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ABSTRACT Human detection methods are widely used in various fields such as autonomous vehicles, video
surveillance, and rescue systems. To provide a more effective detection system, different types of sensor data
(i.e. optics, thermal, and depth data) may be used together as hybrid information. Fortifying object detection,
based on optical data and additional sensor data, such as depth and thermal data, also represents information
regarding the distance and temperature of classified objects that can be used for video surveillance, rescue
systems, and various applications. In this study, a simple and effective method is introduced to fuse RGB-D
and thermal sensor data to achieve a more accurate form of human detection. To accurately combine the
sensors, they are physically fixed to each other, and the relationship between them is determined using a
novel method. The feature points on the optical and thermal images are extracted and matched successfully
using computer vision. The proposed method is completely brand-free, easy to implement, and can be used
in real-time applications. Using both thermal and optical data, humans are classified as benefiting from
a widely used object detection method. The performance of the presented method is tested with a newly
generated dataset. The proposed method boosts human detection accuracy by 5% when compared to the
use of only optical data and by 37% when compared to the use of thermal data with COCO Dataset upon
YOLOV4 neural network weights. After training with the newly generated dataset, the detection accuracy

increases by 18% compared with the best results of single sensor usage.

INDEX TERMS Data fusion, human detection, image processing.

I. INTRODUCTION

Human detection is widely used in surveillance, rescue, and
security applications. Nevertheless, some conditions, such
as nighttime, bad weather, and the presence of physical
obstacles may cause difficulties in practice. Varying light
and other disruptive conditions may reduce image quality,
which results in diminished detection accuracy, especially
in outdoor applications. However, these variable conditions
are deemed natural and frequently observed. In addition,
disaster zones affected by earthquakes, floods, hurricanes,
and fires cause rapid changes in conditions. Whereas security
and rescue duties are crucial, being dependent on the environ-
mental conditions can prevent systems from using detection
information in autonomous applications.

Reinforcing methods can be leveraged to improve accuracy
of human detection algorithms. For example, optical cameras
may provide high accuracy under good lighting conditions;
however, their accuracy is poor under low lighting conditions.
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Similarly, thermal cameras are quite successful when there is
no obstacle emitting heat but work with limited accuracy in
the presence of obstacles such as glass and foil. Therefore,
the fusion of different sensors improves the results into a
better detection accuracy in places observed during day and
night, in varying lighting conditions, or when there are too
many obstacles in the field. Taking advantage of multiple
data sources containing different features of the environment,
in lieu of solving a specific problem by employing data from
a single source, is generally more effective. Detailed infor-
mation such as dimensions, color, distance, and temperature
of the surrounding objects may be obtained by various types
of sensors in real-time. In numerous human rescue studies,
different types of unmanned vehicles perform the pre-rescue
human detection tasks using a single sensor [1], [2]. However,
the accuracy of the classification algorithm can be boosted
using different sensors simultaneously, as in [3]. Moreover,
the use of extra sensors can provide various benefits, such as
the detection of a person and determining his/her body tem-
perature simultaneously. The distance information can local-
ize the observer or object, and the color data can reveal the
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distinguishing features. Having all of this data simultaneously
can provide detailed information about the environment and
can carry out a much more precise analysis of the mission. For
example, the thermal and depth information of any desired
object or region in the environment can be determined.

The first condition of an effective detection system is to
combine multiple sensor data obtained from different sensors
in real-time. To provide a robust method and offer a rich
variety of features from various sensors, a symbiotic rela-
tionship needs to be defined among the sensors. Registered
data acquired from this relationship should provide actual
information to improve the decision-making process of an
autonomous robotic system. The relationships among the
sensors can be predefined in some cases, or they can be
composed instantly in accordance with the problem. In both
cases, combining data costs computation time, making it
difficult to implement in real-time. Additionally, the fusion
method should work without delay and be applicable without
knowing the physical properties of the sensors such as focal
point and angle of view. In other words, the method should
be independent of sensor architectures, manufacturers, and
models. Thus, it may be possible to use the method resiliently
in different duties and areas such as security or rescue.

