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ABSTRACT Gas classification is a machine learning problem that is important for various applications
including monitoring systems, health care, public security, etc. Since measuring the characteristic of gas
molecules is greatly affected by external factors such as wind speed and the internal setting of detecting
sensors, classification should be done by taking into account the combination of these individual factors,
which we call a condition in this paper. In particular, when classifying gas data measured under multiple
conditions, the data from each condition need to be integrated, which we call multi-conditioned gas
classification. While there have been some studies on gas classification for a single condition, no previous
approach deals with the multi-conditioned gas classification problem to the best of our knowledge. In this
paper, we propose a novel multi-conditioned gas classification method for the first time. We present a new
deep learning network structure that can efficiently extract features from the data of multiple conditions and
effectively integrate them, which is referred to as a multi-conditioned gas classification network (MCGCN).
We also propose a new training loss function to guarantee good performance reliably for the varying
number of given conditions. Experimental results demonstrate the superiority of the proposed method, which
achieves accuracies of 99.15% ± 0.41 regardless of the number of conditions with 15 times fewer model
parameters in comparison to the existing method.

INDEX TERMS Deep learning, gas classification, data integration.

I. INTRODUCTION
In recent years, with the development of electronic nose, new
potential solutions using gas detection have been attracting
attention in various areas including monitoring systems,
health care, public security, and hazardous chemicals detec-
tion, to name a few [1]–[4]. The electronic nose typically
consists of a sensor array that detects chemicals in the
air, which is designed to mimic the biological olfactory
system [5], [6]. The sensors include metal-oxide sensors,
conducting polymer sensors, quartz crystal microbalance
sensors, etc. [7]–[9], and distinct sensors are combined in
the array to detect various chemicals. After the chemicals are
captured by the sensors, the sensor signal is pre-processed
to extract features, and data analysis is applied to identify
the input chemicals through pattern recognition and machine

The associate editor coordinating the review of this manuscript and

approving it for publication was Qichun Zhang .

learning algorithms. In the early stage of gas classification
research, traditional machine learning methods have been
popularly used, such as k-nearest neighbor (kNN) [10],
[11], Gaussian mixture model (GMM) [12], multi-layer
perceptron (MLP) [13]–[15], and support vector machine
(SVM) [16]–[20]. Recently, several attempts [21]–[24] have
been made to improve the performance of gas classification
by applying deep learning methods that have shown excellent
performance in the computer vision and natural language
processing fields.

An important issue that is specific to gas classification is
the measurement environment of data, which has not been
addressed much in the past. Measuring the characteristic of
gas molecules is greatly affected by external factors such
as wind speed due to their physical property [25], [26].
In addition, in the case of metal-oxide (MOX) sensors, which
are widely used for gas detection, the device characteristic
varies according to the temperature of the internal heater,
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FIGURE 1. Illustration of gas classification for airplane drug smuggling detection under multiple conditions. As in (a), if the detection results are different
depending on the conditions, it is difficult to decide which result to choose. Thus, it is important to properly integrate the results of the conditions as
in (b).

which affects the detection result [27]. Therefore, the
measured gas data tend to change depending on the external
factors and the sensors’ internal factors, which we call a
condition in this paper. For accurate classification, a method
that can classify the gas data by considering the measurement
condition is required. For example, when we need to inspect
a suitcase to prevent aircraft drug smuggling as shown in
Figure 1, the wind speed may vary depending on the location
where the gas is measured, and the measurement results may
also vary depending on the sensor settings (i.e., the internal
temperature of the sensor). Therefore, different gas data may
be obtained even for the same target suitcase depending on
the condition, which would be classified as different types of
gas by existing gas classificationmethods that do not consider
measurement conditions. In addition, since the classification
results may vary depending on the condition, as shown in
Figure 1(a), an additional method to integrate the different
results is also required for reliable gas detection. Thus, for the
deployment of a gas classification method in a real situation,
classification should be done by taking into account these
multiple conditions, which we call multi-conditioned gas
classification (Figure 1(b)).
As a way of considering the measurement condition,

SimResNet [28] was proposed to receive two types of
input, which are gas sensor data and external factors, for
improved classification performance. However, although
data from individual conditions can be classified well,
SimResNet is not capable of integrating data from multiple
conditions. In other words, SimResNet can only handle one
condition. In order to solve this problem, EmbraceNet [29]
can be employed, which was designed to perform clas-
sification with integrating different types of data. For
multi-conditioned gas classification, it may be possible to
adopt EmbraceNet by regarding the gas sensor signals
measured under different conditions as different types of
data and obtaining an integrated classification result for
them. However, EmbraceNet has never been used to classify

gas data from multiple conditions, and as it will be shown
through our experiments, its performance is not satisfactory.
In addition, EmbraceNet requires substantial computational
resources depending on the number of conditions. More-
over, if there are a large number of data from different
conditions, it cannot fully learn the data from individual
conditions.

