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ABSTRACT In this study, an efficient model of the channel matrix is developed for a 2 × 2 wireless body
area network multiple input output (WBAN-MIMO) system based on deep learning algorithms. The model
is composed of three deep-learning algorithms. Moreover, the model simultaneously predicts channel matrix
H in an underground mine and identifies the position of the collected data in both line-of-sight (LoS) and
non-line-of-sight (NLoS) scenarios. The model was trained and evaluated using the magnitude and phase of
the collected data in an underground mine environment within a frequency range of 2.3 GHz – 2.5 GHz.
These measurements, conducted with different antenna configurations in the LoS and NLoS scenarios,
constitute an input to the model. The latest predicts the channel matrix H with position and identifies
whether the channel is a LoS or NLoS. Finally, the path loss and channel impulse response models were
compared with measurement-based models. The modeled channel prediction exhibited a lower root mean
square error (RMSE) for channel prediction and high classification accuracy for LoS-NLoS and position
identification, respectively. The numerical results reveal that deep learning WBAN-MIMO modeling offers
a powerful solution for future wireless systems in underground mine environments.

INDEX TERMS Channel models, capacity, deep learning, impulse response, multipath channel, MIMO
channel, LSTM, path loss, WBAN.

I. INTRODUCTION
Multiple-input multiple-output (MIMO) technology pro-
vides numerous advantages over a single-input single-output
(SISO) system. These advantages have helped increase the
Internet of Things (IoT) technologies owing to the increased
bit rate for MIMO [1]. The main known advantages of
IoT are the monitoring of data, control, automation, and
safety in many areas, whether in military or civil areas [2],
[3]. In this work, the focus is on civil areas, explicitly in
underground mine environments. Therefore, to improve the
miners’ safety and wireless communications systems, sev-
eral studies demonstrated a great interest in Wireless Body
Area network (WBAN) using MIMO systems [1], [4]–[6].
It was shown that owing to the variation in the human
body geometry, different trajectories of signals with similar
lengths significantly affect the propagation mechanism [4].
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Moreover, theoretical and experimental studies have con-
firmed that MIMO technology offers better efficiency for
wireless systems and increases the channel capacity of
WBAN [4], [7]–[10]. Even though studies have published
good channel modeling and characterization results, they
remain insufficient in terms of accuracy. In fact. statistical and
empirical models [8], [11]–[14] are cite-specific and have not
been proven for general underground applications. Through
the process of model validation, extensive data were collected
from the experimental measurements. The experimental pro-
cedures had undergone Line of the Sight (LoS) or non-LoS
(NLoS) scenarios, using different antenna combinations and
configurations. Hence, one can conclude that the Deep Learn-
ing (DL) algorithms, adapted to learn the patterns within big
data collections [15] can be used to model the channel prop-
agation within any antenna combination and configuration.
DL algorithms have been applied in the past few years to out-
date traditional models and provide new solutions to localiza-
tion [16] and channel prediction accuracy [17]. Luo et al. [17]
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FIGURE 1. The framework diagram to illustrate the main input and
outputs of the proposed stacked model.

introduced a DLmodel based on Long Short TermwithMem-
ory (LSTM) networks to predict a Single Input Single out-
put (SISO) channel. Ding et al. [18] used a complex-valued
neural network to forecast frequency-domain channel char-
acteristics. Jiang et al. [19] provided a novel MIMO channel
predictor built on a deep recurrent neural network (RNN) that
incorporates LSTMs or gated recurrent unit (GRUs) memory
cells. Convolutional neural networks combined with recur-
rent neural network design (CNN-RNN) to predict CSI have
been proposed in [20]–[22]. Arnold et al. [23] investigated
the feasibility of DL algorithms for MIMO configurations
based on orthogonal Frequency Division Multiplex (OFDM).
Dense layers were used with two-step training strategies to
predict the NLOS position. However, these techniques are
considered efficient tools for applying the DL algorithm to
CSI prediction and LOS-NLOS detection. This requires high
computational complexity, especially in harsh environments,
and data processing is still ambiguous, which is crucial for DL
algorithms. Therefore, a new efficient technique is needed,
especially for theWBAN–MIMO channel, which is essential
for improving miners’ safety. The DL model can help new
cloud IoT technologies provide a solution to miners’ safety
and machinery control. The solution model must provide
crucial information, such as whether the channel is in the
LoS or NLoS, where the receiver is located away from the
transmitter and channel prediction. In this study, a novel
scheme was proposed to predict the WBAN-MIMO chan-
nel in underground mine environments considering different
antenna polarizations.

