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ABSTRACT This paper introduces PlaneLoc2 - a novel indoor global localization system designed to
harness the potential of stereo cameras. A need for robust global localization that does not produce incorrect
results (false positives) is present in almost every life-long autonomy task. We show that planar segments
extracted from stereo vision data by a neural network enable such robust localization. Planar segments are
easier to discriminate than keypoint features and provide easy-to-use geometric constraints. We propose an
architecture that exploits a single deep neural network (DNN) to detect planar segments, produce appearance
descriptors, and estimate segment geometry. Moreover, we introduce a novel view-based segment map and
a novel pose retrieval procedure that considers the uncertainty of features to efficiently use the geometric
constraints provided by them. We also show that the new learned descriptor provides better discrimination
than the hand-crafted one. Finally, we present experimental results that show that our solution outperforms
other state-of-the-art global localization methods and does not produce incorrect agent poses. For both test
scenes it recognizes at least 15% more poses than the second best method without incorrect recognitions.

INDEX TERMS Simultaneous localization andmapping, artificial neural networks, stereo image processing.

I. INTRODUCTION
Accuracy of modern simultaneous localization and mapping
(SLAM) systems over the last years has improved signifi-
cantly, yet they are still not applicable to many real-world
tasks. The main reason is that to work for a prolonged
time these systems have to be able to recover from failures
and have to correct localization drift that inevitably accu-
mulates over time. When no external source of positioning
is available, e.g. in indoor environments where there is no
Global Positioning System (GPS) signal, global localization
becomes essential. Global localization is a problem of localiz-
ing an agent with respect to a known map without knowledge
of its previous poses [1]. In the case of metric global localiza-
tion, the pose (translation and rotation) is expressed in a frame
of reference of the map using appropriate representation,
e.g. translation vector and rotation matrix. Metric global
localization is a vital component of solutions to problems
such as recovery after loosing pose tracking due to occlusion
or other external factors, or loop closing when a robot arrives
at a previously visited scene after traversing a long loop
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and drift has to be rectified. In order to compute the pose
in this situation, it is necessary to match a selected type of
features or objects between a local view and the global map.
The more discriminative the features or objects, the better,
because it is easier to avoid incorrect associations. However,
a nontrivial problem is to reliably and repeatedly detect such
objects and to exploit geometric constraints provided by their
associations. One possibility is to use planar segments that
are common in indoor environments. They are not so easily
detected as keypoint features and geometric constraints are
more complex than point-to-point constraints, nonetheless,
they are more discriminative and there are usually fewer of
them, which reduces the number of possible association com-
binations. Therefore, to build a global localization system that
will benefit from planar segments, it is necessary to develop
proper detection and pose retrieval algorithms. The detection
of planar segments is usually done using RGB-D sensors
because of the availability of depth information that helps to
segment the scene and enables geometry estimation, i.e. plane
equations supporting segments. Unfortunately, RGB-D sen-
sors have limited effective range, and other sensors providing
depth information, such as LiDARs (Light Detection and
Ranging), are expensive. An interesting alternative is a pas-
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FIGURE 1. PlaneLoc2 retrieves candidate views using appearance descriptors and builds a PDF of pose using all potential matches. The final pose is a
maximum of the PDF, verified by the fail-safe checks.

sive stereo camera that also facilitates unambiguous geom-
etry recovery, but has a longer effective range than RGB-D
sensors and is cheaper than LiDARs. However, to harness
the full potential of stereo cameras, special care has to be
taken because stereo estimated depth is not as accurate as
the one from RGB-D sensors or LiDARs. Whereas multi-
ple papers discuss planar segment detection without explicit
depth information [2], localization using planar segments [3],
and some systems allow localization using stereo sensors [4],
no significant prior work exists that combines those topics to
propose a robust global localization system. This paper closes
this gap by introducing the PlaneLoc2 (Sec. III), depicted in
Fig. 1. The goal of the presented research is to develop a
system that delivers a metric pose of the agent with respect to
a known map, using a passive stereo camera, and exploiting
planar segments as reference objects. The contribution of the
paper can be summarized as follows1:

• Extending Stereo Plane R-CNN planar segment detec-
tion network with a module to extract the geometry
and uncertainty of geometry of planar segments. This
enables application of this network architecture to the
real-world problem of global localization (Sec. IV-A).

• Developing a planar segment appearance description
method that is embedded in the segment detection net-
work. The enhanced descriptor significantly limits the

1Implementation and dataset are available at https://github.com/
LRMPUT/plane_loc_2

number of potential matches considered during localiza-
tion (Sec. IV-B).