In this paper, we propose a multi-conditioned gas classifi-
cation model for the first time to the best of our knowledge.
We present a new deep learning network that can classify
gas data measured under multiple conditions, which we call
a multi-conditioned gas classification network (MCGCN).
Considering the characteristics of gas data, we employ a
shared feature extraction module (SFEM) for efficient and
effective feature extraction, which achieves high performance
with a significantly reduced number of parameters. Then,
in order to achieve high performance regardless of the
presence or absence of each condition, we adopt the method
in EmbraceNet to integrate the features of the individual
conditions. Furthermore, to allow the network to better learn
information of data from distinct conditions, we propose
a new training loss function consisting of the integrated
classification loss and the losses for separate conditions.
Since the integration method in EmbraceNet reduces the
impact of individual conditions on the final classification
result, as the number of conditions increases, it is challenging
for the integrated feature to fully cover the information of
each condition. However, by learning the feature information
of data from individual conditions, the overall performance
of MCGCN is significantly improved when compared to the
method in EmbraceNet. In particular, when the number of
considered conditions is very few, the performance gains are
even greater.

To sum up, our contribution is summarized as follows.
• We present the first multi-conditioned gas classification
model that can effectively classify gas data mea-
sured under multiple conditions, a multi-conditioned
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gas classification network (MCGCN), which achieves
much higher performance compared to the existing
EmbraceNet [29] and SimResNet [28].

• We propose a new deep learning network using a shared
feature extraction module (SFEM), which achieves
high performance with a significantly fewer number of
parameters.

• We propose a new learning loss function that allows
the network to not only integrate the data from multiple
conditions effectively but also learn the data from
individual conditions better.

The rest of the paper is organized as follows. Section II
provides a brief survey of the related work. Section III
explains the proposed MCGCN and its training method.
Experimental results are provided in Section IV. Finally,
conclusion is given in Section V.

II. RELATED WORK
A. GAS CLASSIFICATION
In the early gas classification researches, there were many
studies to use traditional machine learning methods, such as
k-nearest neighbor (kNN) [10], [11], Gaussianmixture model
(GMM) [12], multi-layer perceptron (MLP) [13]–[15], [30],
and support vector machine (SVM) [16]–[20]. For example,
in [15], an MLP was used to classify five types of gases
using raw sensor data. In some of these studies, extracting
useful hand-crafted features was investigated extensively,
such as features extracted by principal component analysis
(PCA), linear discriminant analysis (LDA), or Euclidean
normalization (EN). For example, the work in [30] employed
EN features for MLP-based classification of four types of
gases using eight sensors.

Since deep neural networks (DNNs) have shown remark-
able achievements in many fields, DNN-based gas classifi-
cation researches have been conducted. The work in [21]
proposed a gas classification model based on a convolutional
neural network (CNN), which comprises 38 layers including
convolutional blocks, global average pooling layers, and fully
connected layers. The studies [22], [23] solved a multi-label
classification problem in mixture gases classification sce-
narios using a one-dimensional CNN. In [24], LeNet-5,
which achieved high performance in the image classification
field, was used to attain higher computation speed with less
convolutional blocks.

Unlike previous researches, the work [28] considered that
external factors, such as humidity, wind speed, etc., can
affect the performance of gas classification and suggested
a classification model, called SimResNet, which is based
on ResNet [31]. Features are extracted from the external
factors using an MLP, which are inputted to the model
together with the gas data. By considering the external
factors, SimResNet achieved high performance for data from
individual conditions. However, this method did not attempt
to integrate multiple results for the data from different
conditions.