Using sensor fusion is not solely enough for efficient
human detection in places where varying conditions are
present. In addition to having detailed information about
the environment, to be able to detect humans in real-time,
one of the most crucial issues for detection systems is
having an effective and fast detection algorithm. With the
rapid developments in deep learning methods and the use of
graphic processors on small-sized boards, it is now possible
to classify objects even with limited computing capabilities.
Some classification algorithms such as those in the study of
Alparslan and Cetin [4] use a single neural network not to
exhaust computing power, though they produce quite satisfy-
ing results. Furthermore, it is necessary to generate datasets
to improve the performance of artificial neural networks in
accordance with fused data. There are several human datasets
such as [5]-[8] available. However, utilizing a dataset with
challenging conditions and in conjunction with sensor fusion
may boost detection accuracy.

In this research, to have a more effective human detection
system using a real-time fusion, a new method establishing
relationships between RGB-D and thermal sensors is pro-
posed and the performance of the method is compared with
that of using only a single sensor. The contribution of the
study is a real-time fusion method, which is independent of
sensor features. Furthermore, a generated dataset obtained by
this method is presented.

In the second part of the study, the existing literature is
reviewed, and challenges are explained. In the third part,
the data fusion method is presented without using the fea-
tures of the sensors such as focal point and angle of view.
The performance of the proposed method is tested with an
experimental study, including a newly generated dataset in the
fourth section. In the last section of work, the results obtained
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in the study are discussed and the possible future research
directions and applications are presented.

Il. RELATED WORK

Using proper sensor fusion methods is one of the key issues
in robotics studies [8]-[10] and unmanned vehicles [11]-[13]
to carry out effective and robust missions. By using sensor
fusion, an autonomous vehicle can perceive its surround-
ing environment better, by which it can localize itself in
an unknown environment in more detail [10], [14], [15]
and detect environmental changes faster [16], [9]. Moreover,
it can produce more detailed data for targets like humans,
animals, etc. [17]-[20]. The most recent studies to fuse sensor
data are far from a dynamic fusion approach and are designed
for specific sensors [21], [22]. In addition, graphic processors
may be needed for fusion studies to be compatible with deep
learning methods [23]. The fast and massive data collection
capabilities of the sensors and representation of the obtained
large data in the memory with different data types are the
main problems of the real-time fusion process, especially
in mobile robotic systems that are configured with limited
computing power processors. To that end the relationship
between the sensors should include dynamic features and
provide an adaptive approach by being free of sensor brands,
types, and producers.

Considering the above expectations, the robust and fastest
approach to data fusion may be achieved by using image pro-
cessing techniques [24]. Although optical, thermal, and depth
sensors’ data are in different forms, they can be modeled
and processed as images. The process of combining optical
images obtained from two identical sensors in the same envi-
ronment is defined as the stereo vision in the literature [25],
which is also a form of data fusion. In recent years, large-
scale research has been carried out related to stereo vision.
For example, Tippetts and colleagues have demonstrated a
comprehensive review of stereo vision algorithms for sys-
tems with limited resources. They collected and presented
accuracy and runtime performance data for all stereo vision
algorithms developed over the past decade [26]. Although
stereo vision is a popular and successfully implemented sen-
sor fusion technique, it is limited to the usage of identical
sensors together [27]-[30].

In order to satisfy changing needs and provide better
decision-making systems, different features are registered by
using different sensors together. Nevertheless, a small number
of researchers have studied heterogeneous sensor fusion from
the perspective of stereo vision. For example, Yang et al. have
successfully provided a structure that can present a fusion of
depth, thermal, and optical data, even though it cannot pro-
duce real-time results [31]. In another study by Chen et al.,
data gathered from various sensors looking at a specific
region for a specific purpose were combined [32]. Yet, their
method is based on feature extraction, and it is not applicable
to different sensors, environments, and purposes. Vidas et al.
proposed another method for producing real-time sensor
fusion results. However, resource consumption increases with
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TABLE 1. Comparison of the fusion method with existing methods.

The need for feature

Reference Used Sensors Environment extraction points in Dataset . Real-Time
. Generation
runtime

Yang et al. [31] Thermal, RGB Outdoor, Indoor Yes No No

Chen et al. [32] Thermal, RGB-D Indoor Yes No N/A
Vidas et al. [33] Thermal, RGB-D Indoor Yes No Yes

Cao et al. [34] Thermal, RGB-D Indoor Yes No Yes
John et al. [39] Thermal, RGB Outdoor, Indoor Yes Yes Yes
Ours Thermal, RGB-D Outdoor, Indoor No Yes Yes

recurring operations, and the number of feature points that
will be determined in the environment needs to be prede-
fined [33]. Cao et al. fixed two different sensors to each
other and combined them, yet the ICP method used in the
study needs several feature points and includes complex
calculations [34].