• Proposing a novel view-based map and a novel pose
retrieval method that better suit the characteristic of
passive stereo cameras (Sec. V).

The rest of the article is structured as follows.
In Sec. II we survey other papers and compare them with

our approach. Sec. III is dedicated to the overview of the
global localization pipeline. In Sec. IV we describe the pla-
nar segment extraction mechanism, while the view-based
approach to global localization is presented in Sec. V. The
proposed methods are extensively evaluated and compared to
other state-of-the-art systems in Sec. VI. Finally, conclusions
are drawn in Sec. VII.

This work builds on results from our previous articles.
A planar segment detection DNN that enables accurate geom-
etry retrieval was introduced in [5]. We use this network in
the PlaneLoc2, but add a segment geometry extraction mech-
anism that can be used in global localization. The extracted
information include the uncertainty that is a vital part of the
description of geometry. The segment appearance description
learning is inspired by our previous successful loop closing
method [6], where descriptors of general (not necessarily
planar) segments were computed from LiDAR data. The
general idea of inference by building a probability density
function (PDF) describing agent pose is borrowed from the
PlaneLoc system that uses RGB-D data [7]. However, a com-
pletely new mapping approach and pose retrieval procedure
are introduced in this article to handle a stereo sensor.
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II. RELATED WORK
In this section we describe other papers related with our work.
The description is divided into three subsections concerning
different aspects of global localization: sensors, features, and
methods in general.

A. SENSORS
Rapid development of RGB-D sensors that followed the intro-
duction of Kinect, brought a variety of sensors that use dif-
ferent measurement techniques, such as structured light, time
of flight (ToF), and active stereo. However, all those solutions
have a limited effective range of 4-6m [8], evenKinect v2 that
is especially vulnerable to reflective surfaces [8]. Therefore,
modern RGB-D sensors often resort to passive stereo for
larger distances, which increases the effective range [9]. The
limited range poses problems for many real-world applica-
tions and makes a stereo camera the preferable sensor. The
applications include, but are not limited to, tracking human
motion [10], SLAM [11], and scene reconstruction [12].
Moreover, depth information is sometimes used to simulate a
view-based stereo measurement to achieve better results [4].
Also, when significant scene sizes are considered, stereo is
the only viable option [13] with monocular cameras strug-
gling with scale ambiguity [14]. Aware of those results in
related areas, we resort to a passive stereo camera to increase
the effective range of perception of planar segments with
respect to our earlier PlaneLoc system from [7].

B. FEATURES IN GLOBAL LOCALIZATION
One of the key aspects of global localization is a choice
of features to be matched. Algorithms like DBoW2 [15],
used in ORB-SLAM3, resort to classical, non-learned key-
point features, such as BRIEF (Binary Robust Independent
Elementary Features) or ORB (ORiented FAST and Rotated
BRIEF). A more recent approach is to use a trained keypoint
detector and descriptor, as in [16] where finding dense pixel-
wise correspondences between two images is enabled by
a pyramid of coarse-to-fine features. Learned features are
oftentimes combined with learnedmatchingmethods, such as
SuperPoint detector and descriptor [17] and SuperGlue [18]
matcher that uses a graph neural network to aggregate global
context. A more localization-oriented feature learning was
proposed in [19], where supervision at the level of pose
was applied to train a multiscale feature generator. However,
the pose estimation is left to a principled algorithm and
the method requires a coarse initialization of pose, there-
fore being not suitable for global localization. In our work,
we adopt a different approach and instead of resorting to a
complex description and matching methods, we use planar
segments that are easier to describe and match.

Planar segments are not as commonly used as reference
objects, compared to keypoint features, mainly because diffi-
culties with their detection, and with exploiting the geomet-
ric constraints they provide. Nonetheless, there are SLAM
systems that use planar segments, such as the one presented

in [20], where planar segments enabled loop closures in a
LiDAR-based system. LiDARmeasurements facilitates accu-
rate estimation of planar segments’ geometry, therefore the
solution cannot be directly applied to a camera-based sys-
tem, such as ours. In camera-based SLAM, planar segments
were used in [3], [21], however, planar constraints were used
only during incremental localization and loop closing was
based on keypoint features. Contrarily, PlaneLoc2 uses planar
segments to recover global pose, which is a part of loop
closing procedure. A demonstration of global registration of
camera pose with planar segments was presented in [22],
but no quantitative localization results were provided. Global
localization was also considered in [23], where graphs of
incidence of planar segments were used to compare their sets.
However, the method was tested only in a small environment,
where objects were close to a sensor and their geometry could
be accurately estimated using RGB-D data. In opposition,
in this paper, we quantitatively evaluate the proposed solution
in a workshop-sized environment to enable a fair comparison
with other systems.

