 2. Accuracy has
different results for the two environments since the quality
of the collected video data varies regarding water quality and
turbidity and affects the identification of the target objects.
Video collected from the pool environment with fewer fish
populations has a higher accuracy rate of 95% compared to
the open fish cage with a dense fish population of 90%.

After rectification, the proposed object matching scheme
tracks objects across video frames. It searches the matched
right object for each left object, whose initial disparity value
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FIGURE 9. Mask-RCCNN (a) training loss and (b) test loss for the A13 pool
at the Aquatic Center and (a) training loss and (b) test loss for Hengchun
offshore fish cage.

TABLE 2. Mask-RNN detection accuracy results.

is determined by the displacement vector between the centers
of the matched objects. The results of pairing the 3D object
using the left and right images are shown in Figure 10. The
matching accuracy for the images collected from the A13
pool of the Aquatic Center is 90%, while the Hengchun open-
sea cage is 80%. The lower result from Hengchun is due to
the highly dense fish population, making it hard to perform
matching due to high fish object overlaps.

We used the Mask-RCNN to segment the fish object and
separate it from the background, followed by image cropping.
The segmented cropped image is used for initial disparity
computation, and then the 3D object is obtained by subtract-
ing the object’s center point. But using such an approach
will cause all pixels of the target object to be the same, with
a disparity result. Furthermore, when such an approach is
integrated into the 2Dmeasurement method, there is a consid-
erable loss of information with the original three-dimensional
object.

We integrated interpolated signals using the cropped seg-
mented images as input to the VICNN [38] for disparity
fine-tuning to improve the result and achieve a minimal
matching error. First, the VICNN will do the video warping
and object interpolation, followed by optical flow estimation.
Then, the resulted optical flow is used to obtain the disparity.

FIGURE 10. Matching results of 3D objects where the top is in the A13
pool in the Aquatic Center and the bottom is in Hengchun offshore fish
cage.

The VICCNN is trained in advance, and the parameters
have been optimized to get high-quality synthetic interpolated
results. The neural network also produces an optimized pixel-
wise kernel for the interpolation work, thus improves gen-
erates a pixel-wise residual disparity result. The comparison
using the two fish cages of the initial disparity from the fine-
tuned disparity is in Figures 11 and 12, which show changes
in the original objects after disparity fine-tuning.

FIGURE 11. Initial and fine-tuned disparity results with the side and front
fish positions in the A13 pool of the Aquatic Center.

FIGURE 12. Initial and fine-tuned disparity results with the side and front
fish positions in the Hengchun ocean open sea cage.

Figure 13 shows the results for comparing the dispar-
ity of the stereo image matching using our approach with
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semi-global block matching (SGBM) [72] that integrates
pixel-wise matching based on mutual information and the
approximation of the global smoothness constraint. SGBM
detects occlusions and disparities using subpixel accuracy.
The results using our video interpolated optical flow, even
with poor image quality due to water turbidity, have better
disparity results with the results generated by SGBM. This
is because the structure or appearance of the fish using our
method is more visible and apparent. To calculate the dispar-
ity of pixel x in the objectOl , the depth value of pixel x and its
3D coordinates X ,Y ,Z are [X ,Y ,Z ] = [(x−cx) ∗ Z/f , (y−
cy)∗Z/f , f ∗b/dx], where f is the focal length of the camera
and b is the baseline or the distance between the center of
the left lens and the center of the lens. The said formula is
used to convert the 2D coordinate of the object Ol into a 3D
point cloud coordinate. To perform filtering for better results,
we modified the outlier point cloud.

Based on our fake fish experiment results in Table 2, we set
the most effective stereo camera lens distance at 200 cm. Fish
beyond that distance are discarded since they will obtain a
significant error affecting our fish length estimation accuracy.
The stereo camera system is an affordable device to get the
image depth and can be used to estimate object size, but it is
only limited to a certain distance; such intervention was made
to address its limitations and ensure the best optimization
results.

We also considered the continued movement of the fish,
where their body and tails swing while swimming, which
makes their estimated body length different for each frame.
We used a tracking method to estimate the fish body length
in each frame and calculate the average with the accumulated
body lengths of other frames. The obtained average value will
be used as the final estimated body length.

To verify the error value with the actual body length of the
fish, we track a single fish and measure its body length in full
frames. We first manually measured the exact body length
of the single fish (30.8 cm), placed it in the water tank, and
took a video using our low-cost stereo camera. We tracked
this fish by capturing the left and the right images and then
estimated the body length in full frames. Since the estimated
body length of the fish is not consistent for each frame due to
its continuousmovement, we considered the final body length
by getting the average of the body length for each frame.

The body length estimation of the single fish using
20 frames is in Figure 14, where the average body length is
20.895 cm, with an average error of 2.38%. The maximum
error is in Frame 2 at 5.52% error. The average body length is
computed as 1

n

∑n
i=1 Xi while the average error is calculated

using 1
n

∑n
i=1 Ei where Xi is the estimated body length and

Ei is the error value for each frame n. To calculate the length
error value (e) for each frame n, we use

e =
actual body length estimated body length

actual body length
× 100.

