
Received 16 May 2022, accepted 14 June 2022, date of publication 22 June 2022, date of current version 27 June 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3185087

CIDS: An Efficient Algorithm for Processing
Skyline Queries for Partially Complete
Data in Cloud Environment
YONIS GULZAR 1 AND ALI A. ALWAN 2
1Department of Management Information Systems, College of Business Administration, King Faisal University, Al-Ahsa 31982, Saudi Arabia
2School of Theoretical and Applied Science, Ramapo College of New Jersey, Mahwah, NJ 07430, USA

Corresponding authors: Yonis Gulzar (ygulzar@kfu.edu.sa) and Ali A. Alwan (aaljuboo@ramapo.edu)

This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research,
King Faisal University, Saudi Arabia, under Project GRANT64.

ABSTRACT From a set of existing tuples, a skyline operator retrieves only a subset, superior tuples
that are of a person’s interest and are non-dominant. Processing of queries using the skyline operator is
an expensive and exhaustive task. It gets more complicated when skyline queries are applied on partially
complete data and databases are distributed over different data centers. Incompleteness in data raises many
issues such as compromise on transitivity property and the threat of cyclic dominance to occur within
database. To overcome such issues this paper proposes an efficient algorithm called Cloud-based Incomplete
Data Skyline algorithm (CIDS) for processing skyline queries over partially complete databases in cloud
environment. The algorithm retrieves superior tuples with the aim of reducing domination tests between
the tuples, decreasing processing time and reducing the huge amount of data flow from one data center to
another. Several experiments have been conducted over different types of datasets, and results have proven
that the proposed algorithm outplays the existing algorithms in terms of processing time, domination tests
as well as the amount of data flow.

INDEX TERMS Cloud databases, distributed databases, incomplete databases, query processing, skyline
queries.

I. INTRODUCTION
From a multi-dimensional dataset D, a skyline query returns
a set of tuples S from D that is not being dominated by any
other tuple(s) in D. A tuple t from D dominates another tuple
u iff t is not worse than u in all dimensions and t is better than
u in at least one dimension. Let us take an example of a café
recommendation system. In which it is assumed that a person
is looking for a café to have a coffee, priority is given to mini-
mum distance from his residence and highest rating of a café.
Figure 1a shows 10 cafés with the corresponding information
i.e., distance (in kilometers) and rating. Figure 1b portrays
the representation of café dataset in 2D space with the x-axis
denoting distance and the y-axis denoting the rating. From
figure 1b it can be noticed that café C8 dominates C10, C7,
and C9, since C8 has a better rating and shorter distance than
C10, C7, and C9. It can be also noticed that C2 and C3 are at
the same distance however, the rating of C2 is better than C3.

The associate editor coordinating the review of this manuscript and

approving it for publication was Genoveffa Tortora .

FIGURE 1. Example conventional of skyline query.

In that case, C2 dominates C3. Also, C4 dominates C5 and
C6 as the C4 has a better rating and shorter distance than C5
and C6. After comparing C2, C8, and C4 with each other it
can be observed that none of these cafés are fully dominating
each other. In that case,C2,C8, andC4 are considered skyline
tuples.

Skyline operator has been very popular among researchers
in database systems for the past 2 decades. The ‘skyline

VOLUME 10, 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 66449

https://orcid.org/0000-0002-6515-1569
https://orcid.org/0000-0003-3279-9366
https://orcid.org/0000-0003-4765-8371

Y. Gulzar, A. A. Alwan: CIDS: An Efficient Algorithm for Processing Skyline Queries

operator’ was introduced by Borzsony et al. [1]. Since then,
it has been extensively explored by the database community
[2]–[6]. Among preferences queries, the skyline query is
considered one of the best queries when it comes to user
preference. These queries have been intensively used in
many databases such as multi-criteria decision making, deci-
sion support [7], [8], crowdsourcing databases [9]–[13],
hotel recommender [14], restaurant finder [2], [14], temporal
databases [15], and cloud databases [16]. Since the skyline
operator was introduced, the researchers have been work-
ing on improving it, in terms of efficiency and accuracy.
It has been implemented on both complete and incomplete
databases. A lot of research has been done in improving
the efficiency of skyline operators in complete databases.
Many approaches have been proposed in the literature
[4]–[8], [17], [18] focusing on minimize the searching space,
reduce the domination tests and increase efficiency. The
task is easier when it comes to identifying the skyline
tuples (points) in complete databases. As all the dimen-
sion values are present in complete databases. Nevertheless,
it becomes complicated when some dimension values are
missing in the database especially in large multi-dimensional
databases or cloud/distributed databases. The incompleteness
of data does not only make the skyline query process compli-
cated but has a negative impact on the output as well.

Due to the incompleteness of the data, numerous chal-
lenges have risen while processing skyline queries. Not only
that but also made the process of identifying skyline points
complex. The approaches proposed for identifying skyline
points in complete databases have become irrelevant when it
comes to partially complete/incomplete databases. As these
approaches have been designed for a database(s) where all
the dimensions of the tuples are comparable. When it comes
to partially complete databases, there may be chances where
some of the dimensions of two or more tuples are incompa-
rable. That in turn leads to exhaustive unnecessary pairwise
comparisons between the tuples. It is important to note that
the incompleteness of data may lead to lose transitivity prop-
erty of the skyline. If that happens then there are high chances
of occurring cyclic dominance Problem [2], [19]–[21].

Losing transitivity property and occurrence of cyclic
dominance is considered a huge challenge while computing
skyline queries in partially complete databases. To have a
better understanding of these two challenges let us recon-
sider the above-given example with some modifications. Let
us assume that there are three dimensions now in the café
database i.e., distance, rating, and price. In the third dimen-
sion, the price of a particular item to be sold in all cafés is con-
sidered. Suppose there are three cafés (C1, C2, and C3) and
the parameters of these tuples are C1 (5, 4, #), C2 (6, #, 17),
and C3 (#, 5, 20). The ‘#’ represents the missing values of the
dimensions. The preference to choose the café for a person
is to have minimum distance (first dimension) from his resi-
dence, better rating (second dimension) of café and minimum
price (third dimension) of a particular item. Considering this
scenario and while comparing these tuples with each other.

It is noticed that the café, C1 is dominating café C2 in the first
dimension as C1 is having a minimum distance than C2 and
the other two dimensions are incomparable due to missing
values in the third dimension of C1 and second dimension
of C2. It can be also noticed that C2 dominates C3 as the
price of C2 is minimum than C3. According to the transitivity
process if C1 dominates C2 and C2 dominates C3 then C1
should dominate C3. However, this is not the case here as
it can be seen clearly that C1 is not superior to C3 in any
of the dimensions. which states that the transitivity property
does not hold in the current scenario. Additionally, it can be
further noticed that it is C3 which has superiority over C1 in
the second dimension (better rating). Which leads to the case
of cyclic dominance. At the end of the pairwise comparison
process, the results are obtained where no cafés have been
identified as skyline(s). It is because all the cafés are dom-
inated by one another. The formal definitions of transitivity
and cyclic dominance are as follows:
• Transitivity: Given ti, tj, tk ∈ R, if ti � tj, and tj � tk ,
according to transitivity property ti � tk holds for
complete data. However, it may not hold for incomplete
data.

• Cyclic dominance: Given ti, tj, tk ∈ R, ti � tj, tj � tk ,
and tk � ti, may hold over incomplete data.

Many approaches have been proposed [2], [22]–[25] for
computing skyline queries in partially complete databases.
These approaches aim to improve the efficiency, reduce the
search space and the domination tests between the tuples
while identifying the skyline queries.

The computation of skyline queries gets more complicated
when it comes to partially complete databases where data
is stored in different data centers and distributed remotely
over a cloud environment. To Identify the skylines from cloud
incomplete databases it is important to note that data should
be transferred from all the involved data centers to the host
data center where a query is submitted and will be processed,
and global skylines will be generated. However, this pro-
cess is considered impractical and expensive [26], [27]. It is
because a lot of data is needed to be transferred between
the data centers. It also leads to unwanted pairwise com-
parisons which in turn negatively impacts on the process of
generating skyline queries. The approaches proposed for pro-
cessing skyline queries for incomplete databases cannot be
directly implemented on cloud incomplete databases as those
approaches are designed for centralized databases. So, there
is a need for an efficient algorithm for processing skyline
queries in partially complete databases in cloud environment.

The following points summarize the contributions of this
paper:
• The problem of retrieving the global skylines in a par-
tially complete database distributed over the cloud is
discussed and an explanation is provided why there is
a need for an efficient approach.

• A comprehensive review of the leading studies has
been conducted on skyline queries in database systems.
Which covers the previous approaches designed for

66450 VOLUME 10, 2022

Y. Gulzar, A. A. Alwan: CIDS: An Efficient Algorithm for Processing Skyline Queries

complete, incomplete, and distributed databases. The
review highlights the strengths and the weaknesses of
each approach.

• An efficient algorithm called Cloud-based Incomplete
Data Skyline (CIDS) is proposed for processing skyline
queries in partially complete data over cloud environ-
ment which efficiently identifies global skylines from
all data centers involved. CIDS comprises two phases
towards determining the skylines of a partially complete
cloud database.

• An innovative technique is designed and developed
which classifies the tuples into different clusters based
on the domination power of tuples.

• Two optimization techniques, filtration and optimiza-
tion have been incorporated that help in reducing the
domination tests between tuples. Filtration prunes the
non-competent tuples before the skyline process begins.
Whereas optimization pickup only the superior tuples
from the local skylines identified from each cluster,
which have a good chance to be part of skylines and
eliminate the rest of the tuples.

• The effectiveness and the efficiency of the proposed
algorithm are evaluated through experiments using both
synthetic and real datasets. Experiments show the effec-
tiveness of the proposed algorithm.

The remainder of the paper is organized as follows:
In Section 2, the previous works related to this research are
reported and discussed. The basic definitions and notations
used in the rest of the paper are set out in Section 3. The
proposed algorithm is explained and illustrated in Section 4,
and the experimental results are illustrated and explained in
Section 5. The conclusion is described in Section 6.

II. RELATED WORK
Incorporating skyline operator by Borzsonay et al. [1] in
2001 was a huge development in database systems. Skyline
operator has evolved query processing to the next level.
Since 2001 the skyline operator has been used in many
databases such as complete [1], incomplete [2], [9], [28],
distributed [10], [13], [14] as well as uncertain databases [30].
Borzsonay et al. [1] proposed two algorithms BNL and
D&C. BNL uses the sorting approach whereas D&C uses
an approach of partitioning the dataset. After that, numerous
algorithms have been proposed in the literature for different
databases using above mentioned approaches. The aim of all
those algorithms is to minimize the searching space, reduce
the domination tests, reduce the execution time of process-
ing skyline queries. In this section, the existing algorithms
designed for incomplete databases and distributed incomplete
databases are reviewed and investigated.