C. GLOBAL LOCALIZATION METHODS
Most of the global localization methods use associations
between keypoint features to recover a pose. Loop closing
and relocalization mechanisms in ORB-SLAM3 [4], based
on DBoW2 [15], use sparse ORB features and hierarchical
tree to quickly retrieve candidate images to match against.
The pose is computed by point-to-point correspondences
and later verified by tracking a local map. A solution using
learned descriptors is presented in [24], where candidate
images are found using NetVLAD [25] descriptor, followed
by densematching and pose verification using view synthesis.
Unfortunately, view synthesis requires the database images
to contain dense depth maps, which can be troublesome to
obtain. A conceptually similar approach was described by
Sarlin et. al [26], where localization is done in two steps:
global candidate images retrieval, followed by local feature
matching. Our solution follows a different strategy than those
algorithms, matching directly objects of reference and includ-
ing context description in the appearance descriptor of those
objects. A data-driven approach could alleviate the need to
choose a specific strategy and combine benefits of both solu-
tion. However, despite the enormous capabilities of DNNs,
they have been applied mainly to feature generation and
incremental localization [27], whereas global pose retrieval
is done using principled algorithms, as in the aforementioned
papers.

Uncertainty in global localization is not easy to capture
and has been discussed only in a few articles. In [28] a place
recognition method was proposed that uses Bayesian filtering
with simple motion and sensor models. The model is used in
prediction and resampling steps of a particle filter, but the
computed place gives only a coarse pose. Another example
of Bayesian localization is presented in [29], where authors
integrated LiDAR and camera measurements and proposed
an efficient inference method with a decomposition of the

VOLUME 10, 2022 67221



J. Wietrzykowski: PlaneLoc2: Indoor Global Localization Using Planar Segments and Passive Stereo Camera

FIGURE 2. Processing pipeline of PlaneLoc2.

global map into local places. Those two methods maintain
a probability distribution of poses and constrain transitions
between locations using a motion model. Such an approach
differs from the one presented in this article, because we
assume that visual odometry in a short horizon is precise
enough to neglect its uncertainty and represent the pose dis-
tribution using kernels.

III. GLOBAL LOCALIZATION USING PLANAR SEGMENTS
The RGB-D based PlaneLoc, despite achieving good results
in terms of precision and recall, had a few issues that
were identified during the research and hindered further
development:

• Ignoring planar segments further than 4 m due to a
limited effective range of RGB-D sensors. During global
localization, using only the part of the image that is close
to the sensor significantly limits the context and limits
the number of geometrical constraints.

• Using poorly discriminating appearance descriptors
based on color histograms. They were dependent on
illumination and did not include context, therefore their
comparison produced many spurious potential matches.

• Using pose retrieval optimization based on infinite
planes. It did not include information about the bound-
aries of planar segments and produced implausible solu-
tions that had to be additionally verified.

In the new approach, PlaneLoc2, the above-mentioned
issues were addressed to improve robustness and recall.
Nonetheless, the inference procedure is based on the previ-
ous version [7] in which all plausible pose hypotheses are
generated and a PDF representing knowledge about the pose
is built. In the PDF the maximum is sought and additional
asserts are performed to ensure that the returned pose is
correct. The same idea is applied here, although most of the
other components had to be redesigned to benefit from a
stereo sensor.

The processing pipeline (see Fig. 2) starts with planar seg-
ments detection and description using a DNN. To maximize
computation sharing during this stage, we use a single DNN

that extracts all information necessary for further process-
ing, including segments’ 3-D geometry. The geometry and
visual odometry are used to match segments from the current
frame to those present in the local map. Information from the
current frame is then used to either update segments in the
local map or to add new ones, depending on the matching
results. Both maps, the local and the global one, do not merge
segments explicitly to get a single representation but rather
store information about views of the segments. After updating
the local map, a localization procedure is performed, that
associates segments between the local and the global map
and builds the PDF. The procedure starts with the retrieval
of candidate global map views using appearance descriptors.
As a result of using deep learned descriptors that provide good
discrimination, only 2 candidate views have to be retrieved
to get a high probability of including a correct match. Using
retrieved views, all plausible pose hypotheses are generated
by examining triplets of matched segments and every hypoth-
esis is inserted into the 6-D pose PDF as a kernel:

p(q) =
1
Z
p̃(q) =

1
Z

∑
a

waKa(q), (1)

where q is a 6 element pose vector (a logarithm of the SE(3)
transformation matrix), Z is a normalizing factor, Ka is a
kernel function for hypothesis a, and wa is a weight of the
kernel a. The weights are computed as follows:

wa =
∑
b

αb, (2)

where b ranges over all local segment views used in the
hypothesis a, and αb is an area of the segment view b.
A novel procedure to retrieve a pose hypothesis based on a
set of matches is used to exploit view-based representation
and provide as many geometric constraints as possible. The
pose retrieval procedure is critical during the pose hypothesis
generation and the final pose computation. When the PDF
maximum is found and the final pose q∗ is computed, three
fail-safe checks are performed to ensure that the pose is
correct:
• p̃(q∗) > τp - the value of the unnormalized PDF p̃(q∗)
for the final pose q∗ has to be above a threshold τp to
assert that enough positive evidence was collected.