B. INFORMATION INTEGRATION
Integrating data from multiple conditions (referred to as
modalities in some studies [29], [32]–[39]) for classification
arises in many fields, for which several methods have been
developed [32]–[44]. A typical method is early integration
(data fusion), which combines the collected data into one
data and then uses it to produce the classification result.
Another typical method is late integration (decision fusion),
which uses each data to obtain an output and then combines
the results. In [45], early integration and late integration
were compared for classification of semantic concepts of
videos based on visual, auditory, and textual information,
where early integration showed better performance. The
work in [46] classified emotion using late integration, which
integrates the classification results obtained by using SVMon
electroencephalogram (EEG) data and physiological signal
data. Recently, early integration and late integration have also
been widely implemented by the deep learning framework.
The work [32] employed early integration to merge the
data from multiple wearable sensors for activity recognition
using CNNs and recurrent neural networks. In [40], music
genre classification was conducted by integrating each
classification result for hand-crafted features of the sound and
a visual representation of the sound using a CNN. In addition
to early and late integration, some researchers proposed
intermediate integration. In [35], a bimodal deep autoencoder
was suggested for speech classification using video and audio
data as inputs. In this model, the feature maps of each input
type are merged in the middle of the network.

However, these early, late, and intermediate integration
methods are suitable for situations where the number of
conditions is fixed. In many real situations, the number
of conditions varies, which an integration scheme needs
to be able to flexibly handle. EmbraceNet [29] integrates
features of different types (e.g., kinds of gas sensors) of
data by random selection and produces a single combined
output. This structure was shown to be more effective
than other early, late, and intermediate integration methods.
Furthermore, it is robust to loss of data from certain sensors
thanks to the multinomial random sampling. However,
there are two limitations in using EmbraceNet directly for
multi-conditioned gas classification. First, a separate network
(typically a CNN) processes each type of data for feature
extraction. For a large number of conditions, such feature
extraction parts become significantly large and require
substantial memory usage, thus it is not suitable for efficient
gas classification. Second, EmbraceNet reduces the impact
of individual conditions on the final classification result.
Since it first integrates features of different types of data
and then performs learning based on the integrated feature,
as the number of conditions increases, it is challenging for
the integrated feature to fully cover the information of each
condition. As a result, the classification performance may
become poor when only a few conditions are available. In this
paper, we propose an efficient and effective model that can
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FIGURE 2. Illustration of the proposed multi-conditioned gas classification network (MCGCN). (a) For training, gas data of all conditions are used.
(b) For test, inference is performed using only the data of available conditions.

FIGURE 3. Comparison of SFEM and feature extraction modules (FEM) in
EmbraceNet [29].

overcome these limitations. Moreover, we design a training
method of our model to ensure robust performance even
in the case where many (over 100) or a very few (1 or 2)
conditions exist. We also show that our method achieves
satisfcatory performance in the real-time classification
tasks.

III. PROPOSED METHOD
In this section, we describe our proposed deep network,
a multi-conditioned gas classfication network (MCGCN),

and its learning algorithm for multi-conditioned gas classi-
fication. The overall framework of our proposed method is
illustrated in Figure 2.

First, a new network structure, a shared feature extrac-
tion module (SFEM), extracts features from the gas data
measured under different conditions. The data from each of
different conditions are processed by SFEM, from which we
obtain the features of the corresponding condition. In the
previous work [29], separate feature extraction modules
were employed for different types (conditions) of data.
However, this is not suitable for multi-conditioned gas
classification, and the advantages of SFEM will be explained
in Section III-A in more details.

After obtaining the features of multiple conditions,
we construct an integrated feature by random sampling.
This approach enables the model to integrate the features
automatically and to learn the data from all conditions
effectively. With the integrated feature, we obtain the final
output through the fully connected layers, from which the
final classification loss is obtained as the cross-entropy
loss.
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Algorithm 1Multi-Conditioned Gas Classification
Input: gas data under condition i Xi, label Y
Model: SFEM F , FC layers Fc
Initialize: F , Fc.
for i = 1 to N do
fi = F(Xi)

end for
for j = 1 to fi’s dimension do
k ∼ U(0, 1)
i = d∗ek × N
f jI = f

j
i

end for
hF = Fc(fI )

In addition to the final loss, the newly designed training
loss function helps fully learn the data from each condition.
We utilize the extracted features of each condition to obtain
the individual losses and include these losses in the training
loss function, which achieves significant performance boost.