To the best of the authors’ knowledge, no modeling tech-
nique has been developed to model the WBAN-MIMO chan-
nel in an underground mine environment. The novelty of this
study can be summarized as follows.

• First, a stacked model (SM) is proposed to predict the
MIMO channel matrix H for LoS and NLoS scenarios.

• Second, the SM modeling framework was designed
based on three parallel DL-LSTM networks.

The framework was introduced to simultaneously esti-
mate classification and regression, as illustrated in
Figure 1.

• The SM model simultaneously predicts the channel
matrices ofMag(H) and Phase(H), classifies the position
of the collected data, and identifies whether these data
are in LoS or NLoS scenarios.

Several measurement campaigns were conducted to support
the proposed modelling technique. These data were also
explored in [4] (by our group), where they proposed a new
solution for future Body to Body (B2B) applications using
both circularly and linearly polarized antennas. In terms of
path loss (PL), RMS delay spread, and channel capacity, the
circularly polarized setup outperformed the other topologies.
Owing to the large increase in PL, theNLOS scenario resulted
in a severe reduction in the channel capacity.

II. STACKED MODEL PREDICTION SCHEME
As mentioned previously, DL modelling is based on a large
number of experimental measurements. Therefore, design-
ing a scheme for channel prediction is crucial. Hence,
several stacked modelling techniques have been suggested
in the literature for univariate and multivariate forecast-
ing. Seongchan Kim et al. [24] used the ConvLSTM stacked
model to forecast rainfall using radar channel data. This
technique was more effective than the use of fully con-
nected LSTM networks. An et al. [25] introduced a hybrid
model that combines a CNN with a stacked LSTM net-
work. Le Sun et al. [26] used a stacked LSTM network to
detect the atrial using electrocardiography (ECG) data. This
technique achieved high prediction accuracy using stacked
modeling. Additionally, regarding stock market forecast-
ing, Althelaya et al. [27] proposed a stacked model based
on LSTM and GRU. As a result, the stacked LSTM
model achieved a higher performance than the baseline
and GRU-based models. In this paper, a stacked model-
ing technique for a WBAN-MIMO prediction scheme was
presented and compared to the model published in [28].
The model (which is based on LSTM network) is used to
predict the SISO channel in different environments with
low prediction errors of less than 2% Mean Square Error
(MSE). First, a channel prediction framework was intro-
duced and expressed as a regression problem [29]. Then,
the position and LoS-NLoS classification [29] schemes are
presented. As illustrated in Figure 2, the proposed predic-
tion scheme was constructed using different modules. First,
the data-processing module was used to prepare the data
for the training and validation processes. The SM model
simultaneously predicts each sub-channel of the matrix H at
each measured position using the magnitude (Mag(H)) and
phase (Phase(H)) of the same input as the channel predic-
tion scheme, position, and LoS-NLoS classifiers. Therefore,
categorical and binary classifications were considered for the
position and LoS-NLoS scenarios, respectively.
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FIGURE 2. The modules used in the framework for SM modeling technique.

Then, training and validation modules were developed to
ensure the efficiency of the model prediction by monitoring
the learning curves (LCs) for channel prediction and classifi-
cation. LCs allow the optimization of the internal parameters
of the three DL stacked networks. Finally, the test and eval-
uation modules were established using test data when it (the
module) had no prior information. The SM is validated exper-
imentally with data collected in 2× 2 2–2 MIMO system
with a frequency band of 2.3 GHz - 2.5 GHz [4]. In MIMO
systems, a mt × nt transfer channel matrix H is created,
which represents the complex subchannel gains from the mt
transmitting to the nt receiving antennas [5]. The channel
matrix H for a 2 × 2 MIMO system is expressed as [1], [5]

H =
[
H11 H12
H21 H22

]
. (1)

where Hij represents the complex subchannel gain from the
ith transmitting antenna to the jth receiving antenna.