• min
(
αlm
αlt
,
α
g
m
α
g
t

)
> τr - the ratio of the area of segment

views that were matched αm to the total area of visible
segment views αt has to be above a threshold τr for, both,
the local map (denoted by a superscript l) and the global
map (denoted by a superscript g) to verify that there is
no significant amount of negative evidence.

• |M| > τd - the number of distinct matched pairs of
segments has to be above a threshold to make sure that
the positive evidence is diverse enough.

Our system has three main threads that can be executed
concurrently. The first one is responsible for detecting planar
segments and creating views – its processing takes 557ms per
frame on average on RTX 3090 GPU. The second one builds
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FIGURE 3. An overview of DNN used to detect and describe planar
segments. Gray blocks and connections were not modified.

and manages the local map, using approximately 11 ms of
i5-8250U CPU time for each frame. The last thread is a pose
inference thread that returns results every 2883ms on average
using CPU only. The execution time allows to update the local
mapwith a frequency of approximately 2Hz, which is enough
for global localization, since consecutive frames usually do
not contain significant amount of new information. Although
the local map can be updated with a frequency of 2 Hz, the
agent pose cannot be retrieved after each update due to the
longer processing time of the inference thread. Nonetheless,
in the considered scenarios, information about the global pose
yielded every 3 s is enough to recover from loosing pose
tracking or to correct the drift.

IV. PLANAR SEGMENTS EXTRACTION
As mentioned in Sec. I, reliable and repeatable object detec-
tion is essential if they are to be used during localization.
Drawing from development in the object detection field,
where DNNs achieve the best results, outperforming classical
methods by a large margin, we also use DNN to detect
reference objects in the form of planar segments. The DNN,
introduced in our recent work [5] (see Fig. 3), simultaneously
produces image masks of individual planar segments, their
appearance descriptors used to preliminarily match segments
between the local map and the global map, and retrieves the
3-D geometry of the segments. It was trained on a photo-
realistic synthetic SceneNet Stereo dataset containing
approximately 35k images from 200 different scenes. The
trainingwas started fromweights pretrained on the real-world
Coco and ScanNet datasets, same as in [5]. We trained the
network for 10 epochs using Adam optimizer with a learning
rate equal to 10−5 and weight decay equal to 10−4. Training
examples were augmented using random color and sharp-
ness manipulation, Gaussian noise, and random cropping.
Despite using only a synthetic dataset for the final training,
the network performs well on real-world data, as evaluated in
Sec. VI.

A. DETECTION
To exploit more information about the scene by including
also distant segments, we use a stereo camera instead of
an RGB-D sensor. However, stereo estimated depth is not
accurate enough to reliably segment an image into planar
segments and to fit supporting 3-D planes for those seg-
ments. Nonetheless, a pair of stereo images is still a valuable
source of information regarding the geometry of the scene
and can be used without explicit depth reconstruction. In the
PlaneLoc2 a DNN is used to segment image into planar
segments and to estimate segments’ supporting planes. The
Stereo Plane R-CNN architecture detailed in [5] uses camera-
agnostic geometry representation to provide robustness to
camera parameters change and to enhance the results. To use
this network for localization purposes, an export mechanism
had to be added that handles the depth uncertainty. Besides
a plane equation and a hull denoting the boundary of the
segment, we also store a mean value and a covariance matrix
of 3-D points forming this segment. The points are calculated
using the estimated depth and the uncertainty of their estima-
tion is extracted from the disparity estimation branch of the
geometry module of the DNN. In this branch, a cost volume
is created that holds the probability distribution over disparity
values for each pixel. It is straightforward to compute the
standard deviation of disparity σd from this distribution:

σd =

√∑
d

p(d)(d − d), (3)

where p(d) is a probability that d is a disparity for this pixel,
and d is an expected value of the disparity. Then, a standard
deviation of depth σz can be calculated using a camera model
as follows:

σz = σd
z
fxb
, (4)

where z is a depth value, fx is a focal length for X axis of
the camera, and b is a baseline of the stereo setup. Finally,
a covariance of 3-D point xi in a camera frame of reference
can be approximated as:

Si =

0.052

0.052

σ 2
z

 . (5)

A small, constant value of uncertainty of 0.05 m was used
for the X and Y axes because uncertainty in those directions
can be neglected compared to uncertainty in the Z axis. The
uncertainties of individual points are aggregated to obtain a
covariance matrix of the whole point cloud as follows:

S =
∑
i

Si + xixTi − µµ
T , (6)

where µ is a centroid of the point cloud. This uncertainty is
necessary to accommodate for inaccurate geometry estima-
tion during the association check and the pose retrieval.
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FIGURE 4. A modified classification head from stereo plane R-CNN that
produces descriptors. Gray blocks and connections were not modified.
Location of this classification head in the entire structure of the DNN is
presented in Fig. 3.

B. DESCRIPTION
The DNN also helped resolve another issue of the previous
version of PlaneLoc system, namely poorly discriminating
appearance descriptors. We added additional layers in a clas-
sification head (location of this classification head in the
entire structure of the DNN is presented in Fig. 3) of the
DNN that produce descriptors as presented in Fig. 4. Features
that are used to compute class probabilities and bounding
box refinements are processed by a fully connected layer
to output a descriptor. However, the most troublesome part
of training a DNN that computes descriptors is the way of
supervision. Inspired by [6], we also formulate this problem
as a classification task. During training, every instance of a
planar segment in the training dataset is a separate class and
all observations of this segment should be classified as this
class. To increase the robustness of the descriptor, a dropout
layer is added between the descriptor and fully connected
and softmax layers that output segment instance probabilities.
The segment instance probabilities are used to compute a
cross entropy loss by comparing with target annotations. Cor-
respondences between observations and instances of planar
segments that serve as the target annotations are computed
using 3-D mesh models, eliminating the need for tedious
manual labeling. Such a modification adds little overhead to
the Stereo Plane R-CNN model from [5], while producing
discriminative descriptors.

V. VIEW-BASED APPROACH TO GLOBAL LOCALIZATION
Distant planar segments, even if not useful to constrain how
far the sensor is from the segment because of problems
with accurate depth estimation, still provide good orientation

FIGURE 5. The map in PlaneLoc2 contains planar segments, whereas
segments store information about their views.

constraints. To exploit those constraints, we proposed a novel,
view-based map and a pose retrieval procedure that takes into
consideration the uncertainty of depth estimation. Moreover,
the new pose retrieval procedure treats planar segments as
spatially bounded, providing more constraints as opposed to
the previous approach that treated them as infinite planes.

A. PLANAR SEGMENT MAP
The newmap structure, instead of explicitlymerging different
observations of the same planar segment to produce a single
representation in the form of a point cloud, stores information
about separate views of segments. The structure of the map
is depicted in Fig. 5, showing the following information is
stored for each view:
• Plane equation (π ) - estimated by the plane parameters
branch of the geometry module.

• Point cloud - 3-D points constituting the segment. Points
are reprojected using the stereo estimated depth from the
disparity branch of the DNN. To limit storage require-
ments, they are downsampled using a voxel grid filter
with a raster of 0.05 m.

• Centroid and covariance matrix (µ,S) - computed from
the point cloud.

• Pose - a visual odometry pose from which the segment
was observed.

• Appearance descriptor - produced by the DNN and used
to retrieve global map view candidates.

By avoiding merging, we circumvent the problem of, usually
computationally costly, information merging and uncertainty
propagation from different views. When a new frame is pro-
cessed, a depth buffer is built to check which segments from
the local map can be visible. During the buffer construction,
for every segment we select a view with the observation pose
Tv (expressed as a SE(3) transformation matrix) closest to the
current pose Tc, according to the following metric, that is a
weighted sum of translational and rotational differences:

d
(
Tc,Tv

)
= dt

((
Tv
)−1 T1

)
+ wrdr

((
Tv
)−1 T1

)
, (7)

where wr is a weight of the rotational difference, dt (·) is a
function returning translation of the transformation, and dr (·)
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is a function returning rotation of the transformation. The
weight wr = 5 is set to make an error of approximately
5◦ equal to an error of 0.5 m. The new views are matched
against the potentially visible segments by a geometry test
that employs the same error function as the pose retrieval
procedure:

g
(
Pc,N (µv,Sv)

)
=
√
ec,v (I, 0) < τg, (8)

where Pc is a set of points representing the currently consid-
ered new view, N (µv,Sv) is a distribution representing the
local map view, ec,v (I, 0) is the error function defined in (9)
for identity transformation, and τg is a threshold. Depending
on the results of this test, views are either added to existing
segments or create new ones. Additionally, we store an end-
of-life (EOL) counter for every segment. It is initialized with
a value of 4 and increased by 2 whenever a new view is
added and decreased by 1whenever the segment is potentially
visible but no new view was added. Segments with EOL
higher than 8 are treated as mature and their counter is not
decreased anymore. When EOL drops to 0, the segment is
considered an invalid observation and is removed from the
map.