After Borzsonay et al. [1], it was Khalefa et al. [2] who
incorporated skyline operator in incomplete databases by
proposing ISkyline algorithm. The ISkyline Algorithm uses
a partitioning approach by dividing the dataset into differ-
ent sections called Buckets based on the bitmap represen-
tation of the tuples. They used two optimization techniques

(virtual points and shadow skylines). To overcome the issue
identified in the Bucket [2] algorithm. They formulated a
virtual point (tuple) within each bucket (Bi − Bn) and used
this virtual point to compare with the other buckets (Bi with
Bi+1−Bn). This is done to avoid comparing all the tuples ofBi
with the rest of the tuples present inBi+1−Bn. The aim behind
this is to avoid all unwanted pairwise comparisons between
non-dominating tuples and eliminate such tuples. A set of
tuples called shadow Skylines is created to dominate some
tuples across the buckets. There is a drawback of the ISkyline
algorithm though. As it can be seen the order of the tuples
within the bucket matters while getting compared with virtual
point (v). It is because there might be a case where a tuple p,
when compared with v, gets dominated. However, there is a
tuple q down the line which will be dominated by p but not v.
But p has been eliminated already so there is no chance that q
will be removed and will be represented as candidate skyline
whereas it is clear that q should not be in the list.
Arefin et al. [31] proposed RSSSQ algorithm for process-

ing skyline queries in incomplete data. In their approach, they
implemented a new technique by replacing missing values
with a certain value that is larger than the domain value to
avoid the threat of losing transitivity property.Miao et al. [32]
proposed three different approaches to process skylines in
incomplete data (baseline, virtual point (VP) and k-iSkyband
(kISB)). The baseline algorithm has avoided creating differ-
ent buckets so has to go through a lot of domination tests
to produce results. Whereas the VP algorithm overcomes
such issues. Finally, kISB improves the VP algorithm by
reducing a large number of domination tests and eliminating
redundant data storage. In 2013 Bharuka and Kumar pro-
posed a new algorithm (SIDS) [33] to improve the ISkyline
algorithm. SIDS used a sorting approach, unlike ISkyline and
RSSSQ. In SIDS, the dataset is being sorted column-wise
in descending order. The sorted values are replaced with the
tuple ID within the sorted dataset. Then skyline process starts
by comparing the first tuple present p at xi. yi with other tuples
present in the same column (xi+1. yj− xn. yj). While compar-
ing, if p dominates q then q gets eliminated immediately and
if otherwise then p gets eliminated at the end of the iteration.
It is because p is believed to have more power to dominate
other tuples in the list as it is on the top of the list. After the
first iteration the next tuple present at xi. yj+1 is selected for
processes and the same approach is being used. During this
process, a counter is set to keep a count of how many times
a tuple is being processed. If the processing count is equal to
the number of non-missing dimensions of p. Then p is moved
to ResultSet. Once all the items are being processed at least
once then comparing process stops and the tuples present in
ResultSet are considered as final skylines. SIDS somehowhas
shown significant improvement in skyline execution while
comparing with ISkyline. However, there are some issues
with SIDS such as there might be a case where a tuple t
gets eliminated whereas tuple v is kept just because p and
v are non-comparable. Another issue is that in SIDS there as
chances of indulging to having cyclic dominance as there is

VOLUME 10, 2022 66451

Y. Gulzar, A. A. Alwan: CIDS: An Efficient Algorithm for Processing Skyline Queries

not any technique to have domination tests between tuples
with the same bitmap representation. Comparing all the tuples
with each other without using any optimization technique
ends up having a lot of unwanted domination tests between
tuples. Which makes SIDS exhaustive and time-consuming.

There are other numerous approaches found in litera-
ture, proposed for skyline queries computation in incomplete
databases SOBA [23], ISSA[34], IncoSkyline [35], SCSA
[36], OIS [37]. All these approaches use the same technique
of partitioning the dataset based on their bitmap representa-
tion. However, in ISSA the algorithm gets executed in two
phases whereas in the first phase they use segmentationwhich
helps to remove some dominated tuples at the early stage.
In the second phase, they use aggregate function (SUM) to
sum the non-missing values of the tuples and sort them in
non-ascending order, to further eliminate some dominated
tuples. In SOBA, after partitioning (based on the same names-
pace) they incorporated an optimization technique in which
tuples present in each bucket are sorted in non-descending
order to identify local skylines. however, to identify skylines
locally, SOBA compares tuples across the buckets, unlike
ISSA. There is the same issue(s) found in ISSA as of SIDS
because ISSA uses the same approach (sorting) as SIDS.
In SOBA there are chances of having false positive and false
negative tuples in each bucket because these tuples have been
compared across the buckets only.

In IncoSkyline [35], the authors divide the tuples into
clusters based on bitmap representation and then further
divide those clusters into groups based on the similar highest
value(s). Two tuples are being created the upper bound(ub)
and lower bound(lb) from each cluster, this ub and lb are used
to stop the comparison process between each group when the
ub is less than or equal to lb. This process helps to eliminate
non-dominant tuples from each group. After identifying the
local skyline from each group. A virtual tuple is created
from each cluster and that tuple is used to compare with the
local skylines of other clusters in order to identify the final
skylines. Although, IncoSkyline has improved the Iskyline
algorithm, but IncoSkyline and Iskyline both use the same
technique of creating virtual tuples which have a negative
impact on the accuracy of the results as discussed earlier in
the section.

Wang et al. [25] has proposed Skyline Preference Query,
the SPQ approach to processing skyline queries in incomplete
data. SPQ and SIDS have a similar procedure of processing.
In SPQ the process starts by dividing the dataset into two
subsets based on the preference given by the user. The first
subset is of high preference and another subset is of low
preference. For the first subset, the SIDS approach is used to
find local skylines whereas for the second subset divide and
conquer approach is implemented to identify local skylines.
To retrieve the final skylines the local skylines of each subset
are compared. From the results, it can be seen that SPQ
has outperformed SIDS, but SQP is still lacking in terms
of holding transitivity property. Moreover, there is not any
pruning done before identifying local skylines which do not

help in avoiding unwanted pairwise comparisons between the
tuples. A new technique using adaptive two-level grids called
TLG has been proposed in [38]. They used a technique in
which non-skyline points were pruned from each region as
early as possible. The final skylines were then computed by
considering all the regions. A MRBIG algorithm [39] has
been proposed in another study to identify the top-k queries
in incomplete big data. It identifies the top-k queries by
executing parallel operations on multiple nodes (partitioned
dataset).

An optimized approach was proposed (OIS) [37], where
the dataset is first divided into different subsets based on
the bitmap representation. Then each dimension present in
each subset is sorted in non-ascending order. After that, the
optimization technique is used to select only those tuples
from each subset that has the highest values(s) (up to 2 levels)
based on the users’ preference. Then only these tuples are
compared with each other to identify the local skylines of
G1 − Gn. To identify the final skylines, the local skylines
of G1 are compared with the local skylines of G1++ to Gn.
This process continues until all the subsets are compared
with one another. The remaining tuples in each subset are
not dominated by any other tuple and are considered as
final skylines. Whereas in SCSA [36] algorithm the dataset
is first sorted in non-ascending order for each dimension.
Then clusters are formed based on the domination power
which was calculated by counting the presence of tuples in
each dimension until all the tuples have been read at least
once. After that clusters are further divided into subgroups
based on the bitmap representation of tuples. Then skyline
process starts by identifying local skylines from each group
within the cluster and then candidate skylines are identified
from each cluster by comparing local skylines of each group.
Finally, candidate skylines are compared with each other
to identify final skylines. SCSA has used two optimization
techniques to eliminate non-dominating tuples at an early
stage. Nevertheless, OIS and SCSA are optimized and are
performing well to identify skylines in incomplete data, but
they are not meant for distributed databases. It will take a lot
of unwanted domination tests to identify skylines in cloud
incomplete databases. It is because the data present in the
different data centers needs to be transferred to the query
submitted data center. It is impractical to directly use such
approaches (SIDS, Incoskyline, ISSA, SPQ, OIS or SCSA)
on cloud incomplete databases.

Alwan et al. [26] has proposed Jincoskyline for processing
skyline queries in distributed databases. In this approach, the
author has assumed that the data present in the databases
is partitioned vertically and stored over the distributed
databases. The Jincoskyline process starts by identifying
skylines (local) in each distributed database and then only
those skylines are transferred to the query submitted database
where all those skylines are compared with each other to
identify the final skylines. During the process of identifying
local skylines, the database is divided into clusters based on
bitmap representation, then further partitioned into groups

66452 VOLUME 10, 2022

Y. Gulzar, A. A. Alwan: CIDS: An Efficient Algorithm for Processing Skyline Queries

based on similar values. Then local skylines are identified
for each group. To identify the skylines of each cluster a
virtual tuple, k-dom is created and compared with other tuples
present in other clusters without comparing all the tuples of
a cluster with the tuples present in another cluster (s). This
approach has opted similar technique as of Incoskyline where
both approaches are used k-dom to identify local skylines of
each cluster. Both approaches lack accuracy because there are
high chances of false negative and false positive cases due to
k-dom.

To the best of our knowledge, the latest work on the
issue of processing skyline queries in incomplete data over
cloud environment is ICS (incomplete-data Cloud Skyline)
[27], [29]. In ICS the author assumed that the dataset is
divided horizontally and is stored in many data centers at
remote places over the cloud. ICS and Jincoskyline use the
same approach of identifying the skylines of each data center
separately then merging the local skyline to find final sky-
lines. However, ICS uses a sorting approach while identifying
skylines. in ICS a pruning technique has been implemented to
eliminate unwanted tuples that do not have the potential to be
part of skylines. Even though ICS is performing well, how-
ever, there are high chances of occurring cyclic dominance
as there is not any method used to control non-comparable
tuples from comparing. Which in turn can produce skylines
which contain false negative and false positive tuples.

From the work(s) reviewed in this section, it can be con-
cluded that most of the previous works assume that the
database is centralized, and data is stored in a single database.
Implementing these approaches directly on cloud incom-
plete databases is impractical because of the nature of those
approaches. If done so, these approaches will turn into expen-
sive ones due to a high number of pairwise comparisons
and a high volume of data transfer from one data center to
another. And the approaches proposed for cloud incomplete
databases are not efficient enough in terms of providing accu-
rate results with minimum domination tests and efficient pro-
cessing time. Hence, there is a need for an efficient algorithm
to identify skylines in cloud incomplete databases with an aim
of reducing the amount of data transfer from one data center
to another, minimizing domination tests between tuples and
reducing processing time.

III. DEFINITIONS
In this section, some important annotations, and definitions
are presented which are related to the skyline queries in
cloud database with partially complete data. it is must to
explain these annotations and definitions for our proposed
algorithm. Table 1 summarizes the symbols and notations
used throughout the paper. These terms are further explained
below.

The proposed algorithm is developed in the context of a
relational databasewithmissing data. Let us assume that there
is a relation in a databaseD, which is denoted as R(d1, d2, d3,
d4, . . . , dn) where R is the name of the relation with multiple
dimensions dn. d1, d2, . . . , dn is a set of dimensions in R.