A. MEASUREMENT PROCEDURE
The measurement procedure was carried out in a real gold
mine (located in Val d’Or city in northern Quebec) within a
gallery 90 m underground with a width and height of 4 m and
2.45 m, respectively (Figure 3 [4]). The underground mine
environment is characterized by rough, random surfaces, and
non-uniform gallery dimensions. The measurements were
performed in a B2B configuration, as reported in [4]. Two
antenna configurations were considered: co-positioned (CP)
and 90 ◦ rotated antenna (90 deg) systems.

The measurement system setup consisted of a vector net-
work analyzer (VNA), power amplifier, and low-noise ampli-
fier connected to the transmitter (Tx) and receiver (Rx).

TABLE 1. Measurements scenario.

TABLE 2. Measurement system configuration.

The VNA was used to measure the magnitude and phase
of the channel frequency response in the desired frequency
range. During the measurements, the propagation channel
was considered stationary for both scenarios. The Tx was
placed at a fixed position (at the chest of a volunteer student),
and the Rx (located at the chest of another volunteer student)
was changed up to 10m away from the Tx, as shown in
Figure 4. The positions of the different measurements and
antenna configurations are listed in Table 1 for the LoS and
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FIGURE 3. Measurement procedures within underground mine
environment.

FIGURE 4. Experimental scenarios: (a) Los, (b) NLoS.

NLoS scenarios. The measurement parameters are listed in
Table 2.

B. DATA PROCESSING
Data processing is illustrated in Figure.5. Following the
experimental scenarios, the channel matrix magnitude and
phase measurements were performed for up to 10 different
positions. At each position, ten snapshots with 2049 samples
were measured from 2.3 GHz to 2.5 GHz within sweep time
of 60s. In fact, the nature of the time series data of the
obtained measurements is useful for the design of the stacked
model, as explained in [28]. Hence, these measurements
are sequences that have been concatenated horizontally to

provide a dataset for the training and validation processes.

D = concat
(
HMag
ij ,HPhase

ij

)
. (2)

where i ∈ (1, 2) ; j∈ (1, 2) represent the transmitted and
received links, respectively. The framework uses dataset D
as a multivariate (multiple-variable) magnitude and phase
dataset. Subsequently, to predict the four matrix subchannels
at each position, the sequences were divided into input and
output samples. To achieve a model with high accuracy in
terms of classification and regression, the concept of a sliding
window is adopted [30] to convert the problem into a super-
vised learning problem (SLP). Thus, this method resolves
the problem of subchannel predictions. Specifically, regres-
sion and classification problems were simultaneously used
in the stacked model. The input model is dataset X , while
the output (yc) is only used for channel prediction in the
case of regression problems. As a result, three-dimensional
(3-D) data shapes are created and organized according to
the number of samples, features, and variables, as shown in
Figure 5 as [None, 1,8]. It is worth mentioning that the state-
ment in Figure 5 indicates that the number of raw materials
can be changed during the training and validation processes.
Different outputs are used for the classification problems.
A binary output for LoS-NLoS (yLoS−NLoS ) detection was
created, and a categorical output (yposition) with a matrix of
ten features was created. However, all target outputs were
3-dimensional size. The input shape is shown in Figure 5,
it can be noticed that eight parameters must be considered
in the prediction along with two variables (magnitudes and
phases) for each sub-channel matrix. In fact, it is complicated
to use the three-stacked model to converge and achieve a
high prediction accuracy in both regression and classification.
As used in [28], the Z-core normalization [31] standard must
be applied to shed the values between the magnitude and the
phase without losing the relevant information of the model.