The local map has a limited time horizon of 2 seconds.
Such a horizon prevents accumulation of the drift from the
visual odometry, yet includes a broader context of a scene
than a single frame. As a result of the view-based approach,
older information can be easily removed by dropping infor-
mation about outdated views.

B. POSE RETRIEVAL
The aim of pose retrieval is to compute a pose of the sensor
with respect to the global map, given a set of matches between
views of planar segments in the local map and ones in the
global map. The novel pose retrieval used in this work does
so by minimizing an error of fitting virtual points of the first
planar segment to a distribution describing the second planar
segment. Such formulation allows exploiting uncertainty of
depth estimationwhile also providing a system of linear equa-
tions that can be quickly solved. Consider a planar segment
from the local map (denoted by a superscript l) and a planar
segment from the global map (denoted by a superscript g)
described by their centroids µ, covariance matrices S, and
plane equations π . To assess howN transformed pointsRxli+
t forming the local segment distribution fit the global segment
distribution N (µg,Sg), one can use a squared Mahalanobis
distance:

el,g (R, t) =

=
1
N

∑
i

(Rxli + t− µg)T (Sg)−1(Rxli + t− µg)

=
1
N

∑
i

(Rxli + t− µg)T (Vg3g(Vg)T )−1

× (Rxli + t− µg)

=
1
N

∑
i

(Rxli + t− µg)T (Vg3g
s (3

g
s )
T (Vg)T )

× (Rxli + t− µg)

=
1
N

∑
i

∑
k

(Rxli + t− µg)T vgk
1√
λ
g
k

2

, (9)

where Vg3g(Vg)T is an eigen decomposition of the covari-
ance matrix Sg, 3g

s is a matrix with inverses of square roots
of eigenvalues 1√

λ
g
k

on the diagonal, and vgk are columns of

the matrix Vg and eigenvectors of the covariance matrix Sg.
To minimize el,g (R, t), a set of linear equations can be build
in the form:

(Rxli + t− µg)T vgk
1√
λ
g
k

= 0, (10)

and then solved using SVD-based least squares algorithm.
Unfortunately, this gives 3N equations when using all points
from the local segment distribution. Hence, instead of all
points, we use virtual points that subsume the distribution:

xl
±k = µ

l
± K

√
λk

l
vlk , (11)

where K is a number of dimensions used. We use 4 virtual
points that correspond to two principal directions (K = 2)
of the distribution N (µl,Sl) projected onto plane π l . Those
points lay on the plane and are in a distance of two standard
deviations from the centroid. Using only points on the plane
from the local segment distribution, instead of using 6 points
that would represent the distribution before the projection,
is of utmost importance to conserve the planar nature of those
constraints. If all 6 points were used, and the uncertainty of
estimation would be high in a direction of a normal vector
of the local segment (i.e. due to poor depth estimation), the
fitting error would be high if the global distribution was
mainly planar (see Fig. 6). This high fitting error could cause
minimization to favor undesired rotations. Moreover, using
only 4 points further reduce the number of equations by
exploiting the planarity of the segments. Additionally, the
centroid and the covariance matrix are computed using stereo
estimated depth and give a less accurate description of the
geometry than the plane equation from the specialized branch
of the DNN. Hence, by projecting distribution on the plane,
the accuracy is increased. However, centroids and covariance
matrices are still used because they are the only source of
uncertainty measures.

After solving a system of 36 equations (3 pairs of matched
segments, 3 dimensions, 4 virtual points) in the form of
Eq. (10), we get values of the matrix R and the vector t.
Unfortunately, there are no constraints on the orthonormality
of the values in R, so it might not be a valid rotation matrix.
To obtain a proper rotation matrix, we perform orthonormal-
ization using the SVD decomposition:

R′ = UVT , (12)

where U6VT
= R is the SVD decomposition. To refine

the transformation, a Gauss Newton optimization in the Lie

VOLUME 10, 2022 67225



J. Wietrzykowski: PlaneLoc2: Indoor Global Localization Using Planar Segments and Passive Stereo Camera

FIGURE 6. Schematic illustration of fitting error of local planar
segment (blue) to global planar segment (orange) using 2-D section.
Lengths of vg