There are many robotic research studies where differ-
ent types of sensors are used together. In the study by
Correa et al., people and their faces were detected by robots
using thermal and optical sensors together in domestic envi-
ronments [35]. In that study, the sensors had a similar field of
view and depth of field. Thus, it was ensured that the fields
of view of the thermal and optical images were close to each
other. The main drawback of this study is the use of sensors
without any data fusion process. In another study where
optical and thermal sensors were used together, Carrio et al.
developed an obstacle detection system for small UAVs [36].
The synchronized version of the data from the sensors was
used in the study and it allows to work under extreme illu-
mination conditions such as direct sun exposure and during
nighttime. However, the fusion method was not explained in
the study.

Combining different sensor data with image processing
methods is one of the main problems in the literature and
numerous studies have been conducted in this subject. In most
of these studies, the combined images were taken from
different angles of optical cameras with the same features
[27]-[30], whereas some studies have also used cameras with
different features [37]. It is observed that for the combin-
ing of thermal images and color images, methods involv-
ing complex calculations were generally used. In the work
of Ben-Artzi et al., a 2-points approach was proposed and
the method outperformed 8-points and 7-points approaches,
which are commonly used to equalize the epipolar geometries
of different images [38]. This study shows that images can be
combined by determining 2-points on the epipolar plane. Yet,
the method is carried out with the same sensor at different
angles. In the study by John et al., thermal, and optic sensors
were fused. Feature points were created using a source dis-
seminating heat and light, and these points were overlapped
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to obtain registered sensor data. Moreover, a comparison of
person detection accuracy was made [39].

Table 1 shows the differences and similarities between the
proposed method and the fusion studies where RGB-D and
thermal sensors are used. In the table, preferred sensors in
the studies, work environment, real-time availability, and the
technique for the presented fusion methods are given. Those
methods benefit from feature extraction techniques to fuse
the sensors. This process is required to gather feature points
for every frame. It may cause big challenges in working in
real-world environments since it is not possible to detect
feature points in every situation. On the other hand, our study
provides calibration with pre-calculated values for sensor
fusion and does not need feature extraction points for every
frame.

Detection of humans in images has been repeatedly carried
out since computer vision studies were introduced. The latest
instances that target better accuracy in real-time generally
rely on neural networks and deep learning [40]. The authors
in [41] studied human detection for small-sized UAVs with
limited computer power benefiting from a YOLO detection
algorithm. In [42], the authors proposed real-time detection
on embedded platforms by using deep learning.

Numerous studies have been conducted to improve human
detection accuracy. Xue et al. proposed a variation of YOLO
called MAF-YOLO to improve the pedestrian detection per-
formance at nighttime [43]. They used a multi-modal feature
extraction module and modal weighted fusion instead of sim-
ply direct concatenation. In [44], the authors used an adaptive
Region-of-Interest (ROI) for image scaling, which improves
the detection accuracy and reduces the detection time. In [45],
the authors proposed a regression-based approach for human
detection using thermal images. To detect low-power human
thermal signatures from a distant viewpoint, a fully connected
network model was used and a much lower computational
cost than other similar architectures was obtained. While
these studies were performed considering different aspects,
unexpected varying conditions harmed the detection capa-
bility. The simultaneous use of different sensors at the
same time provided a significant advantage to mitigate the
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FIGURE 1. The appearance of sensors fixed to each other.

detection faults, because it is more resilient to changing
factors.

Ill. SENSOR FUSION METHOD

It is valuable to use optical, thermal, and depth sensors
together to extract many features of the environment and use
them for real-time problems in computer vision. This study
focuses on a novel method that provides a resilient combining
approach that gathers data from various types of sensors in
real-time. The process steps of the developed method within
the scope of this study are explained step by step in this
section.

It is possible to have many different brands and models
of sensors for obtaining optical, thermal, and depth data and
these sensors may have different features, such as frame rate,
range, and image resolution value. However, the method in
this study can be performed with any brand and model of the
Sensors.

In this study, Seek Compact Pro is used as a thermal sensor
to detect thermal data in the environment and a Microsoft
Kinect camera is used as an RGB-D sensor to obtain optical
and depth data. These sensors are physically fixed to each
other using an original component produced by a 3D printer
and are shown in Fig. 1With a triple sensor platform, these
parts can be moved together and work simultaneously. Using
the Kinect sensor, with an image with a resolution of 640 x
480 pixels, including the distance data for each pixel, and
a rate of 30 frames per second can be produced [46]. The
Seek Compact Pro sensor can generate thermal data at a rate
of 8 Hz [47] which can be represented as a visual snapshot of
320 x 240 pixels.