The Z-score normalization is described as follows [31]:

NX =
X − µX
σX

, (3)

Nyc =
yc − µyc
σyc

. (4)

where µ, σ are the mean and standard deviations, respec-
tively. Moreover, the input data are transformed into small
batch size sequences [28] to facilitate the learning process and
avoid gradient descent problems [32], [33].

III. TRAIN AND VALIDATION MECHANISM
The diagram in Figure 6 shows the high-level process of the
proposed model. The stacked model was trained in the col-
lected channel matrix H. Subsequently, the model was evalu-
ated to test its capability to classify the position, LoS-NLoS
identification, and channel prediction. Finally, using the pre-
diction channel H, the channel characterization and model-
ing were compared with the model results of the published
studies [4].
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FIGURE 5. Data processing module.

FIGURE 6. Proposed stack model diagram for channel prediction and
classification.

After the data processing scheme, 1/3 and 2/3 of the nor-
malized datasets were split into the validation and training
datasets, respectively. The target datasets were different for
classification and regression problems. The target outputs
for the regression and classification are shown in Figure 8.
For regression, the output Nyc is used, where the impaired
blue column (from 1 to 7) is the magnitude column and the
pair yellow column (from 2 to 8) are the phase columns.
On the other hand, for categorical classification, the position
classification matrix output (yposition) is used, where up to
ten positions are transformed to create a binary column for
each category. Finally, the binary output (yLos/NLoS ) is used
for LoS-NLoS detection, where the true green value (one) is
for the LoS scenario and the false red value (zero) is for NLoS.

Prior to the SM model outputs, different losses were
considered depending on the type of prediction problem,
as shown in Figure 7.

For binary classification, binary cross-entropy loss (BCE)
[34] is assigned, where it is compared to each of the predicted
probabilities to the actual class output (LoS [one] or NLoS
[zero]) [34], [35]. Before using BCE, a sigmoid function is
applied independently to each element xi of vector x in the
last layer to squash the vector data range between 0 and 1.
This is described as follows [36], [37]:

f (xi) =
1

1+ exi
. (5)

FIGURE 7. Activation functions and it losses metrics used in the SM.

Furthermore, distinct losses were evaluated in the multiclass
classification of the position classifier. Categorical cross-
entropy loss (CCE) [34] is chosen for this case, which has
the same performance as BCE in the case of binary clas-
sification. However, a Softmax activation function is con-
sidered to calculate the probability of each target class’s
overall potential target classes. The probabilities obtained are
useful in defining the target class for the inputs [38], [39].
The output probability range is the key benefit of adopting
softmax. The probability range is from 0 to 1, and the total
of all probabilities is one. When the Softmax function is
used in a multi-classification model, the probability of each
class is returned, with the target class having the highest one
(probability) [54]–[57].

Therefore, the SM model uses SoftMax for position clas-
sification [36]–[39]:

fs (xi) =
exi∑k
j e

xj
. (6)

Once the input and target output data are settled, the
training and validation processes are monitored by the
learning curve (LC) [40]. Moreover, different problems
with different approaches for quantifying LC are used.
Figures 9, 10, and 11 show the BCE in terms of loss and
accuracy for LoS-NLoS, and the MSE error in terms of per-
centage was used for channel prediction loss. Then, the CCE
is calculated in terms of the loss and accuracy for position
classification. Because the data are collected mostly in LoS
scenarios (more than NLoS data), the SM model has diffi-
culties learning in a proper manner. Specifically, the training
process begins to be adjusted for the NLoS (more LoS data in
the input). However, the data processing module assisted the
model in adapting and predict appropriately the NLoS data,
as shown in the Figure 8 high classification accuracy (up to
100%), as well as smaller BCE losses, were achieved by the
stacked model for LoS-NLoS detection. A good agreement
between the training and validation was obtained.

For the channel prediction in Figure 9, the MSE in terms
of percentage was lower with respect to the training epochs.
Moreover, the training loss decreased and started to settle in at
approximately 300 epoch and 0.75% of MSE. Furthermore,
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FIGURE 8. Target output for regression and classification.

high accuracy was observed up to 85% classification accu-
racy and lower CCE loss values in case of position classifiers
(Figure 11).

