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ABSTRACT This paper presents an approach to the problems of detection and frequency estimation of a
frequency modulated narrow-band signal in additive complex Gaussian noise. The signal is assumed to have
an unknown amplitude, initial phase and frequency trajectory over time, while a priori information regarding
random frequency variability is taken to be available. The proposed approach operates in the frequency
domain and uses themagnitude and phase of the discrete-time Fourier transforms computed over nonoverlap-
ping signal segments. Robustness at low signal-to-noise ratios is achieved by suppressing the segment-related
likelihoods for which the phase estimation error is large. The approach utilises unthresholded transform
data and thus works in a track-before-detect manner, and the frequency trajectory is estimated by applying
a search over the frequency-time bins. The results of a simulation study involving two signal types with
different frequency variability are described.

INDEX TERMS Detection algorithms, frequency estimation, Markov processes, maximum a posteriori
estimation, phase frequency detectors, phase estimation, signal detection, signal processing algorithms, state
estimation, Viterbi algorithm.

I. INTRODUCTION
Detection and accurate estimation and tracking of time-
varying frequency signals embedded in background noise is a
problem that is important in diverse fields such as seismology,
radar, sonar, telecommunications and astronomy. The signals
are characterised by a slowly varying amplitude and a phase
that is represented by an integral of frequency over time.
In this way, both amplitude and phase contain important infor-
mation that can be used for signal estimation. However, phase
is particularly susceptible to noise, and at very low signal-to-
noise ratios (SNRs), highly robust methods are needed for its
estimation.

A number of frequency tracking algorithms have been
proposed in the literature. A popular approach is to apply
the discrete Fourier transform (DFT) to nonoverlapping seg-
ments of the received discrete time series, obtaining, as a
result, the DFT magnitudes and phases related to the signal
segments. A hiddenMarkovmodel (HMM) is usually applied
to represent the probabilistic transition of discrete frequency
states in consecutive data blocks [1]–[9]. Other techniques
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rely on maximum a posteriori (MAP) estimation, where the
prior probability of discrete frequency state transition is mod-
elled using a Markov chain [10]. An alternative approach is
to model the frequency state space as being continuous and to
apply sequential frequency estimation in either the frequency
or time domain. Examples include the methods using the
histogram probabilistic multihypothesis tracking (H-PMHT)
algorithm [11], [12], Dirichlet process mixture model [12],
extended Kalman filtering [13] and particle filter [14], [15].
Notably, most of these techniques use only the magnitude and
discard the valuable information that is contained in the signal
phase.

There are also many techniques that can accurately esti-
mate instantaneous frequency and that use the signal phase
information. Peleg and Friedlander [16], [17] described
the discrete polynomial-phase transform (DPT) for polyno-
mial phase (PF) models and used it to estimate PF sig-
nal parameters. In addition, the discrete fractional Fourier
transform (DFrFT) [18], [19] has been proposed as a tool
for processing linear frequency modulated (LFM) signals.
The high computational complexity of the DFrFT has been
subsequently reduced by the introduction of the sparse
DFrFT (SDFrFT) [20], [21]. This algorithm simultaneously
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computes the transform of and detects the signals that are
sparsely represented in the fractional Fourier domain. The
detection and estimation of more general phase signals is
achieved by using the short-time fractional Fourier transform
(STFrFT) [22]. This transform is equivalent to applying the
conventional short-time Fourier transform (STFT) on the sig-
nals using a FrFT window. The references [23]–[25] describe
short-time polynomial phase modelling of the signals rep-
resenting vocalizations of marine mammals. The authors
were able to accurately track nonlinear time-frequency signal
components and extract the time-phase information. Simi-
larly, Liu et al. [26] applied DPT to nonoverlapping signal
segments to estimate multiple signal chirp rates and used
SDFrFT with different rotation angles to determine the initial
frequencies of a multicomponent signal. While these tech-
niques can estimate the instantaneous frequency with high
accuracy, their drawback is that they are not robust enough
to be applicable to signals at a low SNR.

Recently, Suvorova et al. [9] derived a joint probability
density function (pdf) that models the frequency and phase
evolution of a random frequency signal and used this density
to compute the transition probabilities of a phase-frequency
Markov chain. The authors also described an application of
an HMM phase-frequency approach to the detection of a ran-
domly wandering tone at low SNR. However, the information
presented in [9] is not detailed enough for their approach to
be replicated.

This paper presents a robust method for the detection and
tracking of slowly varying instantaneous frequencies at low
SNRs using phase and magnitude information. A posterior
pdf that is a function of both the magnitude and phase
of the discrete-time Fourier transforms (DTFT) computed
over nonoverlapping signal segments is derived. The discrete
phase-frequency states are defined to coincide with the DTFT
frequency-time bins, and the transition of the discrete states is
modelled using a first-order homogeneous Markov sequence.
The likelihood used by the posterior pdf depends on pairs of
the DTFT phases computed for consecutive signal segments,
and the robustness of the algorithm is achieved by suppress-
ing the segment-related likelihoods with a considerable error
in the DTFT phase estimation.