λg vectors correspond to a unit of error. The error is denoted

using a dashed line. Using virtual points perpendicular to the plane xl
−3

and xl
+3 could yield high errors and undesired behavior during

optimization (see text).

algebra is performed by minimizing a sum of squares of the
following residuals:

ri,k = (R exp(ω)xli + t− µg)T vgk
1√
λ
g
k

, (13)

where ω is a rotation increment. The Jacobians of the residu-
als are as follows:

∂ri,k
∂t
= (vgk )

T 1√
λ
g
k

(14)

∂ri,k
∂ω

∣∣∣∣
ω=0
= (vgk )

T 1√
λ
g
k

R
[
xli
]
×

, (15)

where
[
xli
]
×
is skew symmetric matrix formed from elements

of xli . We can assume that ω is close to 0 because it is an
increment. By empirical examination, the number of itera-
tions was set to a constant value of 5. In a vast majority
of cases, further iterations do not alter the transformation,
whereas using a constant value bounds the execution time.
The result is a transformation (R, t) that stems from the
geometric constraints imposed by a set of matched planar
segments and is used later to build the PDF of the agent pose.
The same procedure is also used to compute the final pose,
after the maximum of the PDF was found and all matches
were established.

VI. EXPERIMENTAL VERIFICATION
We use a real-world TERRINet dataset2 to evaluate the pro-
posed solution. The dataset contains trajectories from 3 differ-
ent scenes with reference poses fromQualisys motion capture
system. We recorded stereo images along with Velodyne
VLP-16 LiDAR scans that were later used to generate ground
truth depth maps for every image. The ground truth depth
maps enabled the computation of correspondences between
planar segments detected in different image frames.

2This dataset was collected during the author’s visit to LAAS-CNRS
in Touluse, within the TERRINet project funded by EU H2020 under GA
No.730994.

FIGURE 7. Statistics on ranks as a function of the square root of segment
size A. Values on the box plot further than 1.5 inter-quartile range from
the box were treated as outliers and removed.

A. DESCRIPTION
The aim of the first experiment is to show the effectiveness of
our new learned descriptors. We compare them with descrip-
tors based on color histograms used in the previous version of
PlaneLoc. For every detected planar segment we compute its
rank, i.e. the number of nearest neighbors necessary to fetch
from the database of all descriptors to include a correct match.
We exclude segments from the same trajectory, as images
containing them could be very similar to the image of the
query segment. To give more insight on the characteristic
of descriptors, we present the rank as a function of the size
of detected segments. We divided segments based on the
square root of their area in pixels, denoted as A, into 6 bins
(see Fig. 7). It is clearly visible that the learned descriptors
outperform the histogram-based ones by a large margin for
all sizes. It is also worth noting that from A equal to 100, the
first neighbor is almost always the correct one (values on the
box plot further than 1.5 inter-quartile range from the box
were treated as outliers and removed).

B. LOCALIZATION
The second experiment compares the proposed solution with
other state-of-the-art global localization systems. As avoid-
ing an incorrect loop closure or relocalization is of utmost
importance to the precision ofmost SLAMsystems, we report
a percentage of correct and incorrect localization acts (called
recognitions hereinafter) and their precision. We compare the
pose computed by a considered method with the reference
pose and compute the translational and the rotational error.
The threshold for assuming a recognition correct is 0.5 m and
10◦ as an error within such bounds usually enables resuming
tracking in SLAM systems [7]. If a method returns no result,
we do not compute the errors and treat such outcome as an
unknown pose. For each scene, we use one trajectory to build
a map and a different one to evaluate localization with a
known map. The map is built using the reference poses for
all tested solutions to exclude the factor of map precision.
We tested the following solutions:

• OS3/r - relocalization mechanism from ORB-SLAM3.
The system was forced to relocalize every frame and
pose after local map tracking was evaluated if the relo-
calization was successful. Localization is performed
every frame.
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FIGURE 8. Visualization of results with reference trajectory (magenta line), ORB-SLAM3 relocalization poses (red points), ORB-SLAM3 map merge poses
(green points), and PlaneLoc2 poses (blue points). Lines of corresponding colors connect reference poses with computed poses. Points in the point cloud
are colored according to their height above the ground. Results for NV+SP were omitted for clarity.

• OS3/m - map merging mechanism from ORB-SLAM3.
A new map was being build for the test trajectory and a
transformation between the current map and the prebuilt
map was evaluated if a merge was successful. Localiza-
tion is performed every time a keyframe is inserted into
the map.