Monitoring the learning curves is crucial for the model
performance and accuracy of the test results. As described
in [40], [41] a good fit must be fulfilled to ensure that the
model learns sufficiently from the training sets, which is
called underfitting, or the opposite of overfitting. However,
as shown in these Figures 9, 10, and 11, the SM model learns
appropriately to predict the test sets. Learning curves were
obtained using the parameter model shown in Table 3. The
dynamic learning rate schedule [42] was introduced to allow
the learning model to incorporate some learning randomness
once the learning rate is established at the lowest values [42].

The number of hidden layers and batch size were set as
previously reported [28]. The dimensions of the input layer
are the same as those of the input data (3D). The struc-
ture of the LSTM unit contains forget gate ft , candidate
layer C̄t , hidden state Ht , input gate It , output gate Ot and
memory state Ct . The relevant mathematical formulas are as
follows [28], [43]:

ft = σ
(
Xt ∗W f + Ht−1 ∗W f + bf

)
. (7)

C̄t = Tanh
(
Xt ∗W C̄ + Ht−1 ∗W C̄ + bC̄

)
. (8)

It = σ (Xt ∗W i + Ht−1 ∗W i + bi) . (9)

Ot = σ (Xt ∗Wo + Ht−1 ∗Wo) . (10)

Ct = ft ∗ Ct−1 + It ∗ C̄t . (11)

Ht = Ot ∗ Tanh (Ct) . (12)

where Xt are the input vectors ,Ht−1 are the previous output
cells ,Ct−1 are the previous memory cells ,Ht are the current

output cells ,Ct are the current memory cells, W,b are the
weight matrices, and the bias vectors, respectively. Using
a combination of these equations, the LSTM unit can be
expressed as

ht = f (ht−1, xt ,ψ) . (13)

where f is the LSTM function, and ψ is the vector param-
eter(LSTM is employed in the SM encoder–decoder models
[43]). Similarly, an adaptive moment estimation (Adam) opti-
mizer is introduced to resolve the gradient descent problem.
Adam is an optimization technique that can be used to update
network weights iteratively based on training data, instead of
the traditional stochastic gradient descent procedure [44]. The
same results were observed after performing the same test as
in [28] with the SMmodel, which justifies the use of identical
simulation parameters.

IV. TEST AND EVALUATION MODULE
For the test and evaluation modules, data were extracted
from the measured dataset. Therefore, data processing was
performed along with training and validation data. More-
over, the module aims to test the model’s capability to
predict new samples, identify the position, and determine
whether it belongs to LoS or NLoS scenarios. In this
case, the model was evaluated at a distance of 5 m to
predict the channel, classify the position, and LoS-NLoS
detection.

A. CHANNEL MATRIX PREDICTION
For MIMO channel prediction, Figures 12 and 13 demon-
strate each of the measured and predicted subchannels
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FIGURE 9. The training and validation learning curves for LoS-NLoS
detection: (a) BCE loss curves, (b) accuracy classification curves.

FIGURE 10. MSE loss in term of percentage for channel matrix prediction.

of matrix H within different antenna configurations.
The variables Mag(H) and phase (H) are shown at 5 m.
Nevertheless, the root-mean-square error (RMSE) in terms
of percentage was used to quantify the prediction losses [45]
as illustrated in Figure 14. It is observed that the RMSE
errors are low for all sub-channels’ magnitudes (between
0.6% and 2.6%) and phase prediction (between 4% and
16%). Owing to the data difference between Mag(H) and
Phase(H), the RMSE values for the magnitude are less than
the phase RMSE values. The model first learns Mag(H) and

FIGURE 11. The training and the validation learning curves for position
classification: (a) CCE Loss curves, (b) accuracy classification curves.

TABLE 3. Simulation parameters.

