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ABSTRACT Reinforcement learning (RL) has been successfully applied tomotion control, without requiring
accurate models and selection of control parameters. In this paper, we propose a novel RL algorithm
based on proximal policy optimization algorithm with dimension-wise clipping (PPO-DWC) for attitude
control of quadrotor. Firstly, dimension-wise clipping technique is introduced to solve the zero-gradient
problem of the PPO algorithm, which can quickly converge while maintaining good sampling efficiency, thus
improving the control performance. Moreover, following the idea of stability augmentation system (SAS),
a feedback controller is designed and integrated into the environment before training the PPO controller
to avoid ineffective exploration and improve the system’s convergence. The eventual controller consists of
two parts: the first is the result of the actor neural network in the PPO algorithm, and the second is the
output of the stability augmentation feedback controller. Both of them directly use an end-to-end style of
control commands to map the system state. This control architecture is applied in the attitude control of the
quadrotor. The simulation results show that the quadrotor can quickly and accurately track the command and
has a small steady-state error after the training by the improved PPO algorithm. Meanwhile, compared with
the traditional PID controller and basic PPO algorithm, the proposed PPO-DWC algorithm with stability
augmentation framework has better performance in tracking accuracy and robustness.

INDEX TERMS Reinforcement learning, attitude control, proximal policy optimization, quadrotor,
dimension-wise clipping, stability augmentation system.

I. INTRODUCTION
In recent years, reinforcement learning (RL) has made
rapid progress in the field of artificial intelligence research.
Combined with deep learning and data progression, deep
reinforcement learning (DRL) algorithms modeled by neural
networks are now successfully applied in a variety of scenar-
ios such as investing [1], gaming [2], and traffic control [3].
At the same time, in the robot control system, the applica-
tion of DRL for continuous tasks has become one of the
most popular research topics, including the motion control of
unmanned aerial vehicles [4], unmanned surface vehicles [5],
and autonomous underwater vehicles [6].

Quadrotor UAVs are widely used in power inspection [7],
urban planning [8], agricultural monitoring [9], disaster
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rescue [10] and other fields, and is currently developing in a
safer and more efficient direction. The quadrotor is a typical
underactuated nonlinear strong coupled system with 6-DOF
(six degrees of freedom) for the rotational and translational
motion and only four actuators for control input. For the
attitude control of the quadrotor, it is not enough to be able
to hover, but also perform large maneuvers in a tough envi-
ronment [11]. Factors such as air resistance, the gyroscopic
moment generated by the rapid rotation of the motor during
flight, and the uneven distribution of the mass will affect
the stability of the quadrotor flight. Many advanced control
algorithms have been proposed and applied to quadrotor
flight control systems, such as sliding mode control [12],
adaptive control [13], robust control [14], active disturbance
rejection control [15] and model predictive control [16].
In the ideal environment, the quadrotor shows excellent per-
formance in both agility and precision. However, when there
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are uncertainties in the environment, typical control methods
that rely on precise quadrotor models find it challenging to
achieve the control requirements. On the other side, most
control techniques do not consider the actuator’s saturation
limitations in the design process, which will degrade the
controller’s performance and lead to instability of the system
in extreme cases. Alternatives to the conventional control
techniques are available through intelligent controllers [17].
In recent years, thanks to the development of machine learn-
ing, the intelligent flight control system based on DRL devel-
oped by neural networks has become a trendy research field.

It has been proven that RL algorithms can achieve success
in situations close to the complexity of the real world [18].
Deep research has been carried out on the policy learning
for autonomous control of quadrotors. In [19], RL achieves
stable quadrotor control by training a neural network policy in
a model-free manner. Combined with low-resolution images,
a control policy trained with RL in [20] was used to achieve
autonomous landing of an aircraft for the first time. The RL
controller designed in [21] has successfully completed the
tasks of hovering and trajectory tracking for a real quadro-
tor. Remarkably, more advanced RL algorithms such as soft
actor-critic (SAC) [22], twin delayed deep deterministic pol-
icy gradient (TD3) [23] and proximal policy optimization
(PPO) [24] are gradually being used in the control system
of the quadrotor. An actor-critic neural-network-based con-
troller was presented in [25] to improve the quadrotor tra-
jectory tracking performance. In [26], MAV has successfully
completed autonomous navigation under a gust environment
using the SAC algorithm as a DRL framework. Sequential
deep q-network (SDQN) was first used as an end-to-end
learning paradigm to train control policies for autonomous
landing of UAVs in [27]. Advanced tasks of UAVs in actual
flight are completed in [28] by the control policy of the deep
deterministic policy gradient (DDPG) algorithm. In [29], the
state-of-the-art DRL algorithm PPO was used to explore the
control policy of the quadrotor position loop while main-
taining good sampling efficiency. Moreover, the method of
integrating classical controllers with RL policies has been
shown to have higher learning efficiency [30]. An MPC-
guided RL policy search algorithm is studied in [31] for
learning quadrotor autonomous flight. In order to improve the
tracking accuracy and robustness, a method that introduces an
integral compensator in the actor-critic neural network was
investigated in [32]. In [33], the PPO algorithmwas suggested
to correct the parameters of the quadrotor PID controller,
which significantly reduced the training time and ensured the
high stability of the quadrotor.