Known similarities to [9] are in the way the transition prob-
abilities of the phase-frequency Markov chain are computed
and in the use of a prior probability of signal amplitude.
An important difference is that our approach utilises the
posterior pdf described above, while [9] relies on an HMM.

Some applications of the proposed method include
detection and estimation of narrow-band underwater acoustic
signals radiated by ships and underwater vehicles due to har-
monics of the engine speed and shaft/propeller rotation [27],
estimation and tracking of the instantaneous spectrum of fre-
quency hopping signals used in radar and telecommunication
applications [28], and detection and tracking of gravitational
waves with the application in astronomy [7].

The contribution of this paper includes two aspects. The
first is the derivation of a robust posterior pdf that uses

the DTFT magnitudes and phases of nonoverlapping signal
segments. The DTFT phase is an estimate of the true signal
phase and is highly sensitive to noise. The proposed posterior
pdf suppresses the segment-related likelihoods for which the
phase estimation error is large. This ensures that the algorithm
can detect and track the instantaneous signal frequency and
estimate phase information at a very low SNR.

The second contribution is the derivation of two algorithms
suitable for the maximisation of this density. The Viterbi
algorithm [2], [29] is applied to obtain the MAP estimate of
the most likely sequence of the phase-frequency states. Addi-
tionally, a phase-frequency version of the forward-backward
algorithm [1], [2] is presented. This is a smoothing algorithm
that maximises the probability of the state at each time step
given the observation sequence at all time steps. At the output,
both algorithms also produce a statistic that is used for signal
detection.

A comprehensive simulation study involving two signal
types with different frequency variabilities was carried out
using Monte Carlo simulations with additive white Gaussian
noise. The results show that the proposed algorithms sig-
nificantly improve the detection performance and frequency
estimation accuracy compared to several existing frequency
detection and tracking methods.

This paper is organised as follows. Section II presents the
derivation of the posterior distribution for phase-frequency
tracking that uses the DTFT of nonoverlapping signal seg-
ments. Section III describes the implementation of the
DTFT-based estimation approach using the Viterbi and
forward-backward algorithms. The results of testing the
proposed methods using synthetic signals are shown in
Section IV, and some concluding remarks are presented
in Section V.

II. DERIVATION OF THE POSTERIOR DISTRIBUTION FOR
PHASE-FREQUENCY ESTIMATION
This section defines a narrow-band continuous-time signal
model that is used for phase-frequency tracking. Next, the
derivation of a continuous-time posterior distribution of the
signal model parameters is presented, followed by the deriva-
tion of this distribution in discrete time.

A. MODEL
An unknown complex signal with time-varying amplitude
and phase is given by

s(t) = A(t)ejφ(t), t1 ≤ t ≤ tf (1)

where

φ(t) = 2π
∫ t

t1
f (τ )dτ (2)

is the signal phase, and f (t) is a time-varying frequency. Then,
denote by x(t) the signal corrupted by noise

x(t) = s(t)+ n(t) (3)
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where n(t) is complex white Gaussian noise with one-sided
spectral level N0.
The signal phase is modelled as piecewise linear over

consecutive nonoverlapping segments of length T , i.e., as

φ̃(t) = φk + 2π fk (t − tk ), tk ≤ t < tk+1 (4)

k = 1, . . . ,K , where φk = φ̃(tk ) is the phase at time tk , fk is
the discrete frequency, tk+1 − tk = T , and we assume that
t1 = 0. Similarly, the signal amplitude is approximated by a
constant over each time interval

Ã(t) = Ak , tk ≤ t < tk+1. (5)

The amplitude Ak , frequency fk , and phase φk in (4)-(5)
are the unknown parameters of the signal model that need
to be estimated. The amplitude is taken to be a continuous
random variable while the frequency fk is a discrete random
variable that takes values from a set F = {ζj}Jj=1 where ζj =
ζ1+ (j− 1)1f , j = 1, . . . , J . ζ1 and ζJ are the lowest and the
highest frequencies of interest, respectively, and the adjacent
frequencies in the set are related as ζj = ζj−1 + 1f . The
phase at tk is given by φk = φk−1 + 2π fk−1T , where fk−1 =
ζj ∈ F , and 2π fk−1T is the phase increment over the (k−1)st
time interval T . Therefore, φk is also discrete, with J possible
discrete values for fk−1 = ζj, j = 1, . . . , J .
Although equation (4) models the signal frequency as a

piecewise constant function of time, in reality, the frequency
can vary over the segment length T . It is assumed that for
the class of signals of interest, the frequency evolves continu-
ously over time (for example, f (t) obeys a stochastic process
driven bywhite noise). This implies that the frequency change
over a finite duration of time is bounded. To optimise the
performance of the phase-frequency tracking, the frequency
increment 1f = ζj − ζj−1 and the time interval T used
in the phase model (4) need to be selected such that the
absolute value of the change of the signal frequency over
the duration of T is less than or equal to 1f [9]. [10] shows
that if the first derivative of the signal frequency is bounded,
i.e., if | dfdt | ≤ β/2π , then the maximum length time interval
T = Ts can be found as Ts =

√
2π/β, and the correspond-

ing (maximum) change of the signal frequency over Ts is
1fs = 1/Ts. Accordingly, Ts1fs = 1 and Ts can be seen to be
the characteristic time interval that depends on the frequency
variability [10].