Phase(H), as shown in Figure 8, whereMag(H) occurs earlier
than Phase (H). Consequently, the model is more capable of
performing in magnitude than phase data. It can be seen that
for the circular polarization (90 deg-CIR and CP-CIR) LOS
scenario, the RMSE values are better than those for the linear
polarization (CP-LIN) scenarios, as well as the CIR RMSE
values in the NLoS scenarios. This is due to the fact that the
datasets are not well balanced in the scenarios with lesser
RMSE due to the availability of S-parameter measurements
in CIR and LoS topologies. However, this does not affect
model learning, which is well illustrated by the learning
curves.
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FIGURE 12. Measured and predicted channel matrix magnitude (Mag(H))
at 5m for different antenna configurations: (a) 90deg-CIR, (b) CP-CIR,
(c) CP-LIN, and (d) CP-LIN-NLOS.

FIGURE 13. Measured and predicted channel matrix phase (Phase(H)) at
5m for different antenna configurations: (a) 90deg-CIR, (b) CP-CIR,
(c) CP-LIN, and (d) CP-LIN-NLOS.
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FIGURE 14. RMSE evaluation for channel prediction: (a) Magnitude and
(b) Phase.

B. LoS-NLoS IDENTIFIER AND POSITION CLASSIFIER
This section presents the classification results. Moreover,
as demonstrated by the training and validation processes, the
model achieved an efficient prediction process in terms of
loss and accuracy. In the one hand, The confusion matrix
(CM) [46] is used in the case of classification. The CM is
considered as a summary of the prediction results for any
classification problem in the machine learning field. It quan-
tifies the number of correct and incorrect predictions of the
model. Therefore, when the classification model generates
predictions, the CM displays how it gets confused [40].

The CM results are shown in Figures 15 and 16. The
position classification (Figure 15) is shown by considering
a multiple-class classification (up to 10 positions). The SM
achieved up to 87% accuracy prediction in terms of classifi-
cation within all the antenna configurations. Even though the
SM is trained to classify 10 positions (output feature shape is
10), it is capable of predicting the data from different posi-
tions in different configurations with missing information,
as illustrated in Table 1. Hence, the proposed model shows
its capability to predict positions within all configurations
with fewer collected positions, such as the CP-LIN-LOS and
CP-CIR-NLoS configurations, where only seven and nine
positions were measured, respectively.

Regarding the LoS-NLoS detection, the model achieved
up to 100 % classification accuracy, as demonstrated by the
LC. Therefore, CM is also used (Figure 16) in this case,
which is considered as a binary output, where 0 and 1 refer

FIGURE 15. Confusion matrix for CP-LIN configuration in LoS scenario:
(a) position classifier, (b) LoS-NLoS detection (LoS: 1 and NLoS: 0).

to NLoS and LoS, respectively. It is worth mentioning that
more data samples were collected in LoS scenario thanNLOS
one. However, the LC shows that the SM learns properly to
classify all samples within both LoS and NLoS scenarios.
In both classifications, SM aims to classify every sample col-
lected at every position. Therefore, the SM classifies a sample
collected at a position of 5m in the LoS and NLoS scenarios.
The classification of the collected samples in the position
5 was evaluated with 83.8% of accuracy using the CP-LIN
configuration in LoS scenario. As illustrated in Figure 15(a),
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FIGURE 16. Confusion matrix for CP-CIR configuration in NLoS scenario:
(a) position classifier, (b) LoS-NLoS detection (LoS: 1 and NLoS: 0).

1718 samples were correctly classified as of, whereas the rest
of the samples were classified incorrectly between positions
1 and 10. Similarly, as for CP—CIR configuration in NLoS
scenario, 85.4% of accuracy was achieved by the SM, where
1749 samples were correctly classified. Hence, a slightly
more significant incorrect sample classification (14.6%) was
observed, as illustrated in Figure 15. This implies that even
though the model is learning well, it is challenging for the SM
model to predict all the positions of the NLoS samples. This
is because of the collected measurements, where additional

TABLE 4. Measurements scenario.

balanced datasets are needed to reach up to approximately
the 100% of prediction accuracy. In fact, the collected posi-
tion samples were not sufficiently balanced, which did not
optimize the SM prediction in a multiple-class classification.
In contrast, LoS-NLoS detection was well predicted in both
configurations. Therefore, a 100% accuracy was achieved
by the SM. Hence, the collected measured datasets were
sufficient for the SM to identify the difference between the
binary results (zero for NLoS and one for LoS).