In the test phase, some of the conditions used for
training may not be available depending on the measurement
situation. To handle this, the integrated feature is completely
constructed with the data from the available conditions. Thus,
our model robustly performs classification regardless of the
number of available conditions.

A. FEATURE EXTRACTION MODULE
We denote the gas data measured under condition i as Xi,
(i = 1, . . . ,N ) (N is the total number of conditions) and the
one hot-encoded target label as Y , where Xi ∈ Rl×w (l is the
time length andw is the number of sensors) and Y ∈ RK (K is
the number of classes). To extract the features of the gas data
from each condition, we need to employ a feature extraction
module, such as a CNN. To this end, we propose a shared
feature extraction module (SFEM) based on a 1D-CNN. The
data Xi is converted into an individual feature fi through
SFEM F , i.e.,

fi = F(Xi, θ), (1)

where θ is the weight parameters of the module F . Our
SFEM consists of six 1D-convolutional layers with ReLU
activation functions and a fully connected (FC) layer as
shown in Figure 2. 1D-max pooling layers are added after
the second and fourth convolutional layers to reduce the
size of the feature. Note that (1) is repeated N times
with i = 1, 2, . . . ,N , which incurs time complexity of
O(N ), and the structure of SFEM is fixed regardless of the
value of N . We construct the SFEM structure based on the
networks proposed in [29] and [23], which are the existing
gas classification networks, and the details (the number
of layers, depth, width, etc.) are determined heuristically
through experiments.

There are several benefits of using SFEM over using
distinct feature extraction modules for different conditions

as in EmbraceNet as shown in Figure 3. First, it can reduce
the amount of memory consumed by the feature extraction
module. Since EmbraceNet uses a distinct feature extraction
module for each condition, memory usage increases rapidly
as the number of conditions increases, which is problematic
in resource-constrained environments. As will be compared
in Table 2, our method can significantly reduce the memory
usage compared to EmbraceNet. Second, we can increase the
size of themodule easily. Since the size of amodule is roughly
proportional to its capability to learn in most cases, using a
larger module usually helps to improve performance [31].
For a fixed number of weight parameters, the size of the
feature extraction module can be increased when SFEM is
used instead of separate modules. Finally, it has the effect
of increasing the number of training data for the feature
extraction module. When a separate module is used for each
condition, each module is trained only with the data for
the corresponding single condition. However, when a single
module is shared across all conditions as in our SFEM, the
data for all the N conditions are used for training the shared
module.

B. TRAINING LOSS FUNCTION
After extracting the features for each condition, the individual
features fi are used to form the integrated feature fI for
learning of data from multiple conditions effectively, which
is inpired by [29]. The jth element of the integrated feature is
assigned from the corresponding jth element of the feature of
a randomly selected condition, i.e.,

f jI = f ji . (2)

In this process, i is a random number drawn from the
categorical distribution. Since we do not give priority to
specific conditions, the probability that each condition will
be chosen is set to 1/N . The integrated feature fI then goes
through FC layers Fc, from which we obtain the final output
hF , i.e.,

hF = Fc(fI , θc), (3)

where θc is the weight parameters of the FC layers.
For training our model, we can define the final loss LF

using the final output hF , i.e.,

LF = l(hF ,Y ), (4)

where l is the cross-entropy loss. However, when only
the final loss LF is used, it is difficult to fully learn the
information of data from distinct conditions. First, when the
integrated feature is constructed from the individual features
based on random selection, data from some conditions may
not be sufficiently employed. Second, when there are a large
number of conditions, it is difficult to properly learn the data
from each condition since the number of selected elements
from each feature is very limited in the integrated feature.

Therefore, we propose a new loss function using the
individual features to resolve this limitation. In computing hF
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FIGURE 4. Wind tunnel test bed facility used to collect gas data from
sensor arrays [27]. The chemical source is placed on the left side (shown
as the red circle), the fan shown at the right side creates the air flow, and
nine sensor arrays consisting of eight sensors are located at one of the
six positions (L1 to L6).

TABLE 1. Class labels of mixture gas in Scenario 4. Data are divided into
six classes according to the presence or absence of ethylene, methane,
and CO.