If 1f is chosen such that T1f = 1 and T ≤ Ts, then, due
to the variability of the frequency, the difference between the
actual signal phase and the model (4) (or the loss of phase
coherence) over T is within ±π1fT = ±π . This is too large
for reliable phase-frequency tracking, and smaller values for
1f and 1T are needed. Therefore, we set 1f < 1fs and
select T such that T ≤ 1f

1fs
Ts. In this case, T1f < 1, and the

change in the signal frequency over T remains within ±1f .

B. CONTINUOUS-TIME POSTERIOR DISTRIBUTION FOR
PHASE-FREQUENCY ESTIMATION
The estimated sequence of the signal parameters
{Âk , φ̂k , f̂k}Kk=1 can be obtained by maximising the following

log-posterior distribution over Ak , φk , fk [10], [30]

log
[
3
(
{Ak , φk , fk}Kk=1

)]
∝

2
N0

Re
∫ KT

0
x(t)s̃(t)dt −

1
N0

∫ KT

0
|s̃(t)|2dt

+ log
[
p
(
{Ak , φk , fk}Kk=1

)]
(6)

where

s̃(t) = Ã(t)ejφ̃(t) 0 ≤ t < KT (7)

is the approximation of the continuous-time signal s(t) based
on (4) and (5), s̃(t) is the complex-conjugate signal, and Re{·}
denotes the real part. The first two terms in (6) represent the
estimator-correlator for the complex signal s̃(t) normalised by
the noise level and p

(
{Ak , φk , fk , }Kk=1

)
is the prior probability

density of the signal parameters. Note that our approach
differs from the algorithm described in [10] in that it uses
both magnitude and phase information, and the approach
in [10] uses magnitude only. Moreover, our algorithm
utilises a denser time-frequency grid for which T1f < 1,
that corresponds to a DTFT (see above), whereas in [10]
T1f = 1, which is used in a standard DFT-based short-time
Fourier transform (STFT). There is also a difference in the
way the amplitude in (6) is marginalised.

We substitute (4) and (5) in (7) and then use (7) in (6) to
obtain

log
[
3
(
{Ak , φk , fk}Kk=1

)]
∝

2
N0

K∑
k=1

AkRe
[
e−jφk

∫ T

0
x(t + kT )e−j2π fk tdt

]

−
T
N0

K∑
k=1

A2k + log
[
p
(
{Ak , φk , fk}Kk=1

)]
. (8)

The amplitude Ak is assumed to be an independent random
variable with a uniform prior pdf in the range [0 Amax],
where this range covers all possible values of Ak [9]. Since
this prior is constant in the range of Ak , it is irrelevant for
the maximisation of3

(
{Ak , φk , fk , }Kk=1

)
and can be ignored

in (8). To facilitate the maximisation of3
(
{Ak , φk , fk , }Kk=1

)
,

we marginalise (8) with respect to the amplitude (note that
Âk can be easily computed once the values φ̂k and f̂k that
maximise the marginalised posterior pdf are known). The
marginalisation is performed by evaluating the following
integral:

Ik =
∫ Amax

0
e
( 2XkN0

Ak− T
N0

A2k )dAk (9)

for k = 1, . . . ,K , where

Xk = Re
[
e−jφk

∫ T

0
x(t + kT )e−j2π fk tdt

]
(10)

and by letting let Amax → ∞ [9]. The resulting equation is
given by

Ik =

√
πN0

4T
e

X2k
N0T

[
1+ erf

(
Xk
√
N0T

)]
(11)
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and the derivation of (11) is presented in the Appendix.
We then use (11) to obtain the marginalised log-posterior as

log
[
3
(
{φk , fk}Kk=1

)]
∝

K∑
k=1

(
X2
k

N0T
+ log

[
1+ erf

(
Xk
√
N0T

)])
+ log

[
p
(
{φk , fk}Kk=1

)]
(12)

where the constant
√
πN0
4T in (11) is ignored.