V. CHANNEL CHARACTERIZATION AND MODELING
In this section, the magnitude and phase were used to evaluate
the path loss and channel modeling for comparison with the
measured values published by Elazhari [4].

A. PATH LOSS
L is defined as signal attenuation caused by environmen-
tal effects. This was obtained by applying the following
equation [4]

PL (d) = PL (d0)+ 10.β. log10

(
d
d0

)
+ X. (14)

where PL (d0) represents the mean path loss at reference d0,
d is the Tx-Rx distance where the path loss is calculated. β
is the path loss exponent estimated by using the linear regres-
sion analysis, and X(dB) is the zero mean Gaussian variable.
As observed from the linear analysis, the values of the path
loss exponent of the antenna configurations were evaluated
and are illustrated in Table 4. Figure 17 shows the predicted
and measured PL, PPL, andMPL, respectively. The predicted
calculated PL exhibited the same behavior as the measured
calculated ones. These results illustrate the efficiency of the
SM prediction results, where the same observations can be
used as the measured ones.

B. CHANNEL MODELING
As mentioned in [4], channel modeling involves developing
an impulse response to describe a single-input single-output
body-to-body (SISO - B2B) system in a mining environment
that is characterized by rough and random surfaces. The
impulse response was presented in [4].

h (t) =
N−1∑
i=0

aiδ (t − ti) ejθi . (15)
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FIGURE 17. MPL, PPL and linear regression (LR) model results:
(a) 90deg-CIR, (b) CP-CIR, (c) CP-LIN, and (d) CP-LIN-NLOS.

where N is the number of multipath components, ai, ti and θi
are the random amplitude, arrival time, and phase of the ith

multipath component, respectively. δ denotes the Kronecker

FIGURE 18. SM impulse response model compared to both stochastic
empirical (SE) and measurement impulse response.

TABLE 5. IR model performance.

delta function. Regarding the modeling procedures reported
in [4], twomodeling procedures are discussed in terms of path
amplitudes and arrival times. The path amplitude ai is mod-
eled as an independent complex Gaussian random variable
with an average power that follows the exponential power
delay profile. The time arrivals of the multipath components
were derived from measurements [4]. In this section, the SM
impulse response model is compared with the measured and
stochastic empirical (SE) modeled impulse response, as illus-
trated in Figure 18. Table 5 lists the MSE values obtained by
the SM and stochastic models. It can be observed that the SM
model MSE is the lowest, which provides more accuracy than
the stochastic model to describe the impulse response for the
body-to-body channel.

VI. CONCLUSION
In this paper, a new efficient MIMO channel model based on
a deep learning algorithm is presented. A stacked model is
introduced to predict the channel magnitude and phase for
each subchannel of the channel matrix H. Then, it classifies
the position where the measurements were collected for the
LoS and NLoS scenarios. Moreover, different output losses
were applied to measure both the classification and channel
prediction problems. Published results were used to validate
the SM model. The SM has achieved high accuracy in terms
of performance assessment of the classification up to 100%
for LoS and NLoS detection and channel prediction with
lower RMSE. Using a multiple position classifier, the model
showed its capability to predict the position, as shown at
position 5m. However, the model struggles to predict the
NLoS position owing to data imbalance. From the perspective
of performance, the model is efficient because the prediction
results are used for channel characterization and modelling.
The model was validated by estimating each subchannel,
position classifier, and LoS-NLoS detection while consider-
ing antenna diversity in underground mine environments.
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The promising results revealed in this paper could lead
to more research in deep learning and other aspects such as
cloud technology use of wireless communications systems in
indoor and outdoor environments.
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