(and consequently LF ), the individual features were only used
to construct the integrated feature. However, since individual
features fi have much information about the data from each
condition, they can be of great help in learning the data
from each condition. Thus, we compute the individual outputs
using the individual features fi, i.e.,

hi = Fc(fi, θc), (5)

and obtain the individual losses, i.e.,

Li = l(hi,Y ). (6)

Including these individual losses Li in the training loss
function helps the network learn the information of the
data from the separate conditions better. Finally, the overall
training loss is written as

L = LF + α
N∑
i=1

Li, (7)

where α is a hyper-parameter to balance the final loss
and the individual losses. The whole MCGCN is trained
in an end-to-end manner by minimizing (7). The pro-
posed multi-conditioned gas classification is summarized in
Algorithm 1. Thus, our new training loss allows the network
to learn not only the inter-related complementary information
from multiple conditions, but also fully learn the distinct
information from the individual conditions.

IV. EXPERIMENTS
A. DATASET
To evaluate the performance of the proposed MCGCN,
we use the gas sensor arrays dataset [27] containing

TABLE 2. Comparison of separate modules and SFEM for feature
extraction in EmbraceNet [29]. The last column shows the amount of
memory consumed during training / inference for a given data. The
proposed SFEM achieves almost the same accuracy to the case with
separate modules but requires about 15 times fewer parameters and
reduced memory consumption by about 50%.

measurements obtained from different conditions. The
dataset includes various measurements for ten kinds of
chemical gases: acetone, acetaldehyde, ammonia, butanol,
ethylene, methane, methanol, carbonmonoxide, benzene, and
toluene. To collect sensor data sequences of different gases,
a wind tunnel test bed facility was used, which contained the
chemical source, six locations of measurement, an exhaust
fan, and heating facility as shown in Figure 4.When chemical
gas was exposed, data were measured by nine sensor arrays
for 260 seconds with a sampling rate of 100 Hz, where each
sensor array was composed of eight conductometric MOX
sensors. We downsample the data to 1 Hz.

Two condition factors were considered, i.e., rotational
speed of the fan (external factor) and heater temperature,
which is expressed in terms of voltage, of the sensors
(internal factor). The rotational speed had three options,
1500 rpm, 3900 rpm, and 5500 rpm, and the heater voltage
had five options, 4.0 V, 4.5 V, 5.0 V, 5.5 V, and 6.0 V.
Hence, there are 15 different conditions in total. For each
condition, 20 repeated trials were conducted. Therefore,
in total 18000 measurements are included in the dataset:
10 (kinds of chemical gases) × 15 (conditions) × 6 (loca-
tions) × 20 (trials). We use the data of 16 trials for training
and the rest for test.

In addition, we use the mixture gas sensor arrays
dataset [47] for mixture gas classification, which contains
two mixture gases: ethylene and methane, and ethylene and
CO. The data were measured by 16 MOX sensors (four
types of sensors, four each) for 12 hours with a sampling
rate of 100 Hz, which we downsample to 1 Hz. The
concentrationwas continuously changed after a certain period
of time during the measurement. Condition factors were not
considered in this dataset. For each period during which the
concentration is kept constant, the 30-second portion with the
largest change in value is set as one batch data as in [23].
There are 694 data in total, and the data of each class label
are divided into training data and test data at a ratio of 8:2.1

B. SCENARIOS
We compare the performance of our MCGCN with that of
the existing gas classification methods: EmbraceNet [29] and
SimResNet [28]. In particular, we consider real situations
where although data for all conditions are available in the

1We also tested a ratio of 9:1 but there was almost no difference in
performance in all scenarios.
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FIGURE 5. Modified parts in the network for each scenario.

TABLE 3. Effects of the individual losses in the loss function of our MCGCN in Scenario 2. When α is 0, it is the same as the EmbraceNet [29] setting. The
value of α yielding the best performance for each number of conditions is marked in red.

FIGURE 6. Test accuracy of the proposed model when the network is
trained using the data of condition #1 and only the final FC layers are
fine-tuned for each of the other conditions. The trained SFEM performs
well for the conditions that were not used for training.

training phase, data for only some conditions are accessible
in the test phase. Therefore, we evaluate the classification
performance of the methods by changing the number of
available conditions for test. The conditions available for test
are randomly chosen among all possible conditions, which is
repeated five times and the average accuracy and the standard
deviation are reported.