Among the advanced RL algorithms off the shelf, PPO has
been evaluated as one of the most suitable algorithms for
synthesizing high-precision attitude flight controllers [34].
However, due to its structural factors, problems such as van-
ishing gradients of clipping samples can also lead to inef-
ficient learning of agents in high action-dimensional tasks.
Some variant algorithms based on PPO have been proposed
to solve the zero gradient problem. In [35], a two-phase policy

gradient algorithm (PPG) that advances training and distills
features is proposed to optimize the value function using
a higher-level sample reuse method, which solves gradient
vanishing and improves sample efficiency. A PPO algorithm
based on relative Pearson (RPE) divergence is proposed
in [36], through which an explicit minimization target can be
yielded, and the latest policy is restricted to the baseline pol-
icy. Although the improvement of the algorithm can improve
the training efficiency in the benchmark, the application of
the PPO needs to be further studied for the specific quadrotor
control system.

In this paper, the original PPO algorithm is improved for
training the quadrotor attitude controller to achieve higher
precision control in a shorter time. The algorithm is altered
in two ways: algorithm structure and combination of classical
control theory. The results of the original PPO algorithm are
used as a benchmark to demonstrate the advantages of the
new algorithm. The main contributions of this paper are listed
as follows:

1) By estimating the advantage value of dimension impor-
tance sampling (IS) weight clipping, a new proxy target with
a mechanism of clipping the IS weight of each action dimen-
sion separately is proposed to improve sample efficiency and
achieve stable training for quadrotor attitude control.

2) A stability augmentation controller is introduced into
the RL gain to speed up the process of training the quadrotor
control policy and significantly improve the motion control
accuracy of the quadrotor.

The remainder of this paper is organized as follows.
Section II introduces the modeling of quadrotor and the basic
principle of PPO algorithm. In Section III, the disadvantages
of the PPO algorithm are analyzed. Then, the PPO algorithm
with dimension-wise clipping and the PPO algorithm com-
bined with stability augmentation controllers are introduced,
respectively. Section IV gives simulation details and results,
and our conclusions are summarized in Section V.

II. BACKGROUND
A. DYNAMIC MODEL OF QUADROTOR
The basic structure of the quadrotor is shown in Fig. 1. The
UAV control system is an under-actuated system with four
inputs and six outputs. The inertial coordinate system and the
body coordinate systemfixed on the quadrotor are established
to describe the attitude of the quadrotor. Fi(i = 1, 2, 3, 4) are
the thrusts generated by the four rotors and �i(i = 1, 2, 3, 4)
are the rotational speeds of the rotors. φ, θ andψ denote three
Euler angles of the quadrotor.

For rotational motion, applying Euler’s equation of rotation
to the quadrotor frame, the absolute derivative in dynamic
coordinates can be expressed as follows:

M = Iω̇ + ω × Iω = Mτ +Mc +Mf (1)

where I = diag(Ix , Iy, Iz) is the diagonal inertia matrix of
the quadrotor and ω = [φ̇, θ̇ , ψ̇]T is the angular velocity of
the three axes of the quadrotor.M is mainly composed of the
following parts: the control torqueMτ , the gyroscopic effect
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FIGURE 1. The structure model of the quadrotor.

torque Mc and the rotational dynamic resistance torque Mf .
The control torqueMτ can be obtained as

Mτ =
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where L is the distance from each rotor to the center of mass,
c is the proportional coefficient of reaction torque and thrust,
and b is the thrust factor. The gyroscopic effect from spinning
rotors can be written as Mc = [−Ipθ̇�d , Ipφ̇�d , 0]T , where
the disturbance effect from each rotor is �d = �1 − �2 +

�3 − �4 and Ip is the moment of inertia of each rotor.
The rotational resistance torque can be expressed as Mf =

[−dφ φ̇,−dθ θ̇ ,−dψ ψ̇]T , where dφ, dθ and dψ are the drag
coefficients.

Finally, the nonlinear dynamic rotation equation of the
quadrotor is as follows:
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Equation (3) should be discretized for RL implementation
to define a Markov Decision Process (MDP). In our work,
the state space is defined as st = {φ, θ, ψ, φ̇, θ̇ , ψ̇} which
includes the Euler angles and the angular velocity. The action
space is selected as at = {a1, a2, a3, a4}, where ai, i =
1, 2, 3, 4 is the throttle level of each rotor and can be obtained
by ai = �2

i /�
2
m. �m is maximum speed of each rotor. The

state transition function can be obtained as follows:

st+1 = f(st , at ) (4)

where f = [f1, f2, f3,f4, f5, f6,]T is the smooth nonlinear
function vector.

B. REINFORCEMENT LEARNING
From the basic principles of RL, it can be seen that RL has
some essential differences compared with supervised learn-
ing and unsupervised learning. The data samples are static
training sets with labels in traditional supervised learning.
However, RL is a continuous decision-making process. In the
training process of RL, the agent does not have any instruc-
tion information, and it updates its policy by getting reward
values through interaction with the environment. The agent
finally obtains the best policy through continuous trial and
error.

The basic block diagram of RL is shown in Fig. 2. It trains
an optimal policy through continuous trial-and-error interac-
tions between the agent and environment. Agent generally
consists of two parts, RL algorithm and policy, where the
policy is usually a function approximator with adjustable
parameters, such as neural network. When training begins,
the agent chooses an action at to act on the environment.
The entire environment model reaches a new state st , gen-
erating a reward value rt simultaneously. The RL algorithm
continuously updates policy parameters based on action at ,
state st , and reward rt . The agent and environment interact in
a continuous loop to generate data samples. The agent finds
the optimal control policy when the accumulated reward is
maximized during training.