C. DISCRETE-TIME POSTERIOR DISTRIBUTION FOR
PHASE-FREQUENCY ESTIMATION
Thus far, we derived (12) for the continuous-time signal x(t).
Practical applications use the sampled version of x(t) given
by

x(l) = x(lτ ), l = 1, . . . ,KN (13)

where τ is the sampling interval, τ = T
N , fsampl =

1
τ
is

the sampling frequency, and x(t) is appropriately pre-filtered
using an antialiasing filter. Using the sampled signal in (13),
the integral in (10) can be approximated as∫ T

0
x(t + kT )e−j2π fk t ≈ τ

N−1∑
l=0

x(l + kN )e−j2π fk lτ (14)

where the summation on the right-hand side is a complex
coefficient that corresponds to the DTFT of the kth signal
segment calculated at the frequency fk = ζj ∈ F . The
discrete-time counterpart of Xk in (10) can be defined as

Yk = Re

[
e−jφk

N−1∑
l=0

x(l + kN )e−j2π fk lτ
]

(15)

= Re
[
ej(ψk−φk )Bk

]
= cos(ψk − φk )Bk (16)

where Bk and ψk denote the magnitude and phase of the
DTFT coefficient, respectively.

In (16), φk is the actual signal phase at the beginning of
the kth time segment, and ψk + 2lπ is its estimate obtained
using the DTFT at the discrete frequency fk = ζj, where
the term 2lπ , l = 0,±1,±2, . . ., takes into account the
ambiguity of the phases with some multiple of 2π . As dis-
cussed above, the signal frequency varies continuously over
the DTFT frequency-time bin 1f × Nτ centred at fk , and it
is generally different from fk . Moreover, the signal may be
contaminated by noise. These effects cause a decrease in the
accuracy of the estimation of φk . Denote by ϑk the phase error
due to the difference between the actual signal frequency and
the closest DTFT frequency ζi ∈ F , and by χk the distortion
caused by random noise. Then, the relationship between the
true signal phase and its DTFT estimate is given by

ψk = φk + ϑk + χk − 2lπ. (17)

We choose the parameters 1f and T = Nτ that define the
width and length of the DTFT bin to alleviate the effect of

the phase error ϑk (see above). Regarding the phase error
due to noise χk , its probability density, for white Gaussian
noise, is an even function that peaks at zero; its variance and
tails increase as the SNR is decreased, tending to a uniform
distribution for very low SNRs [31].

We assume that the DTFT phase ψk can be taken as an
approximation of φk , i.e.,

φk ≈ ψk + 2lπ, l = 0,±1,±2, . . . . (18)

Moreover, as discussed above, the actual signal phase φk at
time step k can be predicted from phase φk−1 at the previous
time step k − 1 as

φk = φk−1 + 2π fkNτ. (19)

Then, noting that the variance of the discrete-time complex
white Gaussian noise is given by σ 2

n =
N0fsampl

2 =
N0
2τ

and that Xk ≈ τYk in (16), the discrete-time version of the
marginalised log-posterior (12) can be obtained as

log
[
3
(
{φk , fk}Kk=1

)]
∝

K∑
k=1

(
Y 2
k

2Nσ 2
n
+ log

[
1+ erf

(
Yk
√
2Nσn

)])
+ log

[
p
(
{φk , fk}Kk=1

)]
. (20)

Substituting (18) and (19) in (16), we obtain Yk in (20) as

Yk ≈ cos (ψk − ψk−1 − 2π fkNτ)Bk (21)

where the term 2lπ is omitted since cosine is a peri-
odic function with period 2π . The use of the approxima-
tion (18)-(19) at a low SNR is facilitated by the fact that the
logarithm term in the marginalised log-posterior distribution
suppresses the log-likelihood ratios with a large phase esti-
mation error, i.e., for which cos(ψk −ψk−1 − 2π fkNτ ) < 0.

According to our model, the frequency fk depends on
the frequency at the previous time interval fk−1 and can be
assumed to be independent of the frequencies fk−m at the time
steps k − m, m > 1. Similarly, the phase φk depends only
on the phase φk−1 and the frequency fk−1. Therefore, a first-
order Markov model can be appropriately used to represent
the phase-frequency prior probabilities in (20) as

p
(
{φk , fk}Kk=1

)
= p(φ1, f1)

K∏
l=2

p(φl, fl |φl−1, fl−1) (22)

where p(φ1, f1) is the prior probability at k = 1, and
p(φl, fl |fl−1, φl−1) is the transition probability at k = l. Let
fk = ζj at time step k and fk−1 = ζi at time step k − 1. Since
the frequency change over a time-frequency bin is bounded
as described above, the transition probabilities are restricted
as follows:

p(φk , fk |φk−1, fk−1) =

{
pj|i : j− i ∈ [−1, 0, 1]
0 : otherwise.