For real-time sensor fusion and to achieve rich detailed
environmental data, it is necessary to establish relationships
without the requirement of any special marks. In previous
works, the design of the tools used for calibration was gen-
erally based on the selection of at least two special points
that can be distinguished in thermal and optical data. Based
on the positions of these points on the same plane and their
relative positions, we aimed to determine the constant values
to combine the images. Based on this idea, the calibration
mechanism design created in this study consists of two black
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FIGURE 2. The determination of calibration values for the fusion of
thermal and RGB-D sensor data.

circle drawings on a white background and incandescent
bulbs that emit heat at the center of these circles. Thus,
distinguishable common points in both the thermal and opti-
cal data are obtained. The flowchart in Fig. 2 shows the
determination of calibration values. In order to determine the
calibration values with the help of the calibration mechanism,
the operations of detecting the circle center in the optical
images and the center point of the heat sources in the thermal
images are performed. These detected points are overlapped
on the same plane to combine the data. During the calibration
process, attention is given to whether there are heat sources
of a similar density or similarly sized circular shapes in the
field of view of the sensors.

The differences in distance and slope between the detected
calibration points are calculated and compared to each other.
For comparison, the magnification rate and slope difference
values are calculated and recorded. After the thermal image
is rotated to the point of the slope difference, magnification
is applied as the distance ratio. Thus, both images have equal
slope degrees and distances between the points. The horizon-
tal and vertical correction values of the thermal image are
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determined by finding the center points of the line segments
passing through the points in images in order to exactly over-
lap the planes. In addition to the operations on the images,
the distance from the calibration device is obtained from the
depth data depending on the sensor features. All the com-
puted calibration values are recorded based on the measured
distances.

All of the steps need to be repeated several times for each
distance value. All obtained calibration results are recorded
with the distance values. The recorded results will be used
for data fusion. When the results are examined, it is observed
that the magnification ratio, slope difference, and horizontal
correction values do not show significant changes for the
different distance cases. Therefore, the mean of the relevant
values is recorded as a single result for different distances.
In contrast to these results, the vertical correction value varies
significantly depending upon the distance. Distance values
are determined in the optical images depending on the depth
data. Appropriate calibration values are associated with this
distance value. Thus, the thermal image is bound exactly to
the optical image. The proposed method is described in detail
in the following sections.

Calibration is performed based on the distance value of
each pixel. The distance data corresponding to each pixel
value acquired by the optical sensor on the Microsoft Kinect
system is calculated using the Freenect library. The distance
information is represented in memory as raw data with an
11-bits length value. The distance d from any desired pixel
to the sensor in meters can be calculated with the help of
the raw data r value received from the sensor and the &y, &,
ksconstants [43], as provided by (1).

d =ks xtan(r —ky + ky)
ki = 0.1236k, = 2842.5k3 = 1.1863 (1)

After creating digital images with sensor data, the fol-
lowing operations are performed to find calibration points
in the thermal and optical data. The Canny Edge detection
method is used to determine the calibration points in the
thermal image shown in Fig. 3(a). The points obtained from
the thermal image are shown in Fig. 3(b). In the optical image
shown in Fig. 3(d), circles containing the calibration points in
the image are found using the Hough circle finding method
and the centers of these circles are determined as calibration
points, as shown in Fig. 3(e). Line segments are obtained
and plotted on the thermal data, as illustrated in Fig. 3(c)
and on the optical data as shown in Fig. 3(e). While the
lengths of these two-line segments are determined by the
Euclidean distance, the slopes of the lines between the points
are calculated by the slope formula and stored to use in the
combining process, as shown in Fig. 3(f).

The thermal image is rotated by as much as the difference
in the computed slopes of the lines. Subsequently, the thermal
image is resized by the ratio of the length of the lines. The
midpoints of the lines and the distances between midpoints
are determined in optical and thermal images to exactly

VOLUME 10, 2022

overlap both images in the same plane. Thus, the position
of the thermal image according to the optical image can be
determined.