FIGURE 2. Basic block diagram of RL algorithm.

Policy gradient (PG) with importance sampling (IS) is a
classic policy-based RL algorithm. The PG algorithm mainly
sets J (λ) as the performance function and maximizes J (λ)
by updating the policy. In each iteration, PG updates the new
policy πλ̃ by analyzing the current policy πλ from time step t:

Jλ(λ̃) =
∑

t

[
ρt (λ̃)Aπλ (st , at )

]
(5)

where ρt (λ̃) =
π
λ̃
(at |st )

πλ(at |st )
is the IS weight and Aπλ (st , at ) is the

advantage value.
The traditional PG algorithm is greatly affected by the

large IS weight, which directly leads to the unable final
learning effect or the long policy convergence time. PPO
algorithm proposes a new objective function to solve the
problem of selecting step size by storing multiple training
steps for mini-batch updating. Moreover, it has two other
characteristics. One is that it has been proven to have excel-
lent performance in solving continuous action problems with
networks. The other is that it adds importance sampling
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technology to update, so that PPO algorithm can achieve the
optimal balance in terms of algorithm complexity, accuracy
and implementation difficulty.

PPO uses the objective clipping function to bound the
policy update of the current policy to achieve stable learning.
Policy πλi generates the current sample batchBi = {(si,0, ai,0,
ri,0), . . . , (si,N−1, ai,N−1, ri,N−1)} with length N when the
iteration starts from the i-th time. Then according to multiple
mini-batches sampled in Bi, πλ completes the update. Due
to the difference between the policy πλi that generates Bi and
the target policyπλ of policy updating, PPO calibrates the sta-
tistical difference according to the IS weight ρt . In addition,
PPO reduces the IS weight in order to limit the amount of
policy updates to ensure the stability of learning. Therefore,
the objective function of PPO is given by the following:

ĴPPO(λ) =
1
M

M−1∑
t=0

min
(
ρt Ât , clip(ρt , 1− ε, 1+ ε)Ât

)
(6)

where Ât is the estimate of Aπλi (st , at ) and Bi randomly
sampledM samples in each mini-batch.
However, it is precisely because PPO clipping the over-

all likelihood ratio causes the gradient of the cutting sam-
ples to vanish completely. Therefore, in the task of high
action dimension, PPO also has the problem of low sam-
ple efficiency, which affects learning efficiency and tracking
accuracy in complex quadrotor systems. The improved PPO
algorithm presented in this work is an attempt to solve this
problem.

C. NETWORK STRUCTURE
The neural network used in PPO is based on the Actor-Critic
network structure. Due to the good generalization ability of
neural networks, the multilayer perceptron (MLP) structure
proposed in [19] is used. There may be a better network
configuration, but in fact the neural network is quite versatile.
Its configuration has been able to approximate a controller
for similar tasks. MLP is a fully connected feedforward
artificial neural network trained using supervised learning
with backpropagation. Its initial weight is a Gaussian random
number with mean 0 and standard deviation 1. The structure
of the actor-critic neural network is shown in Figure 3. For
the Actor network, the input layer is the quadrotor state st ,
and the output layer is the signal that controls the rotational
speed of the four rotors of the quadrotor. Each network has
two hidden layers, each with 64 nodes, which are neurons
with tanh activation functions. The critic neural network has
the same structure. The only difference is that its output is
an estimated value function that evaluates the advantage of
selecting a given action at in a given state st .

III. PROPOSED APPROACH
A. PPO WITH DIMENSION-WISE CLIPPING (PPO-DWC)
In (6), rt is a function of the optimization policy variable λ,
Ât is fixed for the policy πλi that is generated from the given
action of the current sample batch Bi. Therefore, in general,

FIGURE 3. The structure model of the quadrotor.

the cost maximization for λ is to increase ρt when Ât > 0,
and decrease ρt when Ât < 0. PPO restricts the number
of policy updates by clipping the objective function. The
advantage is that this clippingmechanism can prevent ρt from
becoming too small or too large, especially for many complex
environments, a stable update range is more conducive to
faster and more efficient training. The disadvantage is that
when the dimension sample is too high, it is easy to cause a
zero gradient problem, resulting in local optimization. When
we simplify the clipped objective function:

Ĵt = min
(
ρt Ât , clip(ρt , 1− ε, 1+ ε)Ât

)
(7)

It can be seen that when Ât < 0 and ρt < 1−ε, Ĵt = (1−ε)Ât ,
and when Ât > 0 and ρt > 1+ε, Ĵt = (1+ε)Ât . In these two
cases, Ĵt is a constant and the gradient disappears. The prob-
lem of this kind of zero gradient is very severe [37], especially
in high-action dimension tasks. Because PPO directly clips
the loss function, the sample efficiency is strongly affected
by the zero-gradient samples created by PPO.