(23)

That is, the frequency can transition to fk = ζj at the
time step k only if it had one of the values (or states) ζi,

67376 VOLUME 10, 2022



D. Carevic: Automatic Detection and Tracking of Random Frequency Signals Using Magnitude and Phase Information

i ∈ [j− 1, j, j+ 1] at the time step k − 1. The corresponding
discrete phase state is φk = φk−1+2πζiNτ . Therefore, given
the frequency state ζi at time k − 1, the nonzero transition
probabilities are restricted to pj|i, |j− i| ≤ 1. In general, these
probabilities depend on the frequency and phase values but
are independent of time since the Markov model is assumed
to be homogeneous.

III. IMPLEMENTATION OF THE PROPOSED ALGORITHM
Assuming that the frequency range of interest is given by F ,
the goal is to find the sequence of the parameters (or track)
{φ̂k , f̂k}Kk=1 that maximises the posterior 3

(
{φk , fk}Kk=1

)
.

The globally optimal estimate of this sequence is obtained
by using the Viterbi algorithm [2], [5], [29], whereas the
sequence that maximises the probability of the parameters
at each time step, given the observation sequence at all time
steps, is produced by the forward-backward algorithm [1],
[2], [5]. These algorithms also compute a statistic that is
used for signal detection. The Viterbi algorithm calculates
the so-called Viterbi score as the maximum of the pos-
terior function related to the optimal track, whereas the
forward-backward algorithm evaluates the detection statistic
as the sum of the likelihoods (SOL) of all possible track
combinations [2].

Due to the restrictions on the transition probabilities of
the Markov model (23), the Viterbi and forward-backward
algorithms take simple forms. However, these algorithms use
the DTFT phase and magnitude information, so their imple-
mentation differs from the standard magnitude-only versions
described in [1]–[3], [5]. Here, we briefly present our appli-
cation of these algorithms. Note that the objective function
in (20) is given in logarithmic form, so we use a logarithmic
version of the Viterbi algorithm, where the multiplications
of the probabilities are replaced by the summations of the
logarithms. By contrast, the forward-backward algorithm is
applied to3

(
{φk , fk}Kk=1

)
, which is obtained as the exponent

of (20).
Define the J × K measurement structure on which the

algorithms operate, where J is the number of phase-frequency
states and K is the number of time steps. Each node of the
structure, indexed by (j, k), is characterised by the magnitude
Bj,k and phaseψj,k computed by applying the length-NDTFT
on the signal segment at the time step k ∈ {1, . . . ,K } and
at the frequency ζj ∈ F , j ∈ [1, . . . , J ]. Note that for
ζj ∈ F and N , 1fNτ < 1, where 1f = ζj − ζj−1 is
the frequency increment. Therefore, this measurement struc-
ture is denser and contains more compact signal information
compared to the one obtained using the standard STFT for
which 1fNτ = 1. Additionally, setting the parameters 1f
and N so that 1fNτ < 1 allows for a reliable use of
the DTFT phase in phase-frequency tracking, as discussed
above.

At the time step k = 1, we compute Qj,1 as

Qj,1 =
B2j,1
2Nσ 2

n
(24)

TABLE 1. Viterbi algorithm for phase-frequency tracking.

and calculate Yj,k,d , k ∈ {2, . . . ,K }, in (21), as

Yj,k,d = cos
(
ψj,k − ψj+d,k−1 − 2πζj+dNτ

)
Bj,k (25)

where j+d and j are the state indices at two consecutive time
steps. Using (25), the value of Qj,k,d related to the kth term
in the summation in (20) is given by

Qj,k,d =

(
Yj,k,d

)2
2Nσ 2

n
+ log

[
1+ erf

(
Yj,k,d
√
2Nσn

)]
. (26)

The prior probabilities at k = 1 are defined as p(φ1, ζj) =
pj,1, and the transition probabilities of the Markov model for
the structure are set to

p(φk , ζj|φk−1, ζj+d ) =

{
pj|j+d , d ∈ [−1, 0, 1]
0, otherwise

(27)

for j = 1, . . . , J and k = 2, . . . ,K , φk = φk−1+ 2πζj+dNτ .
The pseudocodes for the Viterbi and forward-backward

algorithms are given in Tables 1 and 2, respectively. The
two algorithms have the same inputs, the J × K structure
with the measured DTFT magnitudes and phases, the prior
probabilities at k = 1, {pj,1}Jj=1, and the transition probabili-
ties of the Markov model given in (27). The values of Qj,1
and Qj,k,d in Tables 1 and 2 are computed using (24) and
(25)-(26), respectively. Additionally, to mitigate the effects
due to the final dimensionality of the measurement structure,
the variable Dj in Tables 1 and 2 is defined for j = 1, . . . , J
as follows:

if j = 1 set Dj = [0, 1]

elseif j = J set Dj = [−1, 0]

else set Dj = [−1, 0, 1]. (28)

The Viterbi score LV is obtained as the maximum of the
posterior function L in Table 1 at k = K over 1 ≤ j ≤ J . The
optimal (or Viterbi) track is obtained by backtrackingR(j, k)
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TABLE 2. Forward-backward algorithm for phase-frequency tracking.