For the different scenarios and different distance values,
the same steps are repeated for the desired number of times,
and all the computed values are recorded as calibration data
with the distance value. Magnification ratio, slope differ-
ence, and horizontal correction values are averaged from the
obtained values. Vertical correction values vary significantly
as the calibration distances change. The effect of the distance
value on the vertical correction is modeled mathematically
by examining the data from various distances and is repre-
sented by (2). By using this equation, the vertical correction
value is prevented from undergoing a large change according
to the distance. In (2), duq represents the farthest calibra-
tion distance, and v, shows the biggest value of vertical
corrections.

Calibration processes are repeated five times for each
50 cm distance in the range of 50-250 cm, depending on the
working range of the sensors. The obtained magnification and
averages, the slope difference in radians and their averages,
the horizontal corrections and averages in pixels, the vertical
correction values in pixels, and the calculation time of the
values in seconds are provided in Table 2 The computed
values for the calibration processes performed at different
distances are also shown.

dinax—d
Vinax — doad 100 < d < 250} ®

dmwc —d

T5—(100—d)=0 4" 50 <d < 100

Vimax —

f(X)={

Sensors’ yaw and pitch differences on the plane cause the
horizontal and vertical differences, whereas camera features
constitute the magnification and slope differences. Looking
at the values in Table 2, since the variation of values is
small except for the vertical correction, the average values
can be used in the method. The calculation times for the
calibration process are also presented in Table 2. A calibration
process consisting of five steps is approximately 1 s. Once the
calibration process is completed, the mean values in Table 2
and (2) are used for the fusion of data from the sensors. This
fusion process is executed in approximately 0.02 s. Thus,
the acquired data from the sensors are combined with this
process, causing a latency of 20 milliseconds, which allows
the method to operate in real time.

IV. DATASET GENERATION
Since our method performs the fusion process while pro-
ducing data, existing datasets containing optical, depth, and
thermal images cannot be used to test our method. To verify
and test the performance of the method and implement a
realistic test scenario, an original dataset was prepared using
RGB-D and thermal cameras. The sensors located on a fixed
tripod are fused as mentioned in Section III. The view of the
sensors is changed in horizontal and vertical axis to acquire
data from different angles.

The dataset was generated in closed areas and out-
doors, under different lighting conditions with 10 volunteers.
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(d)

FIGURE 3. Calibration process for 150cm (a) thermal image (b) thermal image calibration points (c) thermal image
calibration line (d) optical image (e) optical image calibration points and line (f) combined image.

TABLE 2. Calibration values by distances.

Description Values *

Calibration Distance 250 200 150 100 50 Mean
Magnification Rate 0.9564 0.9863 0.9721 0.9688 0.97680 0.9721132
Slope difference -0.032 -0.059 -0.046 -0.074 -0.041 -0.050893
Horizontal Correction 158.91 154.38 156.38 156.42 158.95 157.0132566
Vertical Correction 95.591 84.809 85.058 83.326 62.719

Calculation Time 0.1910 0.1959 0.1891 0.1850 0.1892 0.1900656

? Distance metric is in centimeters, slope difference metric is radian, point metrics are pixel and time metric are seconds.

TABLE 3. Gathered data by location.

Number of

Environment
Frames

Remote Sensing Laboratory 134

Cafeteria 273
Camellia 519
Hallway 494
UAV Laboratory 709
Study room 250
Classroom 408
Distance Education Class 523
Total: 3310

3310 frames from each sensor were taken in eight different
locations at 11 different times and the number of frames for
each location is provided in Table 3. Instead of images, raw
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data acquired from the sensors was stored to avoid data loss
and test the different combining conditions.

As shown in Fig. 4, under different lighting and physical
conditions, different sensor data can be useful for detecting
objects. In Fig. 4(a), the optical sensor cannot detect the
human because of inadequate light, whereas the thermal sen-
sor can easily classify it as human as in Fig. 4(b). On the
other hand, in Fig. 4(g), the thermal sensor cannot detect the
human because of a transparent physical obstacle, whereas
this obstacle does not prevent the optical sensor from detect-
ing the object. Depth data can be seen in Fig. 4(c) and 4(i)
which show a display similar to the one in the optical image.
The ROI of the images is shown in Fig. 4(d), Fig. 4(e),
Fig. 4(f), Fig. 4(j), Fig.4(k), and Fig. 4(1).