Gaussian distribution is often considered as a random pol-
icy for RL when performing action tasks:

at ∼ πλ (· |st ) = N
(
µ, σ 2I

)
(8)

where µ = (µ0, µ1,..., µD−1) is the mean vector, D is the
action dimension, σ is a standard deviation parameter, I is
the identity matrix and thus policy parameter λ = (µ, σ ).
When policy πλ is decomposed into policy dimensions,

πλ,d (· |st ) ∼ N
(
µd , σ

2I
)
. Assuming that at,d is the d-th

element of at , it can be drawn as follows:

πλ (at |st ) =
∏D−1

d=0
πλ,d

(
at,d |st

)
(9)

It can be seen thatπλ grows exponentially with the increase
ofD, which leads to an excessive weighting of IS. In response
to this problem, combining the advantages of the clipping
mechanism, the IS weights of each dimension will be clipped
separately, and the new IS weight function is proposed,
as shown in (10):

ρt =
πλ (at |st )
πλi (at |st )

=

D−1∏
d=0

πλ,d
(
at,d |st

)
πλi,d

(
at,d |st

) (10)
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In addition, an additional loss is proposed to prevent the
IS weight from being too far from (6). The IS weights are
constrained with a simple KL divergence:

JIS = DKL=
1
M

M−1∑
m=0

(
D−1∏
d=0

πλ,d
(
at,d |st

)
In
πλ,d

(
at,d |st

)
πλi,d

(
at,d |st

))
(11)

αIS is set as an adaptive weighting factor to constrain
divergence:{

if JIS < Jtarg/2, αIS = αIS/2
if JIS > Jtarg × 2, αIS = αIS × 2

(12)

Finally, the objective function is given as follows:

Ĵ (λ) =
1
M

M−1∑
t=0

[
D−1∏
d=0

min
(
ρt,d Ât , clip(ρt,d ,

1− ε, 1+ ε)) Ât

]
− αISJIS (13)

Dimension-Wise clipping successfully solves the zero gra-
dient problem of PPO. Proximal policy optimization with
dimension-wise clipping (PPO-DWC) improves the learn-
ing efficiency of the algorithm and effectively reduces the
disappearance of gradient. Algorithm 1 shows the complete
iterative process.

Algorithm 1 PPO-DWC
1. Input: max iterations L, epochs K
2. Initialize:

Initialize weights of policy networks λi (i =1,2,3,4)
and critic network
Initialize ISweighting factorsαIS = 1, learning rate ζ
Initialize replay buffer E
Load the quadrotor dynamic model

3. for iteration = 1 to L do
4. Randomly initialize states of quadrotor
5. Load the desired states
6. λi← λ

7. Sample trajectory Bi of size N from πλi
8. Store Bi in replay buffer E
9. Compute advantage estimations Ât by using all

off-policy trajectories Bi, . . . ,Bi−L+1 in E
10. for epoch = 1 to K do
11. for each gradient step do
12. Sample mini-batch sizeM from the sample

batches in E
13. Compute the objective function

_

J (λ)
14. Update λ← λ+ ζ∇λ

_

J (λ)
15. end for
16. end for
17. Update αIS as (8)
18. end for

B. PPO WITH PD STABILITY AUGMENTATION
CONTROLLER (PPO-PD)
RL is to find the correct policy for an unstable system through
constant trial and error. In the learning process, there are
many invalid data in the random actions generated, which is
not conducive to the rapid convergence of the agent to the
optimal policy. In many cases in actual engineering, an SAS
will be used to achieve the control requirementsmore quickly.
For example, for a balance bike, without the feedback of the
stability augmentation system, it is just a unicycle that is
difficult to control. After the stability augmentation system
is added, learning to ride a unicycle becomes much easier,
which is also available for machine learning. Inspired by this,
we can introduce the idea of SAS into the learning process
of RL.

Before the RL training control policies, we can design
a stability augmentation feedback controller to stabilize the
equilibrium point first. For a nonlinear system (4), the original
current action of RL is at . Assuming that the target point
is an unstable equilibrium point, our goal is to learn at to
make st tend to 0, which is also the basic idea of RL training
control policies. After integrating the stability augmentation
feedback, we define

at = k(st )+ a’t (14)

where k(st ) is the stability augmentation state feedback and
a’t is the action generated by RL. Substituting (14) into (4),
we obtain the new environment, including a stability augmen-
tation controller as

st+1 = f(st , k(st )+ a’t ) = f’(st , a’t ) (15)

Once the RL controller is trained for (15) to choose an action
a’t , we can obtain the action at of the original environment (4)
by using (14).

For the quadrotor UAV system, proportional differential
(PD) controllers are usually designed in the roll, pitch,
and yaw channels to ensure local stability of the atti-
tude [38]–[40]. In this work, we use the following PD control
as the stability augmentation feedback:

τφ,t = −kPφφ − kDφ φ̇
τθ,t = −kPθθ − kDθ θ̇
τψ,t = −kPψψ − kDψ ψ̇

(16)

where kPi and kDi(i = φ, θ, ψ) respectively represent the
proportional and differential coefficients of the roll, pitch and
yaw channel. Moreover, the total lift level of the quadrotor is
assumed to be T . Then it can be obtained:

k(st ) =
1
4


T + τψ,t − 2τθ,t
T − τψ,t − 2τφ,t
T + τψ,t + 2τθ,t
T − τψ,t + 2τφ,t

 (17)

It must be pointed out that the role of stability augmen-
tation feedback is to construct a local convergence region
for the original system. The goal of RL is to find a solution
that can reach the convergence region. Using the stability
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augmentation controller could avoid a large number of trial
and error in the training process, and improve the learning
efficiency.Moreover, it can be used in combination with other
RL algorithms.

On the other hand, compared with individual PD feedback,
the RL algorithm will enhance control performance to deal
with extreme conditions, such as state overshoot or actuator
saturation. Algorithm 2 describes the learning process of an
RL controller with stability augmentation.