We consider three different evaluation scenarios as follows.
Scenario 1: We conduct an experiment with 15 conditions

(combinations of five heater voltages and three wind speeds)
in Section IV-E.

Scenario 2: We evaluate the performance for a more
extreme case in which each kind of sensor is also considered
as a condition factor in Section IV-F. Therefore, there are a
total of 120 conditions (combinations of five heater voltages,
three wind speeds, and eight kinds of sensors). In Scenario 1,
72 sensor values are considered as a whole, but here, since the
eight kinds of sensors are considered as different condition
factors, nine sensor values (for each type of sensor from
the nine sensor arrays) are regarded as one data. In a real
situation, some of the sensors may suddenly malfunction
during the operation, and in this case, it is difficult to detect
the gas properly if the data from all sensors are treated as one
data. However, if detection is possible with only certain kinds
of sensor, robust detection is possible even if some sensors fail
to operate.
Scenario 3: We evaluate the performance for a real-time

detection task in Section IV-G. In an actual deployment
situation, fast detection of gas is often as important as
high detection accuracy. In other words, it is necessary to
achieve high performance with the data obtained for a short
time period. In the previous scenarios, the classification is
performed using the data for the whole time period, but in
this case, the classification is performed at an interval of five
or ten seconds.
Scenario 4: We evaluate the performance of mixture gas

classification in Section IV-H. Since there are no conditions
in the mixture gas dataset, the sensor type is considered as
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FIGURE 7. (a) Learning curves of EmbraceNet [29], and the proposed MCGCN during training. (b) Test accuracy of SimResNet [28], EmbraceNet, and
MCGCN with respect to the number of conditions (total 15). Our MCGCN achieves an accuracy of 99.1% on average even with only one condition.

FIGURE 8. (a) Learning curves of EmbraceNet [29], and the proposed MCGCN during training. (b) Test accuracy of SimResNet [28], EmbraceNet, and
MCGCN with respect to the number of conditions (total 120). Our MCGCN performs better than the other methods for all cases.

a condition factor as in Scenario 2. Therefore, there are a
total of four conditions, and four sensor values are considered
as one data. This scenario corresponds to a multi-label
classification problem having a total of six class labels as
shown in Table 1.

C. IMPLEMENTATION DETAILS
We divide the time series data in the dataset using a temporal
window having a length of 180 seconds and a step size of one
second. Thus, the size of input data is 15× 180×72.

Formodel training, we use theAdam optimizer with a fixed
learning rate of 10−4 while the batch size is set to 80 and the

training epoch is set to 30. The size of the integrated feature
is set to 1024. We set α in (7) to 0.1. All experiments are
implemented in TensorFlow.

While the model structure shown in Figure 2 is used for
Scenario 1, we slightly modify it for the other scenarios as
follows.

For Scenario 2, since the data from 120 conditions are
given as the input to the network, we need to reduce the size
of the feature extraction module to avoid excessive memory
consumption. Therefore, we reduce the number of channels
of each convolutional layer in the feature extraction module
as shown in Figure 5a. On the other hand, the dimension of

VOLUME 10, 2022 68145



H. Lee et al.: Classifying Gas Data Measured Under Multiple Conditions Using Deep Learning

FIGURE 9. Test accuracy of EmbraceNet [29] and the proposed MCGCN for real-time detection when the detection sequence length is (a) 5 seconds
and (b) 10 seconds. MCGCN performs significantly better than EmbraceNet for both detection sequence lengths, particularly when only one
condition is available.

FIGURE 10. Test accuracy of EmbraceNet [29] and the proposed MCGCN
for mixture gas classification. Our MCGCN outperforms EmbraceNet.

the integrated feature and the training epoch are increased
from 1024 to 2048 and from 30 to 50, respectively. The reason
of this is that a condition is selected among 15 conditions
for each feature element in Scenario 1, but here, a condition
is selected among 120 conditions for each element. If the
dimension is set to 1024, only about 8-9 elements from each
condition are reflected in the integrated feature (1024/120 =
8.533) and it is difficult to properly reflect the information
of individual conditions in the integrated feature. In addition,
we increase the batch size to 120 to include as diverse
conditions as possible in the learning of one iteration.

For Scenario 3, we add an LSTM layer having 256 units
before the last FC layer in order to facilitate real-time
detection by capturing temporal information better as shown
in Figure 5b.