A. PRODUCING OF REGISTERED IMAGES

After gathering data from the sensors, interest regions are
assigned to overlap data from different sensors using the
method described in Section III. Examples of ROI images
produced from the raw data are shown in Fig. 5. To use in
the training and testing processes, objects on the images are
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FIGURE 4. Sample data from sensors and their ROl images (a) optical image (b) thermal image (c) depth
image (d) ROI of optical image (e) ROI of thermal image (f) ROI of depth image (g) optical image (h) thermal
image (i) depth image (j) ROI of optical image (k) ROI of thermal image (I) ROI of depth image.

tagged with a “Labellmg” annotation tool [48]. The mark-
ings and boundaries of the objects are then cross-checked
with thermal and optical images.

The pixel intensity values of the ROI images taken from the
three sensors are unified in different proportions to test the
object detection accuracy of the alternative methods. Eleven
alternative unification and grayscale data are produced from
three sensors. In the first unification, a three-channel (RGB)
image is produced by taking the grayscale values of the
images obtained from each of the three sensors where each
sensor forms a channel. In the second method, a 3-channel
image was created with thermal and color data by leaving the
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depth data channel values empty. For the other unifications,
the thermal and optical images are merged using the OpenCV
addWeighted method. For these unifications, the pixel inten-
sity values obtained from both images are multiplied by the
desired weights and added together to calculate the pixel
intensity values of the new image. Using this method, the
thermal image pixel values are added to the optical image
pixel values by using 0.1 to 0.9 weights by 0.1 step size.
The raw data gathered from the three sensors are
then stored in 26 different forms (11 colored unification,
11 grayscale unification, three raw sensor images, and one
grayscale thermal image) to determine the best one for the

66837



IEEE Access

A. Ozcan, O. Cetin: Novel Fusion Method With Thermal and RGB-D Sensor Data

(@ (b)

(e) )

(9 (h)

FIGURE 5. Some samples from different unifications (a),(e) 3 channel image from
RGB, Depth and Thermal (b),(f) 3 channel image from RGB and Thermal (c),(g) RGB
with 0.3 weighted Thermal (d),(h) RGB with 0.8 weighted thermal.

accurate detection of objects. Some samples from different
unifications are shown in Fig. 5. In the samples, the improve-
ment in unification is proved by the increase in the number of
true detections of the objects.

V. PERFORMANCE EVALUATION

To test the performance of human detection based on sen-
sor fusion, the accuracy of detection and classification are
measured using a pre-trained convolutional neural network.
Subsequently, the detection network is trained with the newly
generated dataset. The detection performance after training
and comparison with the pre-trained network are shown
below.

A. COMPARING THE ACCURACY RATES OF

REGISTERED IMAGES

After collecting data from various places and processing
them in several ways, the accuracy rates of raw data and
unified images are compared with each other. A pre-trained
YOLOvV4 [51] network on the COCO [50] dataset is used
for comparison. Since the test environment targeted humans,
only the “person” class is evaluated. The results are shown
in Table 4 where the accuracy of each raw data and com-
bining method are given in detail. The number of true, false
and missed detections, average and mean average precision,
average intersection over unit (IOU), precision, recall, and
F1 score values are calculated. Under poor light conditions,
the accuracy increased significantly for the RGB sensor data,
whereas it varies under adequate lighting.

For all samples, the accuracy rate of the thermal data
increased after unification. Even though all accuracy metrics
are evaluated, the F1 score is the focal point because it can
be used for model selection on datasets that are not evenly
distributed. The optimal values are highlighted in bold in
Table 4 Looking at F1 scores, the 0.1, 0.2 and 0.3 weighted
unifications stand out. Among these values, the 0.3 weighted
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unification performs slightly better. Therefore, 0.3 is used in
other tests as a basis.

Human detection in thermal and RGB data can be seen in
Fig. 6 for two sample scenarios. Where it is possible to detect
a human behind a transparent obstacle as shown in Fig. 6(a),
this human cannot be detected using thermal data as seen in
Fig. 6(c). In addition, while the second human in the field
of view can be detected in optical data, it is misclassified
in thermal data. Considering the combined data in Fig. 7(a),
it is shown that the detection accuracy of the human behind
the obstacles increases. Even if the detection accuracy for the
second person in the field of view decreases when compared
to optical data, the classification is correct. In the second
scenario, the data obtained from a corridor with low light can
be seen in Fig. 6(b) and Fig. 6(d). In both data types, 1 out
of 3 people in the field of view cannot be detected. In the
combined data given in Fig. 7(b), it is seen that all 3 people
are detected more accurately compared to the data before the
fusion.