Algorithm 2 PPO-PD
1. Input: max iterations L, epochs K , actors N , time

steps T
2. Initialize:

Initialize weights of policy networks λi(i =1,2,3,4)
and critic network
Load the quadrotor dynamic model

3. for iteration = 1 to L do
4. Randomly initialize states of quadrotor
5. Load the desired states
6. for actor = 1 to N do
7. for time step =1 to T do
8. Calculate the stability augmentation feedback

k(st ) with state st
9. Run policy λ to generate RL gains a′t

10. Record reward rt and the next state st+1
11. Store transition (st , at , rt , st+1) into replay buffer
12. Compute advantage estimations

_

At
13. end for
14. for epoch = 1 to K do
15. Optimize the loss target with mini-batch size

M ≤ NT
16. then compute the objective function

_

J (λ)
17. Update λ w.r.t

_

J (λ)
18. end for
19. end for

C. SYSTEM FRAMEWORK
In the learning process, the RL algorithm is required to sta-
bilize the attitude while the quadrotor can be released from
any attitude in the state space. Neural networks are used to
receive the state of the quadrotor, provide the throttle level of
each rotor, and seek the optimal policy in iterations.

1) PPO-DWC FRAMEWORK STRUCTURE
The network structure of the system is shown in Fig. 4.
Two neural networks are used in the training of PPO-DWC,
one is the critic neural network, and the other is the actor
neural network with parameter λ. Four policy sub-networks
with parameters λi (i = 1, 2, 3, 4) compose the actor neural
network. Their weights will be optimized during the training
phase.

During training, the current state of the quadrotor will
enter replay buffer E as a state vector [φ, θ, ψ, φ̇, θ̇ , ψ̇]T .

Since PPO adopts batch training, after the actor network
collects a batch of state vectors, its network parameters are
copied to the old actor network. In the next batch of training,
the four sub-networks continue to be trained and updated.
At the same time, the parameters of the old actor network
remain unchanged until copied by a new round of network
parameters. After the policy update, the output of the old
neural network will be dimensionally clipped to obtain πλ
and the IS weight function ρt as the input of the PPO-DWC
operation.

For the critic network, the advantage values as its output
will evaluate the quality of the measures taken to achieve
these states. After updating by minimizing its parameter,
the critic neural network also feeds the advantage value to
the operation side to complete the entire update process
of the actor network.

After updating the policy, the outputs of the four sub-
networks are µi and σi (i = 1, 2, 3, 4), which correspond
to the four sets of mean and standard deviation of Gaussian
distribution. A group of actions is randomly sampled from a
Gaussian distribution and normalized to ai (i = 1, 2, 3, 4).
ai becomes the input of the quadrotor, and the quadrotor
generates a new state.

2) PPO WITH STABILITY AUGMENTATION
FRAMEWORK STRUCTURE
The system structures of PPO-PD and PPO-DWC are fun-
damentally different. PPO-DWC mainly analyzes the algo-
rithm structure and clips the policy dimension to optimize
the convergence of the optimal function, while PPO-PD uses
the classical PPO algorithm and introduces a stability aug-
mentation controller in the state observation stage to coop-
erate with RL to complete policy optimization, which is a
synchronous process. The quadrotor will output the state to
the stabilization module and the RL module respectively, and
the input obtained is also the result of the combination of the
stability augmentation feedback and the RL gain. The system
framework is shown in Fig. 5.

For the attitude angle tracking task, our goal is to minimize
the cumulative tracking error. In order to evaluate the per-
formance of the quadrotor in terms of robustness, the reward
signal is as simple as possible. Therefore, the reward function
is given by:

r = −α ∗
√
φ2 + θ2 + ψ2 − β ∗ (φ̇2 + θ̇2 + ψ̇2) (18)

IV. SIMULATION AND RESULTS
In this section, the proposed improved PPO control policy is
applied to the quadrotor UAV. Table 1 lists the model param-
eters. In order to fly safely, physical constraints should be
imposed on the states of the quadrotor. The range of attitude
angular velocity is set to±258 ◦/s, which also meets the lim-
itation of the gyroscope sensor. The range of attitude angle is
set to±45◦.When the quadrotor’s attitude exceeds 45◦ during
training, it will be considered a bad training session, and the
training round will be terminated early. We use Python to
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FIGURE 4. PPO-DWC system network framework structure.

FIGURE 5. PPO-PD system network framework structure.

develop the training simulation environment of the quadrotor.
TensorFlow tools are utilized to build neural networks for
learning and training [41]. Its library calls are computed on
a laptop GPU (NVIDIA GeForce GTX 1650Ti). The simula-
tions do not involve parallel computing techniques.

A. PPO-DWC ABILITY TEST
The control policies learned by the original PPO algorithm
and the PPO-DWC algorithm are compared from offline
training efficiency and control performance.

1) OFFLINE TRAINING
After defining the actor-critic network structure, Table 2 gives
the training parameters of Algorithm 1 in the offline learning
phase.

The training task is that the quadrotor can adjust to the
desired attitude [0, 0, 0] in a randomly initialized state. Two
indicators are used: average value loss and average accumu-
lated rewards which are in a negative correlation to measure
the learning effect. When training the quadrotor, the error
should become smaller and smaller. In each step, the smaller
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TABLE 1. Training parameters.