Definition 1 (Incomplete Database): given a database D
(R1, R2, R3, R4, . . . ,Rn), where Ri is a relation denoted by
Ri(d1, d2, d3, d4, . . . , dn). D is said to be incomplete if and
only if it contains at least a tuple ti with missing values in one
or more dimensions dk ; otherwise, it is complete.
Definition 2 (Dominance on Incomplete Database): Given

two tuples ti and tj ∈ D incomplete database with d dimen-
sions, pi dominates pj (denoted by ti � tj) if (and only if) the
following three conditions hold:
• The values of dk and dl ∈ d for ti and tj must be non-
missing and

• ∀dk ∈ d , ti. dk ≥ tj. dk and
• ∃ dl , d , ti. dl > tj. dl

Definition 3 (Skylines on Partially Complete Database:
Select a tuple ti from the set of D incomplete database if (and
only if) ti is as good as tj (where i 6= j) in all common non-
missing dimensions and strictly better than tj in at least one
common non-missing dimension. S is used to denote the set
of skyline tuples on an incomplete database, S = (ti∀ti, tj ∈ D,
ti � tj).
Definition 4 – Comparable: Let the tuple ti and tj ∈ R, ti

and tj are comparable (denoted by tiε tj) if and only if they
have no missing values in at least one identical dimension;
otherwise, ti is incomparable to tj (denoted by tiε/ tj).
Definition 5 – Cloud Database: given a set of databases D

(DB1, DB2, . . . ,DBn), where DB1 is a database denoted by
DB (R1, R2, . . . ,Rn), where R represent a database relation
belong to DBi, D is a cloud database if the databases are
deployed over different data centers located on different sites.

TABLE 1. Symbols and descriptions.

IV. CIDS ALGORITHM
This section presents the proposed algorithm called Cloud-
based Incomplete Data Skyline algorithm (CIDS), which
aims at processing skyline queries for partially complete data
in cloud environment. Where data is stored in different data
centers at different locations. The proposed algorithm empha-
sizes on reducing unwanted computations between the tuples
to identify the skyline points, reducing the amount of data
transfer from one data center to another, reducing the pro-
cessing time to identify global skylines. The CIDS algorithm

VOLUME 10, 2022 66453

Y. Gulzar, A. A. Alwan: CIDS: An Efficient Algorithm for Processing Skyline Queries

composes of two main phases namely: i) Identifying local
skylines from individual data centers, and ii) Transferring of
local skylines and retrieving global skylines.

To have a better understanding of how the CIDS algorithm
operates, an example of an incomplete database containing
the data of Movie ratings given by 6 different users, has
been used as shown in Figure 2. Our proposed algorithm
can generate skylines from numerous data centers however,
for simplicity it is assumed that there are three data centers
(DC1, DC2, & DC3) involved which contain similar type
data and each data center contains one relation (DC1. R1,
DC2. R2, & DC3. R3). It is also assumed that the relation R1
contains 40 tuples, R2 has 30 tuples and R3 has 34 tuples.
For simplicity and without losing the generality, it is assumed
that the given skyline query aims at identifying tuples with
the highest values in each dimension of a relation(s). The ∗
symbol is used to denote the missing value(s) in the relation
dimensions.

FIGURE 2. Movie rating database example stored over cloud.

A. IDENTIFY LOCAL SKYLINES FROM INDIVIDUAL
DATA CENTERS
The first phase, identifying local skylines from the individual
data center, attempts at identifying local skylines from each
relation stored in different data centers over the cloud. The
aim of this phase is to eliminate all those tuples which do not
have the potential to be part of the final skyline set before
transferring the data to the query submitted data center. This
phase of the CIDS algorithm aims at reducing the amount of
data transfer from one data center to another by propagating
only superior candidate tuples in the next phase. Tomake sure
that only candidate tuples are be transferred to the next phase
which have high chances to be part of final skylines. The data

within this phase goes through some optimization techniques
and preprocessing. This phase completes in five stages which
are elaborated in detail in the following subsections.
Stage 1: Sorting and Filtering: in this stage, the tuples are

sorted in non-ascending order for each dimension based on
the values present in each dimension of R and a view, v is
created the same as R, which stores the sorted information.
It is important to note that the dimensions of v store only ids of
the tuples of R. After the sorting of all dimensions present in
view, v are scanned in a round-robin fashion from dimension
v.di - v.dn to count (domination power) the presence of each
tuple in v. The scanning process continues until all the tuples
are scanned at least once. A user-defined threshold (th) is set
to filter out such tuples whose domination power is lower than
th and those tuples are eliminated from further processing.
It is certain that such eliminated tuples do not have any
impact on the skyline and will be dominated by other tuples
if compared. Thus, eliminating such tuples from further pro-
cessing help in reducing many domination tests which in turn
improves the execution time.

The process of this stage starts by sorting the relation Ri
present in each data centerDCi simultaneously and parallelly.
This process is the same for all data centers (DCi - DCn)
so keeping that thing in mind and for simplicity, without
losing the generality the execution process is explained with
the help of R1 of DC1. All relations (in Figure 2) are sorted
in non-ascending order for each dimension (d1 to d6) based
on non-missing values. A view vi is created for all relations
present in each data center, having the same dimensions as Ri.
Figure 3 shows the view, v1 of sorted tuples according to R1.
The dimension l1 of v1 contains the ids of all the tuples which
have values present in dimension d1 of R1 in non-ascending
order. It is important to note that the tuples with missing data
are ignored and their ids’ are not mentioned in the sorted view.
Once the sorting process completes, another process called

scanning begins by scanning the dimension of v (l1 to l6) in
a round-robin fashion to calculate the domination power (dp)
of tuples present in each relation. The formula of calculating
the dp is as follows:

dp =
l∑

k=1

ti, iff ti.k � tj.k

The reason for calculating the domination power during the
scanning process is to find out the domination power of each
tuple, which shows the probability of dominating other tuples.
The larger the domination power of a tuple, themore potential
it has to dominate other tuples.

As per our running database exams, the scanning process
works as follows: from the v1 the scanning process begins
with reading p8 from l1 and sets it dp to 1. Then read
p30, p32, p29, p2 from l2, l3, l4, and l5 respectively, and sets
their dp value equal to 1. In l6p32 gets repeated so its dp values
get incremented by 1 and is equal to 2 now. The process of
scanning the tuples continues until a point where all the tuples
are scanned (read) at least once. According to our example,

66454 VOLUME 10, 2022

Y. Gulzar, A. A. Alwan: CIDS: An Efficient Algorithm for Processing Skyline Queries

FIGURE 3. Sorted view of R1.

p27 is the last tuple to be read in l2 and the process of scanning
terminates there.

The domination power (dp) of each tuple and their ids is
stored in a 2D array as shown in Figure 4.

FIGURE 4. Domination power of tuples.

As we know skyline queries are a type of preference
queries and it is up to the preference of the user, what kind
of criteria s/he sets for his/her skyline query results. For
that reason, a user-defined threshold (th) is set to filter out
some tuples that do not have any potential to be part of the
skyline even before the skyline process begins. Eliminating
such tuples happens in the filtering process. So, all those
tuples whose dp value is less than th will be eliminated from
the further process. The main aim of implementing such an
optimization technique is to reduce the number of domination

tests which in turn reduces the execution time. The formula
of filtering is as follows:

ft − list = {∀ti, iff dp ≥ th}

where ft-list is the remaining tuples after filtration
According to our running example if we set the threshold,

th as 2, then all those tuples whose dp is less than 2 will be
eliminated from further processing. Such as p19, p5, p25, p33,
p24, p36, p10, p35, p14, p28, and p27 have been successfully
eliminated from further processing. With the help of the sort-
ing and filtering process, a sizable number of tuples have been
eliminated from further processing. Out of 40, 11 tuples have
been selected and removed, which is around 27% of tuples
that are eliminated from further processes. Such technique
plays a vital role in reducing domination tests between tuples.
It is important to note that the eliminated tuples if compared
with those tuples which have higher dp, will be dominated
(Tuples having dp value 5 or 4).

Calculating the domination power of each tuple has a huge
impact on the overall skyline process. It does not only help to
filter out dominated tuples but also helps in creating different
clusters based on dp, which is explained in the next stage.
It is also important to highlight that our proposed approach is
capable of eliminating those tuples as well which have dp as
2 or 3 depending upon the number of the dimensions present
in the dataset. After many successful experiments, it can be
claimed that the proposed algorithm can eliminate all those
tuples with dp value 2 without having any impact on the
final skylines. So, the th can be changed according to users’
preferences.
Stage 2: Clustering and Grouping: the aim of this stage

is to further simplify the procedure of executing the skyline
process by dividing the tuples based on domination power.
So, all those tuples that have similar dpwill be grouped in one
cluster. This is attained by scanning the domination power list
(except eliminated tuples). Therefore, numerous numbers of
clusters (Ci − Cn) will be created. Even after applying the
clustering method, there is still one problem remaining which
is incompatibility. i.e., tuples may be incomparable due to
missing values. That also raises the issue of occurring cyclic
dominance. To avoid such a problem from occurring, another
partitioning technique is being implemented to divide clusters
into groups based on the bitmap representation of tuples.
Applying of divide and conquer technique has been proven to
be an effective way of processing skyline queries in database
systems [1], [2], [23], [35]. In bitmap representation tuples
are represented in 1’s and 0’s. If a value of a dimension is
available, then it is represented as 1 otherwise 0. For instance,
if a tuple t has 4 dimensions t (6, ∗, 8, ∗), ∗ represents
missing values, then the bitmap representation of t is (1010).
Therefore, according to this all the tuples present in each
cluster will be divided into different groups Gi.Cn − Ci.Gm).
the formula of creating groups are as follows:

Ci.Gm = {∀ti, iff ti.bitmap = tj.bitmap}

VOLUME 10, 2022 66455

Y. Gulzar, A. A. Alwan: CIDS: An Efficient Algorithm for Processing Skyline Queries

Grouping does not just divide the tuples based on bitmap
representation but helps in reducing domination tests between
tuples by eliminating non-dominant tuples within groups
rather than comparing those with all the tuples present in the
whole cluster.

According to our running example, the remaining tuples
present in the domination power list are divided into clusters.
Four clusters are created (C1, C2, C3, and C4) based on the
domination power. It is important to note that clusters will be
formed based on decreasing order of dp. So, C1 contains all
those tuples whose domination power is 5, C2, C3, and C4
contain tuples whose domination power is 4, 3, and 2 respec-
tively. Cluster C1 contains only 2 tuples (p29, p9), whereas
clusterC2,C3, andC4 contain 7, 15, and 5 tuples respectively.
These clusters are further divided into groups based on the
bitmap representation of tuples. So according to the different
bitmap representations, cluster C1 has two groups containing
one tuple in each so C1. G1 contains p29 whereas C1. G2
contains p9. Likewise, clustersC2,C3 andC4 contain 6, 7 and
5 groups respectively as shown in Figure 5.

FIGURE 5. List of clusters and their groups.

Stage 3: Finding local Skylines: in this stage, local skylines
of each cluster are identified. The dominated tuples will be
removed from further processing. The aim of finding local
skylines is to reduce overall pairwise comparisons to iden-
tify final skylines. To identify local skylines of each cluster
(Ci – Cn), CIDS finds local skylines of each group first.
As tuples within the groups are having the same bitmap rep-
resentation, so it is easier to compare them with one another.
Comparing tuples having the same bitmap representation
helps in holding transitivity property, which in turn stops
cyclic dominance from occurring. It is important to note that

all the local skylines of each cluster are identified parallelly
and simultaneously. The idea behind this is to expedite the
execution process and reduce the processing time.