According to the F-measure results, the accuracy rate of
the thermal data increased by 37%, while optical data accu-
racy increased by only 5%. The metrics calculated using
3310 images show that unification methods significantly
improve object detection accuracy. This improvement is more
significant under poor light conditions, whereas the accuracy
of the optical sensor data decreases substantially.

B. TRAINING AND TESTING OF NEWLY

GENERATED DATASET

In this part, the accuracy of the newly generated dataset is
tested by using best unification value. To train the dataset,
the unified grayscale images with 0.3 weighted thermal data
are divided into two. Eighty percent of the images are used
for training, whereas twenty percent of the images are used
for testing. Training is performed for 10,000 iterations for
approximately 120 epochs. The test data is evaluated with the
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TABLE 4. Detection results on dataset with different image types and unification methods.

best weight values acquired from the training dataset and the

Image Type / Metric AP TP FP FN A\:)rgge Recall Precision F1-Score

Depth 9.11 102 52 5608 0.42 001786  0.66234  0.03479

RGB 7768 4145 1064 1565 0.66 072592 0.79574  0.75923

Thermal 4239 1227 165 4483 0.72 021489  0.88147  0.34554

Thermal (Grayscale) 68.65 2541 439 3169 0.69 044501  0.85268  0.58481

RGB-Depth-Thermal 3773 926 118 4784 0.68 0.16217  0.88697  0.27421

RGB-Depth-Thermal 5119 1804 358 3906 0.65 031594  0.83441 045833

(Grayscale)

RGB-Thermal 7313 3118 550 2592 0.69 0.54606  0.85005  0.66496

RGB-Thermal 84.63 4206 771 1504 0.69 073660  0.84509  0.78712

(Grayscale)

0.1*Thermal+RGB 83.14 4190 978 1520 0.65 073380 081076  0.77036
3

0.1*Thermal+RGB 8509 4331 937 1379 0.68 075849  0.82213  0.78903

(Grayscale)

0.2%Thermal+RGB 81.64 4075 881 1635 0.70 071366  0.82224  0.76411
%

0.2*Thermal+RGB 86.14 4377 904 1333 0.68 076655  0.82882  0.79647

(Grayscale)

0.3*Thermal+RGB 80.94 3963 859 1747 0.68 0.69405  0.82186  0.75256
*

0.3*Thermal+RGB 8622 4399 909 1311 0.68 077040  0.82875  0.79851

(Grayscale)

0.4*Thermal+RGB 80.02 3881 781 1829 0.69 0.67968  0.83248  0.74836
E3

0.4*Thermal+RGB 86.08 4387 902 1326 0.68 076790  0.82946  0.79749

(Grayscale)

0.5%Thermal+RGB 78.86 3764 744 1946 0.69 0.65919  0.83496  0.73674
*

0.5*Thermal+RGB 8580 4343 878 1367 0.69 076060  0.83183  0.79462

(Grayscale)

0.6*Thermal+RGB 7721 3621 662 2089 0.70 0.63415  0.84544  0.72471
&

0.6*ThermaltRGB 8540 4306 846 1404 0.69 075412 0.83579  0.79286

(Grayscale)

0.7*Thermal+RGB 7534 3423 588 2287 0.70 0.59947  0.85340  0.70425
*

0.7*Thermal+RGB 85.06 4270 1270 1440 0.69 074781 077076  0.75911

(Grayscale)

0.8*Thermal+RGB 83.60 3845 648 1865 0.70 0.67338  0.85578  0.75370
*

0.8*Thermal+RGB 8123 3609 542 2101 0.71 063205  0.86943 073197

(Grayscale)

0.9%Thermal+RGB 7103 2881 498 2829 0.70 0.50455  0.85262  0.63395
*

0.9*Thermal+RGB 84.13 4148 746 1562 0.70 072644 084757  0.78235

(Grayscale)

performance metrics are given in Table 5.

VOLUME 10, 2022

The detection samples after training can be seen in Fig. 7(c)
and Fig. 7(d). As shown in the figures, data fusion increases
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(d)

FIGURE 6. Detection results on sample images from the dataset. (a),(b) results on a RGB image, (c),(d) results

on a Thermal image.

TABLE 5. Detection results after training of the newly generated dataset.

AP TP FP FN

Average

Recall Precision F1-Score

0.92 1120 98 37

0.97 0.92 0.94

TABLE 6. Performance enhancement by the fusion method after training
of the newly generated dataset.