TABLE 2. Parameters used in the simulator.

the error of the quadrotor attitude is, the larger the reward
value is. A larger and more stable accumulated reward fully
reflects a more accurate and faster control policy. In this
study, we calculate the average value of each 50 groups of
data, and evaluate the value loss and accumulated reward.
PPO-DWC and the original PPO algorithm are used to
train on the same network structure and training parameters,
respectively. The comparison results are shown in Fig. 6.
The training phase has a total of 6000 iterations. The total
time cost of the computation of the two algorithms is almost
the same because they are trained under the same network
structure and training parameters, which takes 1932.4 s. It can

FIGURE 6. Average value loss in the evaluation of policies learned by
PPO-DWC and PPO.

be seen that PPO-DWC makes the value loss converge faster
during training, which is due to its strong sampling efficiency.
At the same time, ten independent simulations are carried
out for the two algorithms. The shadow part in the figure
represents the standard deviation of the ten simulation results.
Obviously, the errors of the two algorithms are convergent.
After a certain round of training, the original PPO algorithm
still has errors, while the error of the PPO-DWC algorithm is
smaller, and the convergence is faster.

The average accumulated reward is shown in Fig. 7, which
means that PPO-DWC has a higher convergence speed and
higher reward. The PPO-DWC training progress stabilizes
after about 500 training steps, taking only 152.6 s. While
the original PPO algorithm converges after about 1500 steps,
which takes 482.4 s. It can also be seen from the standard
deviation that the PPO-DWC algorithm is consistent in the
simulation.

FIGURE 7. Average accumulated reward in the evaluation of policies
learned by PPO-DWC and PPO.

After 6000 training iterations, we test the control policies
learned through the PPO-DWC and original PPO algorithms
in the environment of quadrotor rotational motion. The initial
attitude of the quadrotor is [−30, −20, −10] ◦, which is set
within the safe range. The attitude angles of the quadrotors are
recorded for 10 seconds. Fig. 8 shows the results of the two
algorithms. It is noticeable that both algorithms can obtain
convergent policies in the quadrotor attitude control task.
PPO-DWC has higher accuracy.

In order to highlight the advantages of PPO-DWC,
we compare the mean average error (MAE) of the attitude
angles provided by the two algorithms. As shown in Fig.9, the
control performance of PPO-DWC is better than the original
PPO algorithm.

2) ROBUSTNESS TEST
In the offline learning phase, a stable robust control policy
has been trained. In order to test its generalization ability, two
different robustness tests are implemented. A traditional PID
controller will also be added tomake a comparison. Similar to
PPO, PID also controls the target by trial and error. According
to the error between the actual output of the quadrotor state
and the desired command, the output is repeatedly adjusted to
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FIGURE 8. Attitude curves of control policies learned by PPO-DWC and
PPO.

FIGURE 9. Mean average errors at the steady state of quadrotor using the
control policies learned by PPO-DWC and PPO.

achieve the given desired value. Moreover, many other con-
trol algorithms are based on precise model dynamics, which
is incomparable to the model-free PPO learning algorithm.
Case I: Model generalization test of different sizes. In this

case, we change the distance from the rotor to the center of
mass (the radius of the quadrotor) to test the generalization
ability of the control policy. Assuming the initial flight atti-
tude of the quadrotor is [−15, −10, −10] ◦ and the desired
attitude is [0, 0, 0] ◦. The attitude changes of the quadrotor
are observed during 10 seconds of flight through three control
policies as PID, original PPO and PPO-DWC. In addition, the
sum of the absolute error of three attitude angles is introduced
to demonstrate the dynamic performance of the three control
policies. A smaller sum of error means a faster control policy
and higher accuracy.

We assume that the radius of the quadrotor model in the
offline learning phase is 0.31m as the standard radius. In the
robustness test, the mass of the quadrotor model remains
unchanged. We change the radius range from 0.1m (65%
smaller) to 1.2m (300% larger). A total of 12 simulations
are carried out. The change of the attitude angle under the
three control policies is shown in Fig. 10. When the radius
is in 0.31m∼0.6m, the three control policies can make the

quadrotor reach the steady state very well. However, when the
radius gradually increases, the PID controller becomes unsta-
ble. Compared with the previous steady state, the quadrotor
based on the PID controller begins to oscillate violently, and
the error between the real attitude and the desired attitude
becomes larger. The result also suggests that the quadrotor
model performs more consistently under the RL control poli-
cies. The control performance is better than the PID control,
which fully reflects the good generalization ability of RL.
The result presented by the PPO-DWC policy and the original
PPO policy indicates that the steady-state error of PPO-DWC
is significantly smaller than that of the original PPO under
the same number of training steps. The model controlled by
PPO-DWC policy can be quickly and accurately stabilized,
demonstrating its high efficiency in learning control tasks
in complex environments. Its improvement over the baseline
PPO is quite apparent.

It can also be verified in Fig. 11 that in the test model set,
the control policy learned in the PPO-DWC algorithm has
the slightest influence on the response of attitude tracking.
With the increase of radius, the control performance of RL
and PID controller degrade, but the decrease of PID control
performance is more prominent. The steady-state error of
PPO-DWC is the smallest. Moreover, it can be found that the
control policy has better performance in a small quadrotor.
The rapidness of the aircraft is benefited from the slight aero-
dynamic drag and moment of inertia of the smaller quadrotor.
Case II: Model generalization test under random ini-

tial state. Simulations under different initial states of the
quadrotor are conducted to observe the control efficiency of
the PPO-DWC algorithm. The control task is to adjust the
quadrotor from a random initial attitude within a safe range
to a desired steady state [0, 0, 0]◦. A total of 20 simulations
are carried out. We observe and record the attitude changes
of the quadrotor in the 10 seconds of flight. The results are
shown in Fig. 12. It can be seen that when the quadrotor
starts to operate from different initial attitudes, the PPO-DWC
control strategy can effectively make the quadrotor reach a
stable state with a small steady-state error. This demonstrates
the good performance of the PPO-DWC offline policy.