The process begins by identifying local skylines of all
the groups present in each cluster (Ci. Gn–Ci. Gm, Ci++.
Gn–Ci++. Gm, . . . ,Cn. Gn–Cn. Gm). the tuple ti from group
Ci. Gn is selected for processing and is compared with the
next tuple tj of Ci.Gn. if ti dominates tj then tj gets eliminated
immediately from further processing and if otherwise then
ti gets eliminated at the end of the iteration. It is due to
the fact that ti being at top of the list has more potential to
dominate other tuples. So, this process of comparing contin-
ues until all the tuples (not dominated) within a group are
compared with each other. the remaining tuples in group Ci.
Gn are considered the local skyline of group Ci. Gn. The
same procedure is applied to identify the local skylines of all
the groups within each cluster. Furthermore, to identify local
skylines of each cluster (Ci – Cn) the tuples of each group are
compared with the tuples of another group within the cluster.
So, ti of Ci. Gn is compared with ti of Ci. Gn++- Ci. Gm and
the same technique is used to eliminate dominated tuples as
mentioned above. In this way, all the dominated tuples will
be removed from further processing and clusters contain only
non-dominated tuples.

According to our running database example, the local sky-
lines of each cluster are identified by comparing the tuples
of each group with one another than compared with across
the groups within the same cluster. From cluster C1 there are
two groups (C1. G1 and C1. G2) and each group contains
only one tuple p29 and p9. So, p29 and p9 are considered
as local skylines of groups C1. G1 and C1. G2. To identify
local skylines of cluster C1 tuple p29 is compared with p9
and during comparison it can be noticed that p29 is getting
dominated by p9 at dimension d1, at dimension d2 they are
incomparable, at dimension d3 again p29 gets dominated
by p9. However, it is p29 which dominates p9 at dimension d4.
Therefore, the process of comparison stops here as both tuples
do not dominate each other completely so are considered as
local skylines of cluster C1 as shown in Figure 6.
There are 6 groups in cluster C2. In group C2. G1 there are

two tuples p32 and p21, p32 is selected for processing and is
compared with p21. After comparison, it can be noticed that
neither p29 dominates p21 nor p21 dominates p32 completely.
In that case, both p32 and p21 are considered as local skylines
of group C2. G1. rest of the groups have one tuple each,
so they are considered as local skylines of those groups. After
comparing tuples of each group with other groups such as
tuples of C2. G1 are compared with C2. G2, C2. G3, C2. G4,
C2. G5, and C2. G6. After the comparison process, it can be
noticed that only p32, p0, and p6 are the local skylines of
cluster C2, the rest of the tuples (p21, p7, p17, and p15) are
dominated and eliminated from further processing. Likewise,
local skylines of clusters C3, C4 are identified as shown in
Figure 6.

With the help of this stage 13 out of 29 remaining tuples
have been successfully eliminated as those were dominated

66456 VOLUME 10, 2022

Y. Gulzar, A. A. Alwan: CIDS: An Efficient Algorithm for Processing Skyline Queries

by other tuples. That is around 45% of tuples eliminated
from further processing. Incorporating this technique has a
huge impact on reducing pairwise comparisons in the overall
process of identification of final skylines.

FIGURE 6. Local skylines of clusters.

Stage 4: Choosing Superior local Skylines: in this stage,
another optimization technique is used to filter out such tuples
that do not have the potential to be part of the final skyline of
relation Ri. This is attained by eliminating some of the non-
competent tuples from each cluster way before comparing
them with other tuples across the clusters. Doing so helps
in further decreasing the pairwise comparison between the
tuples across the clusters, which in turn accelerates the sky-
line process. The process begins by identifying the highest
value in each dimension then selecting only those tuples
which have the highest value in any of the dimensions. The
rest of the tuples that do not have the highest value in any
of their dimensions are eliminated. To generalize it, the fol-
lowing formula shows the process of choosing the superior
skyline of each cluster.

SLS =
{
∀ti of Ci, timax

(
ti.d j

)}
ti where 0 ≥ dj ≥ u

It is important to note it is claimed that after many experi-
mentations the eliminated tuples from this stage if compared
across the clusters will be dominated by other tuples present
in the cluster with higher dp values. Therefore, these tuples
can be successfully eliminated without having any impact
on the final skylines. Also, it is important to highlight that
this process (choosing superior local skylines) runs simulta-
neously and parallelly for each cluster.

According to our running example, from cluster C1 the
p9 has the highest value in dimension d1 so p9 is selected.
Likewise in dimension d2, it is p29 which has the highest value
so is selected. The process of choosing a superior skyline for
cluster C1 terminates here as this cluster contains only two
tuples and both tuples are being selected. FromClusterC2 it is
p32 which has the highest value in dimensions d1, d3, d4, and
d6 and tuple p6 have the highest value in dimension d2, and d5.
Therefore, only these two tuples are being selected from C2
and p0 is eliminated from further processing. Likewise, from
cluster C3p38, p39, p37, and p34 are eliminated from further
processing as these tuples do not contain any highest value
in any of their dimensions. From cluster C4 all the tuples are

selected for further processing as all the tuples (p2, p18, p4)
contain the highest value in at least one of the dimensions as
shown in Figure 7.

FIGURE 7. Highlighted superior skylines of each cluster.

The process of choosing superior tuples terminates by
eliminating 5 tuples in total which do not have any potential
to be part of the final skyline. Out of 16, 5 tuples are removed
which is around 31% reduction/elimination of tuples. Which
in turn reduces the number of domination tests between the
tuples in coming processes. Figure 8 shows the superior
skylines of each cluster.

FIGURE 8. Superior skylines of each cluster.

Stage 5: Retrieval of Final Skylines: This is the final stage
of identifying skylines from each data center. In this stage
skylines of each data center will be retrieved. In other words,
the skylines of all the involved relations from each data
center will be retrieved. the process begins by comparing the
remaining tuples present in each cluster with other clusters.
So, the tuples ofCi will be compared with tuples ofCi++−Cn
and in the next iteration tuples ofCi++ will be compared with
the tuples of C(i++)+1 −Cn. this process continues unless all
the tuples present in all the clusters are compared with tuples
across the clusters.

According to our running example, tuples of C1 are com-
pared with tuples of C2, C3, and C4. During the first iteration,
tuple p29 is selected and compared with the tuples of C2,
C3 and C4. During this iteration, p29 dominates p6, p31, p18
and p4. These dominated tuples are eliminated immediately
from further processing. In the next iteration, p9 is selected
for processing and compared with the remaining tuples C2,
C3, and C4. During this iteration, p9 dominates only p8 from
cluster C3 an p8 is eliminated. Now remaining tuples of C2
are compared with C3 and C4. In this iteration, p32 is selected
for processing and is compared with p12, p20, and p2. It can
be noticed that all these tuples are dominated by p32 and

VOLUME 10, 2022 66457

Y. Gulzar, A. A. Alwan: CIDS: An Efficient Algorithm for Processing Skyline Queries

are eliminated. This ends the process of comparing the tuples
across the clusters because there is not any tuple left in C3
and C4. At the end of the process, the remaining tuples
(p29, p9, and p32) are considered the final skylines of rela-
tion R1. Likewise, the entire process of phase 1 (identify
local skylines from individual data centers) is applied to all
the relations of all the involved clusters. Figure 9 shows the
skylines of relation R1, R2, and R3.

FIGURE 9. Skylines of relation R1, R2, and R3.

B. TRANSFERING OF LOCAL SKYLINES AND
RETRIEVING GLOBAL SKYLINES
This is the second phase of the CIDS algorithm, in which
global skylines are identified from all relations present in
different data centers and stored over cloud environment. The
aim of this phase is to reduce the amount of data transfer
from one data center to another and further eliminate the
non-potential tuples that do not have any chance to be part
of global skylines. This is achieved by transferring only the
skylines of each relation of all data centers to the query-
submitted data center, rather than transferring all the tuples
present in each relation of all data centers to the query-
submitted data center. Doing so helps in reducing a large
amount of data transfer from one data center to another
over the network, which in turn reduces the network cost as
well. After transferring the skylines of each relation, these
skylines are combined into a new relation, Rg. Rg contains
only skylines of relation R1, R2, . . . , and Rn. After that global
skyline are identified by executing all the stages of phase one
all over again (except using th). It is done to further reduce
the unwanted domination tests by eliminating non-potential
tuples before identifying global skylines. It is also important
to note that doing so ensures that at the end there is no false
negative, or false-positive tuple present in global skylines.
At the end of the second phase the remaining tuples in Rg
are considered as global skylines of DC1. R1, DC2. R2, . . . ,
and DCn. Rn.
According to our running example, the skylines of R2, and

R3 are transferred to query-submitted data centerDC1. A new
relation Rg is created which contains the skylines of R1, R2,
and R3(merged into Rg) as shown in Figure 10.
After combing the skylines of individual relations into one,

all the stages of the phase are being repeated and at the

FIGURE 10. Combined skylines of all relations after join operation.

end, the global skylines are identified which are not domi-
nated by any tuple present in any relation of any data center.
Figure 11 shows the global skylines of relations R1, R2, and
R3, present in data center DC1, DC2, and DC3 over the cloud
environment.

FIGURE 11. Global skylines.

At the end of the second phase, CIDS has successfully
identified global skylines of all involved data centers. It is
important to highlight that incorporating of two optimization
techniques have proven to be very efficient and effective
in terms of reducing domination tests as well as removing
of some non-potential tuples way before applying the sky-
line technique. Creating of clusters (and groups within the
clusters) of relation(s) of all involved data centers not only
help in reducing the domination tests between tuples but also
expedite the skyline process. Which helps in reducing the
execution time of CIDS. Transferring of only skylines of each
relation has played a major role in reducing the amount of
data transfer over the network, which in turn reduced the
network cost.

CIDS algorithm takes partially complete dataset/relations
stored in different data centers over cloud and outputs Glob-
alSkylines – the final skylines of entire data centers involved.
The algorithm starts by sorting the tuples present in di - dn

of Ri present atDCi in non-ascending order and stored the ids
of sorted tuples present in a v, view, which is identical to Ri in
structure (step 1 – 3). In step 4 a variable, TPR is initialized to
number of total tuples in Ri. The view, v is scanned in round-
robin fashion from li − ln to scan the tuple ids. Initially the
domination power of all tuples is set to zero. If tuple id is
read first time, then it is stored in an array, ADPC along with
its dp value. Every time a tuple is scanned its dp value is
incremented by 1 and updated in ADPC (step 5 – 11). The
scanning process stops when all the tuples of Ri are read
at least once (step 11- 12). At the end of the 13th step the
array, ADPC contains all the tuples of Ri and their dp values.
In step 14 a threshold variable, th is initialized to the number
defined number. All the tuples whose dp value is less than th
are removed from ADPC (step 15 – 19). At the end of the

66458 VOLUME 10, 2022

Y. Gulzar, A. A. Alwan: CIDS: An Efficient Algorithm for Processing Skyline Queries

19th step with the help of this pruning technique many
unwanted tuples have been eliminated. Now remaining tuples
present in ADPC of Ri are partitioned into different clusters
based on their domination power. These clusters are further
divided into different groups based on their bitmap repre-
sentation (step 20 – 35). After creating groups (Ci. Gi – Ci.
Gm, Ci++. Gi – Ci++. Gm, . . . ,Cn. Gi – Cn. Gm) within each
cluster of Ri, now local skylines of each group are identified
by comparing the first tuple, p present in Ci. Gi with the next
tuple, q present in Ci. Gi (step 36 – 39). If p dominates q then
q is eliminated from group Ci. Gi immediately (step 40). If q
dominates p then then a flag is set true (step 41 – 43). In order
to compare p with rest of the tuples in group Ci. Gi steps
from 38 to 44 are being repeated. At the end of the iteration
p is eliminated from Ci. Gi (step 45 – 47). To compare all
the tuples present in group Ci. Gi with one another steps
from 36 to 48 are being repeated. At the end of the 48th step
all the groups present in all the clusters of Ri contain only
tuples that are not being dominated by any tuple present in the
same group. The local skylines of group Gi of cluster Ci are
compared with the local skylines of group Gi++ of Ci. This
process continues until all the local skylines of group Gi are
compared with Gi++– Gn of Ci (step 50 to 52). To identify
local skylines of Ci − Cn steps from 49 to 53 are being
repeated. At the end of the step 53 all the clusters of relation
Ri– Rn of data centers DCi– DCn contain only those tuples
that are not dominated by any other tuple present within the
same cluster.