TABLE 7. Performance comparison of the fusion method with existing
studies.

Performance Increase by percentage according to

Image Number  Avg. Fusion Time

RGB Image  Thermal Image Unified Image” Reference in Dataset per Frame (s) Fl-score
Average ToU 12 % 7% 8% Yang et al. [31] 0 1.66 g(; tgtgjiz(r:lt
Fl-score 24% 61 % 18 % Cao et al. [34] 0 0.02 E‘;gg{fﬁ
Recall 33 % 118 % 26 % John et al. [39] 1640 0.06 0.899
Precision 16 % 8% 11% Ours 3310 0.02 0.94

“Unified image is acquired with the best unification method (Grayscale
of 0.3 weighted Thermal and RGB Image).

detection accuracy, while testing the challenging data in the
newly generated dataset further increases the performance.
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Performance metrics enhancement by the fusion method after
training with the newly generated dataset is presented in
Table 6. When the table is evaluated, it is observed that the
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(c)

(d)

FIGURE 7. Detection results on sample images from the dataset. (a),(b) results on a combined image from RGB
and Thermal data, (c),(d) results on combined a image from RGB and Thermal data after training of the newly

generated dataset.

performance obtained from the unified data increases even
more. Finally, based on the F1 scores, it can be said that
the human detection accuracy of the optic sensor increased
by 24%, while the detection accuracy of the thermal sensor
increased by 61% after the sensor fusion process. The per-
formance improvement is also compared with other existing
fusion methods. As listed in Table 7, most studies show a
dataset generation and object detection. In [39], 1640 frames
were used for the study and the Flscore is measured as 0.899,
which are both smaller than our study.

VI. CONCLUSION

A simple and efficient sensor fusion approach, which uses
thermal and RGB-D sensors together is proposed in this
study to improve human detection accuracy under differ-
ent environmental conditions. In order to benefit from the
diverse features of multiple sensors, they are combined using
an adaptive method to comply with varying environmental
conditions. The proposed method defines the flexible fusion
relationship between the thermal and RGB-D sensors. With
this method, sensor data containing different features are
successfully combined with each other in real time using

VOLUME 10, 2022

limited processor capabilities. Therefore, it can be applied to
real-time problems such as surveillance or rescue systems.
It is also easily applicable to various types of sensors with
unknown specifications because the method is free of the sen-
sor model. Therefore, it can be used in missions in different
environments or conditions.

Using a dataset that has challenging conditions, such as
low-light and transparent obstacles, results in lower accuracy
for human detection. However, sensor fusion increases the
accuracy of detection when used properly. In this study,
to demonstrate the success of hybrid data based on object
detection methodology, a human is selected as a sample
object, while it is also easy to implement the same method
for different objects such as animals and vehicles. The newly
generated dataset is prepared using the same method with
different pixel intensity values. The success of the method
is measured by well-known metrics such as precision, recall,
and Fl-score. The accuracy of the method is evaluated by
the COCO dataset with YOLOv4 neural network weights.
As aresult, the accuracy rate of the thermal data increased by
37%, whereas the optical data detection accuracy increased
by 5%. After training the neural network with the hybrid
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dataset instead of using default weights, the accuracy of
this network is also compared with that of the pre-trained
network and sole sensor data. After training, when using a
thermal sensor and an optical sensor together as a hybrid
solution, the detection accuracy increased by 18% compared
to using only one optical sensor, and by 61% compared to
using only one thermal sensor. It is observed that the fusion
of sensors increased the human detection accuracy, and this
accuracy increased even more with the training of the newly
generated hybrid dataset. The fusion method’s performance
is also compared with other fusion methods by fusion time
and detection accuracy. The results show that our method
provides better results.

Based on the results of this study, the fusion method can be
used in real-time problems such as human surveillance and
disaster rescue operations to obtain a more precise detection
system. Because the proposed fusion method is free of sensor
manufacturer and brand and requires low computational cost,
it can be easily implemented in robotic systems such as UAVs
to achieve higher accuracy rates. As a future study, to obtain
better results for detection accuracy, a specialized network
can be used in the detection method instead of YOLO, and
more sensor data can be implemented to achieve different
unique features. Furthermore, the number of sensors could be
doubled to obtain a wider view of the environment. Detected
humans may also be classified using segmentation methods
by which the temperature and distance of the objects can be
determined precisely. In addition, the success of the method
can be tested in a disaster zone or surveillance location where
mobile robots are operating.
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