starting from RV (K ) = R(j∗K ,K ) at k = K , where j∗K =
argmax
1≤j≤J

[L(j)], and by proceeding as

RV (k) = R(RV (k + 1), k), k = K − 1, . . . , 1. (29)

For the forward-backward algorithm, the SOL statistic is
computed as LFB =

∑J
j=1 α(j,K ), where α in Table 2 is the

forward variable. The phase-frequency track is obtained as
the most likely parameter state at time step k

RFB(k) = argmax
1≤j≤J

[γ (j, k)] , k = 1, . . . ,K , (30)

where γ in Table 2 is the probability of being in state j at
time k conditioned on the observation sequence. The recur-
sive computation of the forward and backward variables α
and β can have very large values, so these variables need to
be normalised as proposed in [5] (this is not shown in Table 2).

To reduce the computational complexity of the algorithms
and avoid multiple computations of Qj,k,d in (26), the values
of Qj,k,d are precomputed and stored in a 3 × J × (K − 1)
lookup table. We also compute J values for Qj,1 in (24). The
computational complexity then depends on the complexity
of the DTFT measurement structure, the complexity of the
Qj,k,d lookup table and the initial vector Qj,1, and on the
complexity of the computation carried out by the individual
algorithms. The complexity of the DTFT is JKN complex
multiplications and additions. The complexity of the lookup
table and of the initial vector is Jc1 + 3J (K − 1)c2, where
c1 and c2 are the complexities of computing individual values
of Qj,1 and Qj,k,d , respectively. Since the Viterbi algorithm
uses summations, its complexity is 6J (K − 1) additions,

and there are also J (K − 1) maximisation operations. In the
forward-backward algorithm, the multiplications in the com-
putation of α(j, k) and β(j, k) are implemented as a sum-
mation of logarithms, followed by applying the exponential
function. These computations consist of 12J (K−1) additions,
6J (K − 1) + 2JK computations of the exponential function
and 2J (K − 1) computations of the logarithmic function.
Additionally, JK multiplications and divisions are required
to compute γ .

IV. SIMULATION RESULTS
This section presents the results of a simulation study involv-
ing two signal types with different frequency variabilities
in additive white Gaussian noise. The signals denoted by
T S1 and T S2 have the frequency variability parameter β1 =
0.393 and β2 = 0.098, respectively, and the corresponding
characteristic time intervals and frequency changes are given
by Ts1 = 4s and 1fs1 = 0.25 Hz and Ts2 = 8s and
1fs2 = 0.125 Hz. The signal frequency is assumed to obey
a stochastic process driven by white noise. Consequently,
it evolves continuously and has nondeterministic fluctuations.
For both signals, we set 1f = 0.1 Hz and define the time
extension T of the frequency time bin (or the length of the
DTFT) as T ≈ 1f

1fs1
Ts1, where T = Nτ , τ = 1

fsampl
and fsampl is the sampling frequency. This choice of 1f and
T is suitable for both the signal with the higher frequency
variability T S1 and the signal with the lower variability T S2.
The frequency of the signal T S i, i = 1, 2, is modelled

as being continuous with a piecewise linear change over
consecutive time intervals T , and the slope is uniformly
distributed in the range

[
−
1fi
T

1fi
T

]
, 1fi = 1fsi TTsi . This

model is used to generate synthetic complex signals based
on (1)-(2) in the Monte Carlo simulations, with the signal
amplitude A being constant over the duration of the signal
and the initial frequency being uniformly distributed in the
range [400 Hz 420 Hz].
The SNR for the bandwidth determined by the sampling

frequency is defined using the equivalent real-valued signal
with the amplitude 2A as SNR = 10 log10

(
2A2/σ 2

n
)
. For the

noise in the frequency bandwidth of interest (20 Hz), the SNR
is defined as SNR20Hz ≈ SNR+ 20 dB.

We denote the two versions of the algorithm described in
this paper as PF-FB and PF-Vit, where the extension ‘FB’
represents the use of the forward-backward algorithm and
the extension ‘Vit’ indicates the use of the Viterbi algo-
rithm. For comparison, we used the methods described by
Barrett and Holdsworth [4] that utilise the magnitude and
phase information denoted by PF-BH-FB and PF-BH-Vit, the
magnitude-only methods proposed by Paris and Jaufret [5]
denoted by F-PJ-FB and F-PJ-Vit, and amethod based on (20)
where we disregard the phase and use only the magnitude,
denoted by F-Vit. An algorithm that uses both the phase and
magnitude has also been considered in [9], but insufficient
information about this approach is given in [9], and it could
not be replicated here.
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FIGURE 1. The true signal frequency and the estimated (reconstructed)
frequency at SNR = −32 dB obtained using the phase-frequency methods
PF-FB and PF-Vit described in this paper for a synthetic test signal of
types (a) T S1 and (b) T S2.