B. PPO-PD CONTROLLER ABILITY TEST
In this test, the same quadrotor model and neural network
parameters are used as in Subsection A to observe the perfor-
mance of the PPO algorithm with the PD stability augmenta-
tion controller from the two aspects of learning efficiency and
control performance.

1) OFFLINE TRAINING
Before the RL control policy training, three groups of PD
parameters as the stability augmentation controller of the
system are set, which are shown in Table 3. In order to observe
the effect of the PD stability augmentation controller in the
RL training stage, the three groups of parameters given are
also representative.
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FIGURE 10. Testing results of case I. Comparison of the control performance with PID controller, PPO algorithm and PPO-DWC algorithm on
quadrotor models in different sizes.

FIGURE 11. Testing results of case I. Sum of error in different sizes with
the PPO-DWC algorithm, PPO algorithm and PID controller.

In the first group of PD parameters, KDi (i = 1, 2,
3) = 0, the stability augmentation controller is only propor-
tional control. Without RL gain, the system is in an unstable

FIGURE 12. Testing results of case II. PPO-DWC control performance test
in 20 different initial states.

state. On this basis, the proportional feedback can speed up
the adjustment process, quickly respond to the command,
and reduce the steady-state error. The introduction of the KD
parameter in the second group of parameters improves the sta-
bility of the system, accelerates the dynamic response speed
of the system, and reduces the adjustment time. At the same
time it reduces the overshoot and overcomes the oscillation,
thereby improving the dynamic performance of the system.
The third group of parameters is based on the second group
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TABLE 3. PD controller parameters.

of parameters, which is to modify KD parameters according
to the control effect of the quadrotor system. The system can
be stabilized without RL gain, and it is also a relatively good
group of the three data groups.

In this subsection, the average loss and average accumu-
lated reward are also used as the standard to measure the
learning effect. The larger the reward value, the smaller the
error between the attitude and the desired state at each step.
We also calculate the average value of each 50 groups of data
as a set of samples to compare the learning algorithm’s value
loss and accumulated reward after introducing the stability
augmentation controller. The final comparison of the average
value loss is shown in Fig. 13. Overall, the value loss of
PPO with PD stability augmentation controller is minimal
at the beginning of training and finally tends to be stable.
It indicates that stability augmentation feedback is beneficial
for the training efficiency of RL. By comparing the final
convergence states of the four algorithms, it can be seen that
the PPO algorithm with PD parameter III has the least value
loss. It also shows that when adjusting the PD parameter,
the more stable the PD parameter of the system is, the more
beneficial the RL is to learn the desired control policy.

FIGURE 13. Average value loss in the evaluation of policies learned by
PPO and PPO-PD.

The average accumulated reward is shown in Fig. 14,
which is negatively correlated with the value loss. It is worth
noting that the PPO algorithm with stability augmentation
controller all converges the policy in about 350 steps, which
takes about 105s, less than the time of the original PPO algo-
rithm. The average accumulated reward of PPO-PD (Param-
eter I) under the final convergence is similar to the original

FIGURE 14. Average accumulated reward in the evaluation of policies
learned by PPO and PPO-PD.

PPO algorithm. This is because the quadrotor itself is still
unstable under proportional control. Ultimately the quadrotor
reaches equilibrium mainly depending on the effect of RL
gain. However, due to the role of proportional adjustment in
the initial training, the system avoids a large number of ran-
dom trials and errors, so the error of the initial accumulated
reward is far less than that of the original PPO algorithm.
PPO-PD with parameter II can obtain a higher reward value
after adding the KD parameter, which is better than the PPO
algorithm and PPO-PDwith Parameter I algorithm. As shown
in the PPO-PD result with Parameter III, the more stable the
PD parametermakes the system, themore reward it gets under
RL gain.

2) STABILITY TEST
Using the three groups of parameters listed in Table 3, the
four RL algorithms have generated the control policies of
the quadrotor in the offline training phase. In order to carry
out the stability test, we set the initial flight attitude of the
quadrotor as [−30, −30, −30] ◦, which is relatively difficult
to reach the desired attitude. The desired attitude is still
[0, 0, 0] ◦. The model parameters of the quadrotor are shown
in Table 1. The attitude changes of the quadrotor are observed
under the same model flying for 8 seconds. The comparison
results of attitude changes under the four control policies are
shown in Fig. 15.

When using the first group of PD parameters, since
KDi (i = 1, 2, 3) = 0, the stability augmentation con-
troller is only proportional control. It can be observed that
without RL gain, the proportional control cannot make the
quadrotor stable. After introducing RL gain, the quadrotor
can be stabilized under Parameter I. Because the proportional
adjustment accelerates the response speed of the system,
the quadrotor can reach the desired attitude more quickly.
Therefore, its control performance is obviously better than
the original PPO control policy. The differentiation element is
introduced when the second group of PD parameters is used.
The PD stabilization controller can only make the roll and
pitch angles reach the desired state. The yaw angle cannot
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FIGURE 15. Results of stability test. Comparison of the control performance with PD controller, PPO algorithm and PPO-PD algorithm on the same
quadrotor models.

reach the desired attitude and slightly oscillates. After the
RL gain is added, it suggests that the quadrotor can reach
the desired attitude faster than the original PPO algorithm,
and the correction amplitude during flight is significantly
reduced. This is due to the differentiation control increas-
ing the damping of the system and improving the system’s
stability.