Now another optimization technique is being implemented
called ‘‘choosing superior local skylines’’ to select only those
tuples within each cluster of Ri that are superior to other. The
process begins by scanning each cluster Ci − Cn dimension
wise. the first dimension di of Ci is selected and all those
tuples having highest value within di of Ci are being marked
(step 56). To mark all those tuples who got highest value in
each dimension (di − dn) step 55 to 57 are being repeated.
To identify superior tuples within each cluster and remove
all those tuples which do not have highest value present
in any one of the dimensions steps from 54 to 59 are get-
ting repeated. In order to identify skylines of each relation
(Ri−Rn) present in data centersDCi−DCn, the tuples present
in cluster Ci−Cn of relation Ri are being compared with one
another. The process starts by choosing tuple of cluster Ci
and then compared with the tuples of cluster Ci+1 − Cn and
then remaining tuples inCi+1 is compared with the remaining
tuples in in cluster Ci+2 − Cn. To compare all the remaining
tuples, present in each cluster with one another step 60 to 64
are being repeated.

At the end of the step 64 each relation (Ri − Rn) present
in data centers DCi − DCn contains only skylines which
are not dominated by any other tuple present within same
relation. In order to identify global skylines for all the data
centers involved, the skyline of each relation (Ri − Rn) are
combined into one relation, Rg(step 65). Then the step from
1-13 and 20 to 64 are repeated. It is important to note that to
identify global skylines the filtering technique is not repeated

(step 14 to 19). At the end of the step 66 the remaining
tuples present in relation Rg are considered as global sky-
lines (step 67). Global skylines are tuples that are not being
dominated by any other tuple present in any relation of any
data center involved, stored over cloud environment. It is
also important to note that CIDS is run simultaneously and
parallelly for all the relations of involved data centers, so are
stages from clustering and grouping to choosing superior
local skylines within each relation.

1) TIME COMPLEXITY ANALYSIS OF CIDS ALGORITHM
In this section, we present and analyze the time complexity
analysis of the proposed algorithm, CIDS. To make the com-
plexity analysis easier to understand, each phase of the algo-
rithm is analyzed separately. As quicksort is themost efficient
sorting algorithm, it has been used in our proposed algorithm
to sort the tuples in relation Ri (steps 1-3), SORT. Thus, the
running time of the sorting algorithm takes O (|Ri| × log |Ri|)
time, i.e.,

SORT
(
|Ri| , dj

)
= O (|Ri| × log |Ri|)

Then for all dimensions 1 ≤ dj ≤ d in Ri, the sorting takes
O (d × |Ri| × log |Ri|) time, i.e.,

SORT (d, |Ri|) = O (d × |Ri| × log |Ri|)

For all relations Ri in DB,

SORT (n, d) =

|R|∑
i=1

O (d × |Ri| × log |Ri|)

The complexity analysis of the second phase, which counts
the dominance power, dp, for each tuple tj in relation Ri in the
proposed algorithm (steps 5-13), is as follows.
Let COUNT(k , n) indicates the running time of steps 5-13.

Based on the complexity analysis of the previous phase
(SORT), we can assume that for each Li in View, |Li| = O(n)
where n = |Ri|. Since |d| = k , we have | View | = k . To com-
pute the dp value of each tuple tj present in view, v, loop scans
every Li in v. Thus, COUNT(k , n) = k × O(n) = O(k × n).
Since dp_count may contain all tuples of Ri, therefore,
|dp-count| = O(n).
Next, we examine the time complexity for the third phase

in the proposed algorithm (steps 20 – 27). Let |Ri| denotes
the size of the database relation Ri, and let |di| denotes the
number of dimensions in Ri. Since Ri = {d1, d2, . . . , dn}
and each tuple is d-dimensional, |Ri| = n and |di| = d .
Similarly, we denote the number of clusters C in Ri and size
ofCi (the number of tuples inCi) by |C| and |Ci|, respectively.
Since the clusters are created according to the corresponding
domination power dp of the tuple ti, the number of clusters is
as follows.

1 ≤ |C| ≤ max(dp)− th

Next, the complexity analysis of the (steps 28-35) which
denote the process of creating groups within each cluster
based on different bitmap representations of the tuples. As the

VOLUME 10, 2022 66459

Y. Gulzar, A. A. Alwan: CIDS: An Efficient Algorithm for Processing Skyline Queries

bitmap representations of a tuple ti and a group Gi are order
of d , each bitmap comparison takes a constant time. The total
number of bitmap comparisons, BC , depends on the number
tuples within each cluster. Thus,

q× n ≤ BC (n, d) ≤ q× n× 2d

where q is a positive constant number > 0
The construction of each group Gj takes a constant time,

since it is initially an empty list, and the total number of the
constructions, CG, is

1 ≤ CG (d) ≤ 2d

The insertion of a tuple ti into a group Gj takes O (d) time
(a constant time). The total number of insertions, INS, is an
order of n that is

INS (n) = O (n) .

Let COUNT(k, n) denote the running time of steps (5-13).
Then,

COUNT (k, n) = BC (k, n)+ CG (d)+ INS (n)

In the best case:

COUNTbest (k, n) = O (n)+ O (1)+ O (n) = O (n)

In the worst case:

COUNTworst (k, n) = O
(
n× 2d

)
+ O

(
2d
)
+ O (n)

= mathrmO
(
n× 2d

)
Thus,

O (n) ≤ COUNT (k, n) ≤ O
(
n× 2d

)
Moreover, the time complexity analysis of the next phase

described in steps (36-48) is illustrated as follows.
For simplicity and without losing generality, we consider

the case in which
∣∣Ci.Gj∣∣ = O (n). if

∣∣Ci.Gj∣∣ = O (1), then
all the operations in steps 36 – 48 also take O (1) time.
First, the total number of the assignments of the tuples to

ti is
∣∣Ci.Gj∣∣ which means

ASSIGNti (n) = O (n)

Second, the total number of the assignments of the tuples
to tj is

ASSIGNtj (n) =
|Ci.Gj|−1∑

i=1

|Ci.Gj|∑
j=i+1

1 =
|Ci.Gj|∑
i=1

(∣∣Ci.Gj∣∣− i)
= O

(∣∣Ci.Gj∣∣2) = O
(
n2
)

Similarly, each comparison of ti with tj takes O (d) time,
and the total number of comparisons is

COMPtj (k, n) = O
(
k × n2

)
.

The removal of dominated tis and tjsmay take atmost O (n)
time. Thus, the total running time of the comparison process,
COMP described in steps (36-48) is

COMP (k, n) = ASSIGNti (n)+ ASSIGNtj (n)

+COMPtitj (k, n) = O
(
k × n2

)
Or simply,

COMP (n) = O
(
n2
)

As we assumed earlier, the number of clusters C in Ri and
the total number of dimensions in Ri are denotated by |C|
and |d |, respectively. Since Ri contains all the constructed
clusters, therefore |C| = O(n) where n = |C| . Likewise,
and |d | = O(p), where p = |d |. The marking of tuples with
highest value in di of Ci takes a constant time, therefore, the
total number of the marked tuples is:

1 ≤ C (d) ≤ t , where t = total number of tuples in Ci
The deletion of a tuple ti from a Ci takes O(t) time. Thus,

the time complexity of identifying the superior cluster sky-
lines as given in steps (54-59), SCS is

SCS = O (C)+ O (p)+ O (1)+ O (t)

= O (C)+ O (p)+ O(t)

CIDS Algorithm: Cloud-Based Incomplete Data Skylin
Input:d-dimensional partially complete dataset D = (Ri − Rn)
present in different Data Centers (CDi– CDn)
Output: Global Skylines

1+ foreach Ri ∈ DCi do

1. foreach di of Ri ∈ DCi do
2. sort Ri in non-ascending order and store sorted id of ti. di in vi
3. end
4. set TPR = total number of tuples in Ri
5. foreach ti of vi ∈ DCi do
6. set dp of ti = +1
7. if ti not read before then
8. Set tuple_count = + 1
9. Store ti in ADPC
10. end
11. update dp of ti in dp_count
11. if TPR= tuple_count then
12. exit
13. end
14. set th // as per user preference value
15. foreach ti in ADPC do
16. if dp of ti < th then
17. eliminate ti from ADPC
18. end
19. end
20. foreach ti ∈ ADPC do
21. if dp of ti == dp of any existing Cluster then
22. insert ti in Ck
23. else
24. create cluster Ck
25. insert ti in Ck
26. end
27. end

66460 VOLUME 10, 2022

Y. Gulzar, A. A. Alwan: CIDS: An Efficient Algorithm for Processing Skyline Queries

28. foreach ti of Ci ∈ Ri do
29. if BP of ti == BP of any existing Group Gi then
30. insert ti in CK
31. else
32. create Group Gk
33. insert ti in Ck
34. end
35. end
36. foreach ti of Gi in Ci ∈ Ri do// Identify skylines within Groups
37. isdominated = false
38. foreach tj in Gi do//j = i++
39. if ti � tj then
40. eliminate tj from Gi
41. elseif tj � ti then
42. set isdominated = true
43. end
44. end
45. if Isdominated then
46. eliminate ti from Gi
47. end
48. end
49. foreach ti ofGi withinCi ∈ Ri do// identify skylines with cluster
50. foreach tp of Gi++ do
51. repeat step 39 – 46
52. end
53. end
54. foreach Ci ∈ Ri do
55. foreach di of Ci ∈ Ri do
56. mark ti iff it has highest value in di
57. end
58. eliminate all non-marked ti from Ci
59. end
60. foreach ti of Ci ∈ Ri do// identify skylines for Ri
61. foreach tp of Ci++ do
62. repeat step 39 – 46
63. end
64. end
65. combine remaining tuples (skylines) present in Ri − Rn into Rg
66. repeat step 1-13 and 20-64

67. return remaining tuples ti−n present in Rg as GlobalSkylines

V. EXPERIMENTAL ENVIRONMENT
A lot of experiments have been done to measure the effi-
ciency and performance of the proposed approach, CIDS for
processing skyline queries in partially complete databases
over a cloud environment. Various experiment settings have
been designed and developed to measure the performance
of CIDS with the most recent proposed approaches, which
are designed for incomplete databases such as SCSA [36],
ICS [27], SPQ [25], IncoSkyline [35], and SIDS [33]. The
proposed approach and existing approaches have been imple-
mented using the C# programming language. A window 7
32bit machine with 3 GB memory and i3 1.6GHz Processor
has been used to run a comprehensive and intensive set of
experiments. It is a known fact that skyline processing is a
CPU exhaustive process [1], [2], [8], [12], [31], [40]–[42],
thus the experiments of this research work involved three
performance metrics: i) domination tests between tuples,
ii) processing time and iii) amount of data transfer from one
data center to another. To measure these three parameters two
well-known databases have been used (synthetic and real).