• NV+SP - hierarchical localization [26] with Super-
Glue [18] and NetVLAD [25] was evaluated with a
global map constructed using COLMAP software.3

Localization is performed every frame.
• PL2 (ours) - the solution presented in this paper. The
local map is updated every 15 frames because consecu-
tive frames are similar to each other and do not provide
diverse views, therefore localization is performed every
15 frames.

Setting proper values of parameters is a troublesome task,
especially in complex systems. To facilitate this task in the
PlaneLoc2, we follow a data-driven paradigm and use the first
scene to perform statistical analysis and compute the values
of parameters:
• τd - a maximum distance between descriptors that is
considered during candidate segment views retrieval.
It is set to include 90% of all correct matches.

• τsvd,t and τsvd,r - aminimum value of a singular value for
translational and rotational part Jacobians in the gradient

3https://colmap.github.io

descent optimization of the pose to assume that the pose
is constrained in all dimensions. It is set to include 90%
of all correct triplets.

• τe - a maximum value of residual error to consider a
fitting of planar segments as correct during the pose
retrieval. It is set to include 75% of all correct triplets.
Value of 75% was used instead of 90% to limit the
number of considered triplets and to reduce the compu-
tational burden.

• τp, τr , and τd - thresholds that are used during the final
safe-checks. They are set to maximize the number of
correct matches, while keeping the number of incorrect
matches equal to 0.Multiplied by a factor of 1.2, inspired
by the Lowe’s ratio test [30], to add a safety margin.

• τg - threshold used to determine whether two segment
observations should be merged (see Eq. (8)) in a map.
Empirically set to a value of 2 that prevents most of the
incorrect data associations.

To enable a fair comparison, for ORB-SLAM3 we used
the parameter setting designed by the authors and used in
the EuRoC indoor experiments [4]. Likewise, for NV+SP we
used parameters set for the InLoc dataset [26] that is similar
in characteristic to the TERRINet dataset.

Quantitative results are gathered in Tab. 1, while visual-
ization of results for scene 02 are presented in Fig. 8. Both
ORB-SLAM3 mechanisms, relocalization and map merging,
recognize a lower percentage of poses than our solution.
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TABLE 1. Results of global localization on TERRINet dataset. Cases with
incorrect recognitions are colored red. The best correct recognitions rates
for cases without incorrect recognitions are emboldened.

An exception is scene 02, where relocalization recognized
slightly more poses, but also yielded incorrect ones. The
NV+SP recognized a higher percentage of poses but also
produced many incorrect ones, some of which were distant
more than 18 m from the reference pose. Such behavior can
be attributed to a lack of fail-safe checks that inevitably reject
some of the correct recognitions, but also prevent incorrect
ones. Thus, our system recognized the highest percentage of
poses among cases where no incorrect results were produced.
Moreover, our system did not produce any incorrect recogni-
tions in all test cases.

The accuracy of all tested methods is similar, with mean
error values varying slightly on different scenes. Maximum
errors depend mainly on incorrect recognitions and are the
lowest for the ORB-SLAM3 map merging mechanism, while
being below 0.4 m and 3.5◦ for the PlaneLoc2.

VII. CONCLUSION
In this article, we present the PlaneLoc2 global localiza-
tion method that utilizes a passive stereo camera to detect
planar segments and compute a PDF of the 6-D pose. The
method uses a DNN that jointly detects planar segments,
describes their appearance, and estimates their geometry. The
detected segments are used to build view-based local and
global maps, that are easilymanageable and store information
about the uncertainty of geometry of planar segments. The
uncertainty is exploited in a novel pose retrieval procedure
that is designed with stereo sensors in mind. In the exper-
imental section, we show that the new learned appearance
descriptor outperforms the classic, based on color histograms
one. We also tested the global localization performance of
our system and show that it achieves the best percentage of
recognized poses, when cases without incorrect recognitions
are considered (15.7% more poses in the first scene than the
second best solution and 29.7% more poses in the second
scene). Moreover, the PlaneLoc2 did not produce incorrect
recognitions in all cases, which is of pivotal importance in

navigation and SLAM systems, proving its suitability as a
global localization system.

The most important changes, with respect to the previous
version of PlaneLoc, that helped achieve good results include
the new appearance descriptor. Results in Sec. VI-A suggest
that it significantly limits the number of incorrect poten-
tial matches. Additionally, considering geometric constraints
from distant segments enabled correct pose retrieval in higher
percentage of situations. The new pose retrieval procedure
that accommodates the spatial boundaries of planar segments
further increases the number of geometric constraints avail-
able. All those factors facilitate a high correct recognition rate
without incorrect recognitions.

As a part of the future work, we plan to expand the system
with other types of geometric features, such as edges. Edges
could provide additional constraints that are unused in this
version of the system.
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