For Scenario 4, since the total number of data is very small
and the size of each data itself is also small, the size of
the entire network is greatly reduced as shown in Figure 5c.
We also decrease the batch size to 20.

As explained in Section II-A, SimResNet [28] takes
the gas sensor data and the conditions as input. The
condition information processed by an MLP is merged by
the intermediate integration. The model is composed of seven
convolutional blocks, a global average pooling layer, a flatten
layer, and two FC layers as proposed in the original work.

For EmbraceNet [29], we use SFEM for a feature
extraction module as explained in Section IV-D and the rest
of the parts are implemented as in the original work.

D. EFFICIENCY OF SFEM
In Table 2, we compare EmbraceNet with separate feature
extractionmodules for individual conditions and EmbraceNet
with SFEM for Scenario 1 when all 15 conditions are
available. The proposed SFEM achieves almost the same
accuracy as the separate modules with about 15 times
fewer parameters. Since the separate modules require as
many modules as the number of conditions, the number
of parameters increases proportionally to the number of
conditions. However, SFEM achieves efficient and effective
gas classification with only one module. Moreover, even in
terms of memory consumption, SFEM consumes only about
a half of the memory used by the separate modules. Thus,
in the following, we use SFEM as a feature extraction module
in EmbraceNet for fair comparison.

SFEM can achieve high performance with a much smaller
number of parameters because the data of different conditions
share significant similarity and SFEM can successfully
extract common features that are effective for classification.
To validate this, we conduct the following experiment. First,
we train the network using only the data of the first condition.
Then, we apply the transfer learning technique by using
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FIGURE 11. t-SNE (t-stochastic neighbor embedding) visualization of feature distribution in the last FC layer. Different colors
indicate different classes. Normalized mutual information (NMI) scores for three-dimensional t-SNE are also reported. MCGCN
produces more clearly distinct clusters corresponding to different classes.

the trained SFEM and fine-tuning only the final FC layers
with the data of each of the other conditions. Figure 6
shows that even with the SFEM trained with the data of
the first condition, our model can achieve significantly high
performance for the other conditions. In other words, useful
features can be extracted for the other conditions through the
SFEM trained using the data of one condition.

E. SCENARIO 1
Figure 7 shows how the loss values change during training
and summarizes the classification accuracy with respect to
the number of available conditions for Scenario 1. The
learning curves show that MCGCN successfully learns
the multi-conditioned gas data and achieves higher test
accuracy and lower test loss. Moreover, our MCGCN
shows significant performance improvement compared to the

EmbraceNet method in all cases. In particular, it achieves
high performance when there are very few conditions, e.g.,
99.1% with only one condition. However, in the case of
EmbraceNet, the accuracy is 85.7% with one condition,
which is about 13% lower than MCGCN. The reason for
this performance improvement is that MCGCN can learn
the individual conditions properly because the information
of each condition is directly reflected in the loss function.
Conversely, it is difficult for EmbraceNet to fully learn
about each condition because the individual features are
only used to consist of the integrated feature. If the number
of conditions increases, the performance of EmbraceNet
improves to some extent, but there is still a large performance
gap with MCGCN. MCGCN also performs better than Sim-
ResNet, which achieves an accuracy of 98.3%. Furthermore,
SimResNet can only be used in a situation where only single
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condition exists and cannot deal with the data from multiple
conditions. Therefore, MCGCN is much more advantageous
than SimResNet in terms of both performance and usefulness.

F. SCENARIO 2
Figure 8 shows the learning curves and the classification
performance for Scenario 2 where each kind of sensor is
considered as a condition factor. Since MCGCN uses the
additional individual losses, the training loss of MCGCN is
much larger than that of EmbraceNet. However, the test loss
ofMCGCN ismuch smaller than that of EmbraceNet. In addi-
tion, the training accuracy of EmbraceNet is higher than that
of MCGCN, but the test accuracy of MCGCN is higher than
that of EmbraceNet. Thus, even for Scenario 2, MCGCN
learns themulti-conditioned gas data better than EmbraceNet.
In particular, if the number of available conditions is very
small, the performance difference is considerably large; when
only one condition is used, the difference in accuracy is about
70%. In addition, MCGCN achieves an accuracy higher than
90%with only five conditions, whereas EmbraceNet requires
more than 30 conditions to exceed 90%. This shows that when
there are extremely many conditions, the information of each
condition is not sufficiently reflected in the integrated feature
in EmbraceNet. However, since MCGCN learns by reflecting
the individual features to the loss function, high performance
can be obtained even with only one condition. Moreover,
similar to Scenario 1, the performance of MCGCN is higher
than SimResNet, which achieves an accuracy of 71.7%.
To sum up, the proposed MCGCN is even more powerful in
extreme situations with many possible conditions.