In terms of real databases, three different datasets have been
used such as NBA, MovieLens, and CoIL 2000 insurance
company. For the synthetic dataset two datasets have been
created (independent and correlated). An Independent dataset
is generated where values of one dimension are not related
with another relation whereas in a correlated dataset the
values of one dimension are related with another dimension
positively or negatively. These datasets are more realistic and
are frequently used by researchers in the area of evaluating
skyline queries in complete or incomplete databases [1], [2],
[7], [19], [24], [35], [36], [43]. Furthermore, the performance
of the proposed and existing approaches is measured by
varying the number of dimensions of a database, the number
of partially complete dimensions, and the size of the database.
As far as the nature of the Movie Lens and CoIL 2000 insur-
ance company dataset is concerned, they fit our experimental
conditions as they are not complete databases. It is important
to note that during experimentation the highest value present
in dimensions of datasets is considered as a better one. The
parameter settings of real and synthetic datasets shown in
Table 2 are used to evaluate the proposed algorithm to identify
skyline queries in partially incomplete databases.

TABLE 2. Parameter settings of real and synthetic datasets.

A. EXPERIMENTAL RESULTS
This section shows the experimental results of our proposed
algorithm performed on the datasets (real and synthetic) to
identify skylines on partially complete databases stored over
a cloud environment. Here, it is attempted to investigate the
effect of the number of dimensions, the influence of dataset
size on the process of domination tests and processing time
for skyline evaluation and the amount of data transfer from
one data center to another. From the literature, it can be argued
that these are considered crucial parameters and have a huge
impact on skyline query processing. In the first set of the
experiment, the size of the datasets remains constant whereas
the number of the dimensions varies. In the second set of
experiments, the number of the dimension of datasets remains
constant whereas the size of the dataset varies. In the last
part of the experiment set, the amount of data transferred
from one data center to another is measured. It is proven
from the literature that these parameters are the most crucial
parameters that influence skyline query processing [1], [2],
[4], [13], [23], [36], [44], [45].

VOLUME 10, 2022 66461

Y. Gulzar, A. A. Alwan: CIDS: An Efficient Algorithm for Processing Skyline Queries

1) EFFECT OF NUMBER OF DIMENSIONS
It is evidenced in literature [2], [19], [46], [47] that the
number of dimensions within a dataset has a huge influ-
ence on the process of skyline queries. Therefore, in this
work, the impact of the varying number of dimensions of
incomplete datasets on the processing time taken to identify
skylines is examined. In this section, the experimental results
of real and synthetic datasets are illustrated throughout the
paper. Figure 12 illustrates the impact of a varying num-
ber of dimensions on processing time while evaluating sky-
line queries. Figure 12a and Figure 12b show the execution
time taken by the proposed algorithm, CIDS and existing
approaches (SCSA, ICS, SPQ, INCOSKYLINE and SIDS)
while using real datasets, NBA, and COiL 2000 insurance
company dataset respectively. In the NBA dataset, the dataset
size is fixed to 120KB, and the number of dimensions varies
from 5 dimensions to 17 dimensions.Whereas for COiL 2000
insurance company dataset the dataset size is fixed to 150KB,
and the number of dimensions varies from 3 to 21 dimensions.
Since theMovieLens dataset consists of only four dimensions
it is not used in this experiment.

FIGURE 12. Effect of number of dimensions on the processing time.

From the experimental results presented in Figure 12a of
the NBA dataset, it can be concluded that CIDS requires
less processing time to identify skylines. Its performance
remains consistent even though the number of dimensions
varies. Whereas the processing time dramatically increases
for other approaches such as ICS, SPQ, INCOSKYLINE
and SIDS. It can be also noticed that INCOSKYLINE and
SIDS take a longer time to identify skylines when the number
of dimensions is 11 and above. From Figure 12b it can
be concluded that CIDS outruns all the existing approaches
in terms of execution time while identifying skylines and
the processing time does not increase even when the num-
ber of dimensions increases. Whereas SPQ, INCOSKY-
LINE and SIDS take the longest time to evaluate skylines.

However, SCSA and ICS are slightly better than SPQ,
INCOSKYLINE and SIDS.

Figure 12c and Figure 12d demonstrate the impact of
varying number of dimensions of synthetic datasets (inde-
pendent and correlated respectively) on processing time to
identify skylines by proposed algorithm CIDS and existing
approaches (SCSA, ICS, SPQ, INCOSKYLINE and SIDS).
For both independent and correlated datasets, the dataset size
is fixed to 300KB, whereas the number of dimensions varies
from 4 dimensions to 12 dimensions.

From Figure 12c and Figure 12d, it is concluded that CIDS
outclasses all other existing approaches (SCSA, ICS, SPQ,
INCOSKYLINE and SIDS) in terms of processing timewhile
identifying skylines. It can be also seen that the processing
time slightly increases for CIDS when the number of dimen-
sions reaches to 8 and above for the independent dataset
set. Whereas processing time for CIDS in correlated datasets
remains steady throughout the increase in the number of
dimensions. it is also concluded that the processing time dra-
matically increases for all other approaches especially SPQ,
INCOSKYLINE and CIDS when the number of dimensions
reaches 8 and above.

The reason behind outperforming all the existing
approaches (SCSA, ICS, SPQ, INCOSKYLINE and SIDS)
by CIDS is that it uses an optimization technique called
pruning in which a large number of tuples are eliminated
way before the skyline process starts which in turn minimizes
the searching space and reduces the processing time. Another
efficient technique implemented in CIDS is that it parallelly
executes stages number 2 to 4 in both phases, which has
a huge impact on reducing the execution time unlike other
approaches such as ICS, SPQ, CIDS where execution occurs
step by step.

Figure 13a, 13b, 13c, and 13d show the results of dom-
ination tests taken by CIDS, SCSA, ICS, SPQ, INCOSKY-
LINE, and SIDS approaches to generate skylines on the
NBA, CoIL 2000 insurance company, Independent, and Cor-
related datasets. In this set of experiments, the parameter
settings are the same as mentioned in the previous exper-
iment for both real and synthetic datasets. For the NBA
dataset in Figure 13a, CIDS takes the least amount of dom-
ination tests to compute skylines and outruns all the other
approaches. From Figure 13b SPQ, INCOSKYLINE, and
SIDS approaches take the highest number of domination tests
followed by ICS and SCSA and CIDS outperforms all these
approaches in terms of domination tests while identifying
skylines.

Figure 13c and 13d show the results of domination tests
taken by different approaches in the independent and cor-
related dataset while identifying skylines. From Figure 13c
and 13d, it can be noted that CIDS takes minimum number
of domination tests to identify skylines. In Figure 13d the
number of domination tests for CIDS remain steady until
8 dimensions but then slowly increase when the number of
dimensions also increase. In Figure 13c it can be noted that
different approaches take the highest number of domination

66462 VOLUME 10, 2022

Y. Gulzar, A. A. Alwan: CIDS: An Efficient Algorithm for Processing Skyline Queries

FIGURE 13. Effect of number of dimensions on the domination tests.

tests when compared with other datasets. It is because of the
nature of the dataset where dimensions are not dependent on
each other.

From Figure 13 it can be concluded that CIDS is outper-
forming all the existing approaches whether it be SCSA, ICS,
SPQ, INCOSKYLINE or SIDS. It is achieved due to the fact
of using two different optimization techniques, pruning, and
selecting superior local skylines. With the help of the pruning
technique, a large number of unwanted tuples are eliminated
before starting the skyline process. Furthermore, with the
help of selecting superior local skylines techniques, a good
number of tuples are eliminated from further processing.
Also, to identify global skylines for all data centers involved,
CIDS only processes the local skylines, identified from each
data center unlike SCSA, SPQ, INCOSKYLINE or CIDS
approach where they process data of all data centers involved
to find global skylines.

2) EFFECT OF DATASET SIZE
Figure 14a, 14b, 14c, 14d, and 14e depicts the processing
time taken by different approaches to identify skylines on a
partially complete database for NBA, COiL 2000 Insurance
company, MovieLens, Independent, and Correlated datasets.
This set of experiments identifies the impact of dataset size
of a partially incomplete database on the process of skyline
computation. The parameter settings for this set of experi-
ments are as follows:

For the real dataset, NBA the number of dimensions
remains constant (17 dimensions) whereas dataset size
increases from 40KB to 200KB. For Coil 2000 Insurance
company the number of dimensions remains 13 throughout
this experiment whereas the dataset size varies from 50KB to
300KB. In the MovieLens dataset, there are only 4 dimen-
sions including index dimensions and the dataset varies
from 400KB to 2000KB. For synthetic dataset, Independent
and Correlated the number of dimensions remain constant

at 7 (including index dimension) whereas the dataset size
varies from 100KB to 600KB.

Figure 14a shows the results conducted on the NBA dataset
to identify skylines. From the figure, it can be noticed
that CIDS outruns all the existing approaches in all cases.
Figure 14b demonstrates the experimental results which were
conducted on COiL 2000 Insurance Company dataset. It is
noticed that CIDS outruns all the approaches in all cases.
SPQ, INCOSKYLINE and SIDS take the longest time in
identifying skylines. whereas SCSA and ICS perform slightly
better than these approaches. Figure 14c represents the exper-
iment results conducted on the MovieLens dataset. It is
concluded that all existing approaches perform worse when
compared with the CIDS algorithm. Even though the size
of the dataset increases, CIDS performance remains steady
and processing time marginally increases along with the
dataset size. Figure 14d, 14e shows the experiment results
of the synthetic dataset (Independent and Correlated). From
Figure 14d and 14e, it is clearly seen that our algorithm is
better than SCSA, ICS, SPQ, INCOSKYLINE as well as
SIDS in all cases. It requires the least amount of time to
identify skylines in partially complete databases.

From Figure 14 it can be concluded that the CIDS algo-
rithm outperforms all the existing approaches by taking least
processing time to identify skylines in partially complete
databases where dataset size is increasing. It is due to the
fact that CIDS uses prominent techniques such as Filtering,
Clustering and Grouping, Finding Local Skylines, Choosing
Superior Local Skylines. All these techniques contribute to
reducing processing time as filtering helps in eliminating
a large number of tuples before the skyline process begins
which reduces the searching space. Whereas forming of
clustering and groups within clusters and executing them
parallelly helps CIDS to process faster and lastly use of
optimization technique, choosing superior skylines further
helps in eliminating those tuples that do not have any potential
to be part of the final skyline from each database stored in
each data center.