All the algorithms are applied to the DTFT data structure
described in Section III. The approaches described in [4]
require knowledge of the amplitude, andwe set this amplitude
to A = 1. Additionally, the data likelihood proposed in [4] is
used in a similar manner as described in this paper.

Since the frequency of the simulated signals is modelled as
a stochastic process, the transition probabilities of theMarkov
chain used in the tested algorithms are computed based on
the joint phase-frequency pdf described in [9], where the
parameters σ and γ in [9] are set to σ = 1fi, i = 1, 2, and
γ = 10−5. The exceptions are the methods described in [5]
that use the transition probabilities defined in [5].

We evaluate the detection and frequency tracking perfor-
mance of all algorithms based on 5000 Monte Carlo runs at
a given SNR, where each run used a separate random real-
isation of the signal. The detection results are presented by
plotting the probability of detectionPD against the probability
of false alarm PFA at a range of threshold levels. The detection
statistic is the Viterbi score LV for the methods using the
Viterbi algorithm and the SOL statistic LFB for the methods
based on the forward-backward algorithms. The threshold
levels for false alarm probabilities are determined by running
the algorithms on a large number of noise-only data series
and by recording the detection statistics. We also measure the
deviation between the true (actual) signal frequency and the
frequency track estimated by the algorithm using the mean-
square error (MSE) defined as

MSE =
1
KN

KN∑
l=1

(
ftrue(l)− f̃ (l)

)2
. (31)

FIGURE 2. Probability of detection PD as a function of the probability of
false alarm PFA for all tested methods at SNR = −32 dB for the synthetic
signal types (a) T S1 and (b) T S2.

In (31), ftrue(l) is the true frequency of the sampled synthetic
signal, and f̃ (l) is the frequency reconstructed based on the
discrete tracks RV (29) and RFB (30) using a piecewise-linear
model. The detection is considered successful if the detection
statistic computed by the algorithm is higher than a given
threshold and if the MSE between the true signal frequency
and the reconstructed frequency is smaller than the threshold
Wi = [1fsi]2, where for the test signal T S i, i = 1, 2,
1fs1 = 0.25 Hz and 1fs2 = 0.125 Hz, respectively.
Figs. 1 (a) and (b) show examples of the true signal fre-

quency and the estimated frequency at SNR = −32 dB
obtained using the phase-frequency methods PF-FB and
PF-Vit for the synthetic signals with different frequency vari-
abilities T S1 and T S2, respectively.

The probability of detection PD as a function of the
probability of false alarm PFA for the tested algorithms and
for the two signal types at SNR = −32 dB is shown in
Figs. 2 (a) and (b). From Fig. 2 (b), it can be seen that
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FIGURE 3. MMSE for the random frequency tracking for all tested
methods for the synthetic signal types (a) T S1 and (b) T S2.

the detection performance of the methods [4] and [5] dete-
riorates for the signals with the lower frequency variability
T S2 compared to the performance of the higher frequency
variability signals T S1. The reason is that the MSE threshold
W2 = [0.125]2 is smaller than the threshold W1 = [0.25]2,
so a larger number of detections of the signal T S2 are
disregarded since their corresponding MSE was higher than
the threshold compared to the results obtained using the test
signal T S1. Additionally, the amplitude used by the algo-
rithms [4] differed from the actual signal amplitude, which
further affected the performance of these methods. By con-
trast, the algorithms PF-FB and PF-Vit described in this paper
display both good detection rates and high frequency tracking
accuracy. We note that the probabilities of detection PD in
Figs. 2 (a) and (b) can be smaller than PD = 1 for PFA = 1.
This is because there are a number of estimated track
MSEs at PFA = 1 that are greater than the MSE thresh-
old Wi, which lowers the detection probability as explained
above.

TABLE 3. Relative computational times of the tested algorithms.

To further evaluate the frequency tracking performance of
the algorithms, we compute the meanMSE (MMSE) over the
MSEs of M = 5000 Monte Carlo runs as

MMSE = 10 log10

(
1
M

M∑
m=1

MSEm

)
. (32)

Figs. 3 (a) and (b) show the plot of the MMSE against a range
of SNRs for the signal types T S1 and T S2, respectively.