G. SCENARIO 3
In Figure 9, the performance of EmbraceNet and MCGCN
for real-time detection is compared. In both methods, when
detection is performed with only an initial portion of the
data, the accuracy is somewhat low, but as time passes, the
performance increases as the amount of input data increases.
The performance of MCGCN is significantly higher than
that of EmbraceNet regardless of the detection sequence
length (5 or 10 s). In particular, if only one condition is
available, a gap of about 40% or more occurs in the initial
detection performance. The superiority of MCGCN shown
in Scenario 1 and Scenario 2 also leads to satisfactory
performance in real-time detection.

H. SCENARIO 4
In Figure 10, the performance of EmbraceNet and MCGCN
for mixture gas classification is compared. As in the other
scenarios, the performance of MCGCN is higher than that of
EmbraceNet, and the performance difference is larger when
there is only one condition. This confirms that MCGCN also
performs well in multi-label mixture gas classification.

I. FURTHER ANALYSIS
To investigate the effect of the individual losses in the loss
function, we further evaluate the performance by changing
the value of the balancing parameter α in (7). To this end,

we conduct experiments with the configuration in Scenario 2,
because Scenario 2 is relatively challenging and thus it is
easier to clearly verify the effect of the individual losses.
The results are shown in Table 3. In all cases, training
with the individual losses achieves better performance than
without them (i.e., α = 0). When α is too small (α =
0.01), the performance is poor with a small number of
conditions, which means that the individual conditions are
not sufficiently learned. In addition, if α is too large (α = 1),
the performance is low regardless of the number of available
conditions. In this case, the individual losses have too much
influence on the learning, so even the individual conditions
are not properly learned since the learning direction becomes
incoherent among the individual conditions. Therefore, the
learning by the integrated feature is not performed properly,
either. Overall, satisfactory performance is achieved when the
value of α is 0.1.
In addition, to further investigate the superiority of our

method, we visualize the features of the test data with all con-
ditions using t-SNE (t-stochastic neighbor embedding) [48]
as depicted in Figure 11. The figure visualizes the feature in
the last FC layer of the trained network, where each color
represents each class. We also report the normalized mutual
information (NMI) score [49] to quantitatively verify that
the t-SNE results of MCGCN are better clustered. We apply
the k-means clustering [50] to the t-SNE result and obtain the
mutual information between the result of k-means clustering
and the class labels. A high NMI score means that the
data in the t-SNE result are clustered well according to the
class labels. For obtaining NMI scores, we use the three-
dimensional t-SNE results instead of two-dimensional t-SNE
results in order to obtain better clustering. In both Scenario 1
and Scenario 2, NMI scores are higher for MCGCN than
EmbraceNet, indicating thatMCGCNyields better separation
between classes. We can infer that these distinct feature
representations result in the high performance shown above.

V. CONCLUSION
In this paper, we proposed MCGCN for multi-conditioned
gas classification. MCGCN consists of SFEM for efficient
feature extraction and is trained with a new loss function
consisting of the integrated classification loss and the losses
for separate conditions, which achieves great performance
enhancement compared to the existing methods. Thus,
our MCGCN can classify the multi-conditioned gas data
efficiently and effectively. Since there has been no method
that is directly designed to classify the multi-condition gas
data in previous studies, ours is considered to be an important
foundation for subsequent research as a cornerstone in this
field.

In the future work, we plan to extend our method to the
cases with low-concentration gas data. In real situations, the
concentration of chemicals in the air may be very low, so gas
classification considering this is also important for practical
deployment. We believe that our model will be of great help
in such situations as well.
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A. LIMITATION
In the feature integration process, random selection can be
viewed as a regularization operation, as it works similarly to
a dropout function. Therefore, if the number of training data
is small, it may cause underfitting. However, this problem can
be alleviated by reducing the size of the SFEM.
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