Figure 15a, 15b, 15c, 15d, and 15e describe the experimen-
tal results of the domination tests taken by algorithms (CIDS,
SCSA, ICS, SPQ, INCOSKYLINE and SIDS), conducted
on tuples present in NBA, COiL 2000 Insurance Company,
MovieLens, Independent, and Correlated datasets to identify
skylines. The parameter settings of this result set are the same
as the above one. Figure 15a demonstrates the experiment
results of the NBA dataset. From the results shown in the fig-
ure, it can be concluded that the number of domination tests
gradually increase with the increase in dataset size. SIDS,
INCOSKYLINE, SPQ, ICS and SCSA take higher domina-
tion tests than CIDS and CIDS outclasses these approaches.
SIDS is the worst in all cases. Whereas SCSA performs
better than other approaches but is outperformed by CIDS.
Figure 15b shows the results of COiL 2000 Insurance Com-
pany where it can be seen that SCSA and ICS are marginally
outrun by CIDS until the dataset size is 100KB whereas other
approaches (SPQ, INCOSKYLINE, SIDS) are performing

VOLUME 10, 2022 66463

Y. Gulzar, A. A. Alwan: CIDS: An Efficient Algorithm for Processing Skyline Queries

FIGURE 14. Effect of dataset size on the processing time.

worse in all cases and are outperformed by CIDS. Figure 15c
displays the experimental results of the MovieLens dataset.
From the results presented in the figure, it can be noted that
the domination tests gradually increase along with the dataset
size, but CIDS takes a minimum amount of domination tests
throughout the results and outperforms all the approaches in
taking fewer domination tests to identify skylines. Figure 15d
and 15e represents the results of the Independent and Cor-
related dataset. From the results, it is concluded that CIDS
outpaces SCSA, ICS, SPQ, INCOSKYLINE and SIDS in
taking the least domination tests to generate final skylines.

From the results presented in Figure 15, it is concluded
that CIDS outruns all the existing approaches (SCSA, ICS,
SPQ, INCOSKYLINE and SIDS) in terms of the number
of domination tests while identifying skylines in partially
complete databases. Incorporating of two optimization tech-
niques (pruning and choosing superior local skylines) have
proven that they eliminate a lot of dominated tuples before the
skyline process starts and stops many non-dominant tuples
from further processing. These two techniques play a vital
role in reducing domination tests. Moreover, the concept
of creating clusters based on domination power helps in
putting tuples with higher dp value other tuples in similar
clusters. due to that technique, the tuples having higher dp
value have potential to dominate and eliminate tuples in
other clusters (with lesser dp value) when a cross-comparison
is done. That helps in reducing domination by eliminating

FIGURE 15. Effect of dataset size on the number of domination tests.

such non-dominant tuples way before getting compared with
other tuples present in other clusters with less domination
power. Creating groups based on bitmap representation helps
CIDS to avoid losing transitive property and stops cyclic
dominance from occurring. Comparing tuples with the same
bitmap representation helps CIDS to avoid false negative and
false positive cases to occur. Lastly comparing tuples within
groups saves a lot of domination tests by eliminating many
non-dominant tuples within groups before getting compared
with other tuples present in other groups.

3) EFFECT OF AMOUNT OF DATA TRANSFER
In this set of experiments, the amount of data transferred from
one data center to another data center is evaluated. In other
words, data transfer means the number of tuples transferred
from one data center to another. The existing approaches are
designed for single databases except (ICS) whereas CIDS
is designed to handle multiple databases located at remote
locations over the cloud. When identifying skylines over is
cloud it is important to identify those tuples which are not
being dominated by any tuple present in any data center.
For that data needs to be transferred from one data center to
another. Transferring data from one data center to another is
considered an expensive process. To avoid transferring all the
data present at one data center to another CIDS implemented
a cost-effective technique that only transfers the local sky-
lines of each relation present at each data center rather than

66464 VOLUME 10, 2022

Y. Gulzar, A. A. Alwan: CIDS: An Efficient Algorithm for Processing Skyline Queries

transferring all the data unlike SCSA, SPQ, INCOSKYLINE
and SIDS. Figure 16a, 16b,16c, 16d, and 16e depicts the
results of the amount of data transferred from one data center
to another of NBA, COiL 2000 Insurance Company, Movie-
Lens, Independent and Correlated datasets.

From figure 16 it can be concluded that around 98-99%
of data transfer is reducing in CIDS whereas SCSA, SPQ,
INCOSKYLINE and SIDS transfers the whole dataset in
order to identify global skylines. CIDS also outruns ICS
as ICS does not use any crusting or grouping technique to
filter out some non-dominant tuples whereas CIDS uses two
optimization techniques to remove many unwanted tuples
during the skyline process. That has an impact on reducing
the number of tuples to be transferred from one data center to
another.

FIGURE 16. Effect of dataset size on the number of domination tests.

VI. CONCLUSION
The skyline process is generally considered an expensive pro-
cess, given the extensive domination tests performed during
the process of identifying skylines. The parameters such as
the number of dimensions and dataset size are considered
as an important factor that shows the baneful impact on
the process of the skyline in terms of searching space and
computation process. This research work proposed a novel
algorithm (CIDS) for processing skyline queries in partially
complete databases stored over a cloud environment. CIDS
implements two optimization techniques, pruning and choos-
ing superior skylines to prune some unwanted tuples that do

not have the potential to be part of final skylines. CIDS also
implements a novel approach of identifying the domination
power of individual tuples which represents their domination
power over other tuples. Identifying the domination power
of each tuple helps in creating different clusters and based
on that the most dominant tuples are a productive technique.
To make CIDS efficient clusters are further divided into
groups and then local skylines are identified simultaneously
and parallelly for each cluster within a relation and the same
technique is executed simultaneously and parallelly for each
data center involved. These techniques have played a vital
role in reducing domination tests between tuples and reducing
execution time. Furthermore, transferring only skylines of
each relation from one data center to another has reduced a
large amount of data from being transferred. Which in turn
reduced network cost. A different set of experiments have
been conducted to prove the efficiency and effectiveness of
CIDS over existing approaches such as SCSA, ICS, SPQ,
INCOSKYLINE and SIDS. The results have proven that
CIDS is outclassing all the existing approaches in identifying
the skyline for partially complete data stored over cloud
environment.

REFERENCES
[1] S. Borzsony, D. Kossmann, and K. Stocker, ‘‘The skyline operator,’’

in Proc. 17th Int. Conf. Data Eng., Apr. 2001, pp. 421–430, doi:
10.1109/ICDE.2001.914855.

[2] M. E. Khalefa, M. F. Mokbel, and J. J. Levandoski, ‘‘Skyline query
processing for incomplete data,’’ in Proc. IEEE 24th Int. Conf. Data Eng.,
Apr. 2008, pp. 556–565, doi: 10.1109/ICDE.2008.4497464.

[3] Y. Gulzar, A. A. Alwan, N. Salleh, I. F. A. Shaikhli, and
S. I. M. Alvi, ‘‘A framework for evaluating skyline queries over
incomplete data,’’ Proc. Comput. Sci., vol. 94, pp. 191–198, Jan. 2016,
doi: 10.1016/j.procs.2016.08.030.

[4] C.-Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang,
‘‘Finding K -dominant skylines in high dimensional space,’’ in Proc. ACM
SIGMOD Int. Conf. Manage. Data (SIGMOD), 2006, pp. 503–514, doi:
10.1145/1142473.1142530.

[5] M. L. Yiu and N. Mamoulis, ‘‘Efficient processing of top-K dominating
queries on multi-dimensional data,’’ Proc. 33rd Int. Conf. Very Large Data
Bases (VLDB Endowment), Vienna, Austria, 2007, pp. 483–494.

[6] D. Kossmann, F. Ramsak, and S. Rost, ‘‘Shooting stars in the sky: An
online algorithm for skyline queries,’’ in Proc. 28th Int. Conf. Very Large
Databases (VLDB Endowment), Hong Kong, 2002, pp. 275–286.

[7] K.-L. Tan, P.-K. Eng, and B. C. Ooi, ‘‘Efficient progressive skyline com-
putation,’’ in Proc. 27th Int. Conf. Very Large Data Bases (VLDB), vol. 1,
2001, pp. 301–310.

[8] C.-Y. Chan, H. V. Jagadish, K.-L. Tan, and A. K. H. Tung, ‘‘On high
dimensional skylines,’’ in Proc. 10th Int. Conf. Extending Database Tech-
nol. (EDBT) Berlin, Germany: Springer, 2006, pp. 478–495.

[9] M. B. Swidan, A. A. Alwan, S. Turaev, and Y. Gulzar, ‘‘A model for
processing skyline queries in crowd-sourced databases,’’ Artic. Indones.
J. Electr. Eng. Comput. Sci., vol. 10, no. 2, pp. 798–806, 2018, doi:
10.11591/ijeecs.v10.i2.pp798-806.

[10] X. Miao, Y. Gao, S. Guo, L. Chen, J. Yin, and Q. Li, ‘‘Answering skyline
queries over incomplete data with crowdsourcing,’’ IEEE Trans. Knowl.
Data Eng., vol. 33, no. 4, pp. 1360–1374, Apr. 2021.

[11] L. Ding, X. Zhang, H. Zhang, L. Liu, and B. Song, ‘‘CrowdSJ: Skyline-
join query processing of incomplete datasets with crowdsourcing,’’ IEEE
Access, vol. 9, pp. 73216–73229, 2021.

[12] M. B. Swidan, A. A. Alwan, S. Turaev, H. Ibrahim, A. Zaid Abualkishik,
and Y. Gulzar, ‘‘Skyline queries computation on crowdsourced- enabled
incomplete database,’’ IEEEAccess, vol. 8, pp. 106660–106689, 2020, doi:
10.1109/ACCESS.2020.3000664.

VOLUME 10, 2022 66465

http://dx.doi.org/10.1109/ICDE.2001.914855
http://dx.doi.org/10.1109/ICDE.2008.4497464
http://dx.doi.org/10.1016/j.procs.2016.08.030
http://dx.doi.org/10.1145/1142473.1142530
http://dx.doi.org/10.11591/ijeecs.v10.i2.pp798-806
http://dx.doi.org/10.1109/ACCESS.2020.3000664

Y. Gulzar, A. A. Alwan: CIDS: An Efficient Algorithm for Processing Skyline Queries

[13] M. B. Swidan, A. A. Alwan, Y. Gulzar, and A. Z. Abualkishik,
‘‘An overview of query processing on crowdsourced databases,’’ Sci.
J. King Faisal Univ., vol. 22, no. 1, pp. 5–12, 2021.

[14] M. Morse, J. M. Patel, and W. I. Grosky, ‘‘Efficient continuous skyline
computation,’’ Inf. Sci., vol. 177, no. 17, pp. 3411–3437, Sep. 2007.

[15] C. Kalyvas, T. Tzouramanis, and Y. Manolopoulos, ‘‘Processing skyline
queries in temporal databases,’’ in Proc. Symp. Appl. Comput., Apr. 2017,
pp. 893–899.

[16] Y. Gulzar, A. A. Alwan, A. Z. Abualkishik, and A. Mehmood,
‘‘A model for computing skyline data items in cloud incomplete
databases,’’ Proc. Comput. Sci., vol. 170, pp. 249–256, Jan. 2020, doi:
10.1016/j.procs.2020.03.037.