To compare the computational complexity of the tested
algorithms, we use the average computational time of each
algorithm relative to the average computational time of the
Viterbi algorithm PF-Vit described in this paper. The algo-
rithms are implemented in MATLAB [32] and run on a
personal computer under the Windows 10 operating system,
and the results are shown in Table 3. The approaches that are
used for comparison with the proposed algorithms are imple-
mented in a similar way as our algorithms (see Section III).
Therefore, the computational complexity of these approaches
includes the complexity of the DTFT measurement struc-
ture, the complexity of the lookup table, and the complex-
ity of computing the variables of the individual algorithms.
It is interesting to note that, contrary to the expectation, the
computational complexity of the phase-frequency Viterbi
algorithms PF-Vit and PF-BH-Vit is higher than the compu-
tational complexity of the respective forward-backward algo-
rithms, PF-FB and PF-BH-FB. These differences are related
to the computational complexity of the algorithms them-
selves. In particular, the Viterbi algorithms utilise a maximi-
sation operation that is more computationally costly than the
exponential and logarithmic functions used by the forward-
backward algorithms, and the complexity of the maximisa-
tion operation contributes to the increased computational time
of the phase-frequency Viterbi algorithms. The algorithms
PF-PJ-Vit and PF-PJ-FB described in [5] require much longer
computational times than the other tested algorithms, while
the computational complexity of the magnitude-only Viterbi
algorithm F-Vit is lower than that of PF-Vit because F-Vit
relies only on the DTFT magnitudes and does not utilise the
phases.

From the results shown in Figs. 2 and 3 and in Table 3,
it can be seen that the proposed phase-frequency algorithms
perform consistently better than several existing frequency
detection and tracking methods in terms of the frequency
estimation accuracy and detection rate at low SNRs and the
computational complexity. We note that in this study, the
frequency variability of the signal was known, so we were
able to accurately compute the transition probabilities of
the Markov model. In realistic situations, the exact signal
frequency variability is not always known, although it may
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be known that it belongs to a range of values, and this can
affect the performance of the algorithms. However, this may
influence only the accuracy of the transition probabilities of
the Markov chain but not the accuracy of the signal segment
likelihoods. For this reason, it is not expected that in this
case, the performance of the algorithms would significantly
decline. An approach to alleviate this problem would be to
simultaneously track the signal frequency and estimate its fre-
quency variability, improving the accuracy of the estimation
of the transition probabilities.

V. CONCLUSION
This paper presented an approach to the problems of detec-
tion and tracking of a random-frequency signal in additive
complex white Gaussian noise. Two detection/tracking algo-
rithms were proposed that used the DTFT magnitude and
phase information and allowed for refined phase-frequency
detection and tracking. The transition of the discrete
phase-frequency states was modelled using a first-order
homogeneous Markov sequence, and the transition probabil-
ities of the Markov chain were computed using an approach
described in [9]. A comprehensive simulation study involv-
ing two signal types with different frequency variabilities
was carried out. The results show that the proposed track-
ers/detectors perform significantly better than several exist-
ing frequency detection and tracking methods.

APPENDIX. EVALUATION OF THE INTEGRAL FOR THE
MARGINALISATION OF THE POSTERIOR DISTRIBUTION
Here, we present the evaluation of the following integral

Ik =
∫ Amax

0
e
( 2XkN0

Ak− T
N0

A2k )dAk

=

∫ Amax

0
e
−( T

N0
A2k−

2Xk
N0

Ak )dAk . (33)

We use the completion of the square of the quadratic ax2 +
bx + c given by

f (x) = ax2 + bx + c = a(x − h)2 + g (34)

where h = − b
2a and g = f (h) = ah2 + bh+ c. Additionally,

ea(x−h)
2
+g
= egea(x−h)

2
, where eg is a constant. Therefore,

the integral we need to evaluate becomes

I =
∫ Xmax

0
e−[a(x−h)

2
+g]dx

= e−g
∫ Xmax

0
e−a(x−h)

2
dx (35)

where a = T
N0

, b = − 2Xk
N0

, c = 0, h = Xk
T , g = −

X2
k

N0T
,

x = Ak and Xmax = Amax .
We first evaluate the integral

I ′ =
∫ Xmax

0
e−a(x−h)

2
dx (36)

where we define the substitution y = x − h. Then, x = y+ h
and dx = dy. The upper limit of the integral is Xmax − h, and

the lower limit of the integral is −h. Then, I ′ becomes

I ′ =
∫ Xmax−h

−h
e−ay

2
dy. (37)

We use the following properties of the erf function:∫ q

p
e−ay

2
dy =

1
2

√
π
√
a

[
erf(q
√
a)− erf(p

√
a)
]
, (38)

erf(−z) = −erf(z), (39)

and

erf(∞) = 1 (40)

where

erf(z) =
2
√
π

∫ z

0
e−y

2
dy. (41)

Using (38) and (39) in (37), we obtain

I ′ =
√
π

2
√
a

[
erf((Xmax − h)

√
a)− erf(−h

√
a)
]

=

√
π

2
√
a

[
erf((Xmax − h)

√
a)+ erf(h

√
a)
]
. (42)

Setting Xmax →∞ and using (40), (42) becomes

I ′ =
√
π

2
√
a

[
1+ erf(h

√
a)
]
. (43)

Substituting (43) and the corresponding parameter values in
(33), we obtain for Ik

Ik =

√
πN0

4T
e

X2k
N0T

[
1+ erf

(
Xk
√
N0T

)]
. (44)
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