According to the flight results of the quadrotor under the
second group of PD parameters, we slightly adjust the param-
eters, and thus obtain the third group of PD parameters. The
quadrotor can achieve a steady state without RL gain through
the stability augmentation controller under this parameter.
The control policy trained by PPOwith this stability augmen-
tation controller can converge to the equilibrium point faster,
and the error will be smaller.

In order to intuitively compare the importance of PD
parameter change for PPO control policy, we compare the
MAE between the attitude angle and the desired attitude
provided by PPO-PD algorithms with three different param-
eters. As shown in Fig. 16, the more stable the PD con-
trol can achieve, the better performance the PPO-PD can
obtain.

FIGURE 16. Angle errors at the steady state of quadrotor using the
control policies learned by PPO and PPO-PD.

Since the parameter selection of PD control is very tedious
work, it is difficult to make the system reach a steady state in
a complex environment. After introducing RL gain, not only
can the system be stabilized expediently, but also the control
accuracy and learning efficiency are superior to ordinary RL.
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FIGURE 17. Average value loss in the evaluation of policies learned by
PPO-DWC-PD, PPO-PD and PPO-DWC.

FIGURE 18. Average accumulated reward in the evaluation of policies
learned by PPO-DWC-PD, PPO-PD and PPO-DWC.

C. PERFORMANCE COMPARISON OF PPO-DWC, PPO-PD,
AND PPO-DWC-PD
PPO-DWC and PPO-PD improve the PPO from two dif-
ferent levels. PPO-DWC aims to change the structure of
the algorithm to solve the problem of vanishing gradients.
The sample exploration of PPO is extended to converge to the
desired policy quickly while PPO-PD introduces a stability

augmentation controller outside the RL policy. An accu-
rate PD parameter can speed up the training time, thereby
affecting the convergence of the policy. In this subsection,
we combine the two algorithms. The stability augmentation
controller uses Parameter III in Table 3. The DWC-based
PPO with stability augmentation controller (PPO-DWC-PD)
is brought into the same network parameters and quadrotor
model parameters for training. We compare the results with
PPO-DWC and PPO-PD.

1) OFFLINE TRAINING
The result comparison of the average value loss of the algo-
rithms is shown in Figure 17. In general, PPO-DWC-PD has
the most remarkable ability of quick response and the highest
learning efficiency. It combines the advantages of the other
two algorithms. It has both the ability of PPO-PD to converge
quickly, and the ability of PPO-DWC to obtain smaller value
loss under efficient exploration.

Figure 18 shows the average accumulated reward of the
three algorithms, demonstrating that the learning efficiency of
PPO-DWC-PD is higher than that of PPO-PD. By observing
the convergence of the three algorithms, it can be concluded
that PPO-DWC-PD is the fastest algorithm to obtain the
maximum reward value. PPO-DWC gets the most reward
because the weight of RL gain in the system has changed after
the introduction of the PD controller.

2) STABILITY TEST
To further observe the control performance of PPO-DWC-
PD, a worst case is selected to increase the complexity of the
task. Assuming that the distance from the quadrotor rotor to
the center ofmass L is 1.5. The initial attitude of the quadrotor
is [−40◦,−40◦,−40◦], and the desired attitude is [0◦, 0◦, 0◦].
The final comparison result is shown in Figure 19.

The quadrotor under the PPO-PD control policy still
oscillates slightly in the steady state because the change
of the model parameters greatly influences the stability
augmentation controller. The PPO-DWC control policy has
good robustness and produces a relatively slight steady-state

FIGURE 19. Comparison of the control performance with PPO-DWC-PD algorithm, PPO-PD algorithm and PPO-DWC algorithm on the same quadrotor
models.
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deviation. In contrast, the control performance of the PPO-
DWC-PD policy is the fastest to converge to the steady state
among the three policies, and the most stable when reaching
the steady state.

V. CONCLUSION
In this paper, an improved PPO algorithm based on PPO-
DWC and PPO-PD is proposed to solve the continuous
motion control of the quadrotor. This is a learning-based con-
trol policy, which significantly improves the flight accuracy
and reduces the steady-state error of the quadrotor attitude
control. The PPO algorithm is improved in two directions.
One is to optimize the algorithm structure of the PPO. For
the problem of the disappearance of the sample gradient in
the PPO algorithm, the dimension clipping method is used
to calculate the policy function, which successfully improves
the sample efficiency and the convergence of the quadrotor
control policy is faster. Second, a stability augmentation con-
troller is introduced to avoid blind exploration of the quadro-
tor in the initial stage. The PPO output is used as a gain term to
enhance the stability of the quadrotor. The simulation results
show that the control policy has good robustness and the
performance of the new algorithm is better than original PPO
and PID controller. In future work, wewill focus on analyzing
and processing the old sample batches in the PPO algorithm
to enhance learning efficiency, and combine the compound
reward function signal to reduce the observed steady-state
error. Moreover, a more complex nonlinear stability augmen-
tation feedback will also be considered.
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