[17] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, ‘‘Skyline with presort-
ing,’’ in Proc. 19th Int. Conf. Data Eng., Mar. 2003, pp. 717–719, doi:
10.1109/ICDE.2003.1260846.

[18] D. Papadias, Y. Tao, G. Fu, and B. Seeger, ‘‘An optimal and progressive
algorithm for skyline queries,’’ in Proc. ACM SIGMOD Int. Conf. Manage.
Data (SIGMOD), 2003, pp. 467–478, doi: 10.1145/872757.872814.

[19] Y. Gulzar, A. A. Alwan, H. Ibrahim, S. Turaev, S. Wani, A. B. Soomo, and
Y. Hamid, ‘‘IDSA: An efficient algorithm for skyline queries computation
on dynamic and incomplete data with changing states,’’ IEEE Access,
vol. 9, pp. 57291–57310, 2021.

[20] Y. Gulzar, ‘‘Skyline query approaches in static and dynamic incomplete
databases,’’ Int. Islamic Univ. Malaysia, Selangor, Malaysia, Tech. Rep.,
2018.

[21] A. A. Alwan, H. Ibrahim, and N. I. Udzir, ‘‘A framework for identifying
skylines over incomplete data,’’ in Proc. 3rd Int. Conf. Adv. Comput. Sci.
Appl. Technol., Dec. 2014, pp. 79–84.

[22] Y. Gulzar, A. A. Alwan, N. Salleh, and I. F. Al Shaikhli, ‘‘Processing
skyline queries in incomplete database: Issues, challenges and future
trends,’’ J. Comput. Sci., vol. 13, no. 11, pp. 647–658, Nov. 2017, doi:
10.3844/jcssp.2017.647.658.

[23] J. Lee, H. Im, and G.-W. You, ‘‘Optimizing skyline queries over
incomplete data,’’ Inf. Sci., vols. 361–362, pp. 14–28, Sep. 2016, doi:
10.1016/j.ins.2016.04.048.

[24] G. B. Dehaki, H. Ibrahim, F. Sidi, N. I. Udzir, A. A. Alwan, and Y. Gulzar,
‘‘Efficient computation of skyline queries over a dynamic and incomplete
database,’’ IEEE Access, vol. 8, pp. 141523–141546, 2020.

[25] Y. Wang, Z. Shi, J. Wang, L. Sun, and B. Song, ‘‘Skyline preference
query based on massive and incomplete dataset,’’ IEEE Access, vol. 5,
pp. 3183–3192, 2017, doi: 10.1109/ACCESS.2016.2639558.

[26] A. A. Alwan, H. Ibrahim, N. I. Udzir, and F. Sidi, ‘‘Processing skyline
queries in incomplete distributed databases,’’ J. Intell. Inf. Syst., vol. 48,
no. 2, pp. 399–420, Apr. 2017.

[27] Y. Gulzar, A. A. Alwan Aljuboori, N. Salleh, and I. F. Al Shaikhli, ‘‘Iden-
tifying skylines in cloud databases with incomplete data,’’ J. Inf. Commun.
Technol., vol. 18, no. 1, pp. 19–34, Jan. 2019.

[28] A. A. Alwan, H. Ibrahim, N. I. Udzir, and F. Sidi, ‘‘Estimating missing
values of skylines in incomplete database,’’ in Proc. 12th Int. Conf. Digit.
Enterprise Inf. Syst., 2013, pp. 220–229.

[29] Y. Gulzar, A. A. Alwan, N. Salleh, and I. Fakhri Al-Shaikhli,
‘‘Skyline query processing for incomplete data in cloud environ-
ment,’’ in Proc. 6th Int. Conf. Comput. Inform. (ICOCI), vol. 2017,
pp. 567–576.

[30] N. H. M. Saad, H. Ibrahim, F. Sidi, R. Yaakob, and A. A. Alwan, ‘‘Com-
puting range skyline query on uncertain dimension,’’ in Proc. Int. Conf.
Database Expert Syst. Appl., 2016, pp. 377–388.

[31] M. Shamsul Arefin, ‘‘Skyline sets queries for incomplete data,’’ Int.
J. Comput. Sci. Inf. Technol., vol. 4, no. 5, pp. 67–80, Oct. 2012.

[32] X. Miao, Y. Gao, L. Chen, G. Chen, Q. Li, and T. Jiang, ‘‘On efficient
K -skyband query processing over incomplete data,’’ in Proc. 18th Int.
Conf. Database Syst. Adv. Appl. (DASFAA), Wuhan, China, Apr. 2013,
pp. 424–439, doi: 10.1007/978-3-642-37487-6_32.

[33] R. Bharuka and P. S. Kumar, ‘‘Finding skylines for incomplete data,’’ in
Proc. 24th Australas. Database Conf., vol. 137. Adelaide, QLD, Australia:
Australian Computer Society, 2013, pp. 109–117.

[34] K. Zhang, H. Gao, H. Wang, and J. Li, ‘‘ISSA: Efficient skyline compu-
tation for incomplete data,’’ in Proc. Int. Conf. Database Syst. Adv. Appl.,
2016, pp. 321–328, doi: 10.1007/978-3-319-32055-7_26.

[35] A. A. Alwan, H. Ibrahim, N. I. Udzir, and F. Sidi, ‘‘An efficient approach
for processing skyline queries in incomplete multidimensional database,’’
Arabian J. Sci. Eng., vol. 41, no. 8, pp. 2927–2943, Aug. 2016, doi:
10.1007/s13369-016-2048-z.

[36] Y. Gulzar, A. A. Alwan, R. M. Abdullah, Q. Xin, and M. B. Swidan,
‘‘SCSA: Evaluating skyline queries in incomplete data,’’ Int. J. Speech
Technol., vol. 49, no. 5, pp. 1636–1657, May 2019, doi: 10.1007/s10489-
018-1356-2.

[37] Y. Gulzar, A. A. Alwan, and S. Turaev, ‘‘Optimizing skyline query process-
ing in incomplete data,’’ IEEE Access, vol. 7, pp. 178121–178138, 2019,
doi: 10.1109/ACCESS.2019.2958202.

[38] H.-C. Ryu and S. Jung, ‘‘MapReduce-based skyline query processing
scheme using adaptive two-level grids,’’ Cluster Comput., vol. 20, no. 4,
pp. 3605–3616, Dec. 2017, doi: 10.1007/S10586-017-1203-Y.

[39] P. Ezatpoor, J. Zhan, J. M.-T. Wu, and C. Chiu, ‘‘Finding top-K dominance
on incomplete big data using mapreduce framework,’’ IEEE Access, vol. 6,
pp. 7872–7887, 2018.

[40] M. Haddache, A. Hadjali, and H. Azzoune, ‘‘Skyline refinement exploiting
fuzzy formal concept analysis,’’ Int. J. Intell. Comput. Cybern., vol. 14,
no. 3, pp. 333–362, Jul. 2021.

[41] R. Chi-Wing Wong, A. Wai-chee Fu, J. Pei, Y. Sing Ho, T. Wong, and
Y. Liu, ‘‘Efficient skyline querying with variable user preferences on
nominal attributes,’’ 2007, arXiv:0710.2604.

[42] M. A. Soliman, I. F. Ilyas, and S. Ben-David, ‘‘Supporting ranking queries
on uncertain and incomplete data,’’ Int. J. Very Large Data Bases, vol. 19,
no. 4, pp. 477–501, 2010.

[43] Y. Gulzar, A. A. Alwan, H. Ibrahim, andQ. Xin, ‘‘D-SKY:A framework for
processing skyline queries in a dynamic and incomplete database,’’ inProc.
20th Int. Conf. Inf. Integr. Web-Based Appl. Services, 2018, pp. 164–172,
doi: 10.1145/3282373.3282389.

[44] I. Bartolini, P. Ciaccia, and M. Patella, ‘‘SaLSa: Computing the skyline
without scanning the whole sky,’’ in Proc. 15th ACM Int. Conf. Inf.
Knowl. Manage. (CIKM), Arlington, VA, USA, 2006, pp. 405–414, doi:
10.1145/1183614.1183674.

[45] Y. Gulzar, A. A. Alwan, N. Salleh, and I. F. A. Shaikhli, ‘‘A model for
skyline query processing in a partially complete database,’’ Adv. Sci. Lett.,
vol. 24, no. 2, pp. 1339–1343, Feb. 2018, doi: 10.1166/asl.2018.10745.

[46] G. B. Dehaki, H. Ibrahim, A. A. Alwan, F. Sidi, and N. I. Udzir, ‘‘Efficient
skyline computation over an incomplete database with changing states and
structures,’’ IEEE Access, vol. 9, pp. 88699–88723, 2021.

[47] N. H. M. Saad, H. Ibrahim, F. Sidi, R. Yaakob, and A. A. Alwan, ‘‘Effi-
cient skyline computation on uncertain dimensions,’’ IEEE Access, vol. 9,
pp. 96975–96994, 2021.

YONIS GULZAR received the bachelor’s degree in
computer science from the University of Kashmir,
in 2010, the master’s degree in computer science
from Bangalore University, India, in 2013, and the
Ph.D. degree in computer science from the Inter-
national Islamic University Malaysia, Malaysia,
in 2018.

He worked as a Lecturer (PT), a Teaching Assis-
tant, and a Research Assistant at the Department of
Computer Science, International Islamic Univer-

sity Malaysia, till 2018. He has been an Assistant Professor at King Faisal
University (KFU), Saudi Arabia, since 2019. His research interests include
preference queries, skyline queries, query processing, machine learning,
deep learning, image processing, and computer vision.

ALI A. ALWAN received the master’s and Ph.D.
degrees in computer science from Universiti Putra
Malaysia (UPM), Malaysia, in 2009 and 2013,
respectively. He is currently an Assistant Professor
at the School of Theoretical and Applied Science,
RamapoCollege of New Jersey, USA.His research
interests include databases (mobile, distributed,
and parallel), preference queries, web databases,
probabilistic, incomplete and uncertain databases,
query processing and optimization, data manage-

ment, data integration, location-based social networks (LBSN), recommen-
dation systems, data mining, database in cloud, big data management, and
crowd-sourced database.

66466 VOLUME 10, 2022

http://dx.doi.org/10.1016/j.procs.2020.03.037
http://dx.doi.org/10.1109/ICDE.2003.1260846
http://dx.doi.org/10.1145/872757.872814
http://dx.doi.org/10.3844/jcssp.2017.647.658
http://dx.doi.org/10.1016/j.ins.2016.04.048
http://dx.doi.org/10.1109/ACCESS.2016.2639558
http://dx.doi.org/10.1007/978-3-642-37487-6_32
http://dx.doi.org/10.1007/978-3-319-32055-7_26
http://dx.doi.org/10.1007/s13369-016-2048-z
http://dx.doi.org/10.1007/s10489-018-1356-2
http://dx.doi.org/10.1007/s10489-018-1356-2
http://dx.doi.org/10.1109/ACCESS.2019.2958202
http://dx.doi.org/10.1007/S10586-017-1203-Y
http://dx.doi.org/10.1145/3282373.3282389
http://dx.doi.org/10.1145/1183614.1183674
http://dx.doi.org/10.1166/asl.2018.10745