Figure 15 is an illustrative diagram of our proposed
effective range filtering, executed after the 3D estimation.

FIGURE 13. Image matching disparity comparison where (a) is the
original image, and the generated disparity results are (b) our video
interpolated optical flow and (c) the semi-global block matching [72].

FIGURE 14. Tracking result of a single fish using 20 frames.

Figure 15(a) is the result of the instance segmentation from
the collected video from Cage-1; (b) is the disparity image
result, and the blue dots in (c) represent 12 segmented fish
images from (a). The depth value of the fish is the 3D point
cloud depth value where the fish is closest to the lens. There-
fore, the effective range is filtered based on the depth value,
and only the fish within the 50 - 200 cm range was estimated
in terms of body length.

Estimating the stereo-correspondence in the underwater
environment is very difficult and is affected by water tur-
bidity and varying ambient lighting. Water current is also a
factor in an open sea cage where fish freely swims in the
broader area. Fish also deform as they swim,whichmay cause
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FIGURE 15. 3D estimation using an effective range where (a) is the
instance segmentation result of one frame, (b) is the disparity image, and
(c) is the chart representing the depth value of each fish detected and the
depth value of the 3D point cloud where the fish is closest to the lens.
The effective range is filtered based on the depth value using the range
50 to 200 cm within the red line in the graph; only those within the
effective lens distance are estimated in body length.

self-occlusions [66]. To make the system robust, tracking the
fish for a more extended period is essential. We performed a
tracking mechanism estimating a precise length of a fish that
was previously measured and are swimming freely in a tank
using 20 frames to consider the different fish positions. The
fish length is estimated in each frame and aggregated all the
length estimates in each track.

The information in Table 3 shows the manual measurement
of the body length of the fish and the estimation results. Its
corresponding estimation error using 2D, 3D, and estimation
using the most effective camera lens distance (50 cm to
200 cm). The fish outside the effective range were discarded
due to a high error rate based on the earlier experiment.

For the 2D measurement, we used the flat left and right
images and combined them to generate a single image as the
source image. The fish is first segmented, and the straight line
of the segmented fish body part is used as the fish length.
The fish length is calculated from its nose to the tail fork
with the longest axis using the pixel-wise measurement of
the segmented fish image. The 2D measurement has some
problems since the body of the free-swimming fish is not
straight, which makes the length measurement inaccurate.

For the 3D measurement, we used the depth and 3D coordi-
nate positions since there are instances where the fish body is
in a curve form or different posture. We measured the length
of the fish by the distance of the fish from the camera. The
results show that the error of the estimated body length after
the 3D reconstruction is significantly reduced compared to
the results from the 2D estimation. Integrating the effective
camera distance for the Porphyry seabream fish located in a
smaller pond area seems insignificant in the error reduction
since it has almost the same results as the 3D estimation,
unlike the results for the golden pomfret with a significant
error reduction. The effectiveness of camera distance is more
relevant to large fish cages, as manifested in the result for
golden pomfret located in an open cage with more transparent
water and a larger fish cage size. When the water is clear, the
fish can still be seen even far from the stereo camera lens;
thus, discarding the fish outside the effective camera distance
will significantly reduce error for large cages.

TABLE 3. Manual fish size measurement and the different methods used
to estimate the fish body length.

VI. CONCLUSION AND FUTURE WORKS
Our proposed approach provides fish metric estimation for
the fish species Porphyry seabream and Golden pomfret with
only less than a 5% error rate when compared to the manual
measurement when the fish is tracked using multiple frames.
For our effective distance range, we established a distance
from the camera range to be 50 cm to 200 cm only since
fish outside this range tend to give high accuracy error. The
distance limitations are one of the drawbacks of using a low-
cost camera system. For the 3D metric estimation in the
natural aquaculture environment, incorporating an effective
range has the lowest maximum error rate of 3.59% and 6.62%
for the low and high dense cage, respectively. These results
significantly improved the 3D metric estimation, especially
for highly dense fish cages. Meanwhile, the 2D measurement
has the highest error rate of 28.86% and 47.41% for these two
types of cages.With these results, our proposed stereo camera
system.

To deal with the limitations of the distance or range of the
low-cost stereo camera system, more mechanisms should be
incorporated to increase the accurate range or distance for
the measurement to ensure that more fish objects are covered
for better accuracy results. For the next step of our research,
we will add more video datasets to train our instance segmen-
tation neural network, especially for highly dense fish cages,
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to improve its accuracy performance. Increasing the fish seg-
mentation result will significantly affect the performance of
our fish length estimation. We also plan to combine a stereo
camera with a sonar system to generate a more accurate and
precise method for measuring fish body length and weight.
Fish species identification using the sonar enables the relative
sonar to provide a depth reference value for 3D images,
so combining them will improve the estimation accuracy.

Despite the limitations of the low-cost stereo camera sys-
tem, its capabilities are already promising to provide an auto-
matic and non-invasive fish metric estimation that reduces
fish stress and can help farmers determine their current fish
farm conditions. In addition, the information provided by
the fish metric estimation can be integrated to establish fish
weight conversion and growth curve, and incorporating the
feeding data can derive the meat exchange rate.
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