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ABSTRACT Changes in sensor measurement parameters of wind turbine SCADA systems usually do
not provide reliable early alarms. To detect early faults or abnormal conditions of wind turbine generator
components, a wind turbine generator condition monitoring framework based on the fusion of cascaded
SAE abnormal condition monitoring and LightGBM abnormal condition classification is proposed. The
framework consists of two parts. The first part is a strong anti-interference cascade SAE anomaly condition
monitoring method considering that early anomalies are easily flooded. The cascade SAE is trained with
polynomial features and original features. The isolated forest is used to determine the alarm threshold of
reconstruction error between the input and output of the cascade SAE. The operating condition of the
wind turbine is judged by comparing the magnitude between the reconstruction error and this threshold.
The second part is the anomaly condition classification based on LightGBM. The optimal parameters
of LightGBM are searched by Bayesian optimization to build a LightGBM multi-classification anomaly
condition classification model. The results of the case study show that the proposed condition monitoring
has high anomaly recognition capability: the cascaded SAE method has strong anti-interference properties
and can capture the early abnormal conditions of wind turbine generators; LightGBM has a faster training
speed than other classifiers with guaranteed abnormality classification accuracy.

INDEX TERMS Wind turbine, condition monitoring, stacked auto-encoder, isolation forest, LightGBM.

I. INTRODUCTION
The harsh operating environment of wind farms results in
wind turbines having a high failure rate [1]. The O&M cost
of onshore wind turbines accounts for about 10%-15% of the
total wind farm revenue [2]. Generator system failure is one
of themain causes of wind turbine downtime and accounts for
37% of all fault downtime [3], [4]. Therefore, it is important
to diagnose generator faults as early as possible to reduce
downtime and maximize productivity. Condition monitoring
is the process of determining if there are any abnormalities in
the operating condition of wind turbines andwhen they occur;
abnormality identification determines the type of abnormality
or time-varying behavior [5], [6]. The abnormal condition of
a wind turbine may develop into a permanent failure or may
be able to recover to its original state after some time.

An effective wind turbine condition monitoring sys-
tem requires the installation of numerous high-frequency
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sampling sensors. The wind turbine supervisory control and
data acquisition (SCADA) system is capable of collecting and
remotely or locally monitoring the operating parameters of
the entire wind farm generator, and is characterized by fast
signal changes and numerous operating parameters. The fault
or abnormal characteristics of wind turbines are implicit in
the SCADA variables that characterize their operating status,
so the abnormal information carried by the SCADA variables
can be mined to monitor the status of the wind turbine or
alarm the abnormal status.

Fault alarms for a range of subassemblies of wind turbines
are performed using wind speed statistics in [7]. A fault
detection algorithm based on Gaussian process is proposed
based on SCADA data with operational variables (pitch angle
and rotor speed) as inputs to an additional model in [8]. The
effectiveness of wind turbine fault alarms can be improved
by processing SCADA data or extracting certain features,
such as processing actual SCADA imbalanced data [9], [10]
and using NOFRFs approach to extract damage sensitive
features [11].
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The principal component analysis is used to select a set
of partial variables containing the variation characteristics
of the original data to locate wind turbine faults [12].
Models such as generative adversarial networks, transfer
learning, and convolutional auto-encoders can be applied to
fault detection scenarios with small samples or the same
type of wind turbines [13], [14]. Long short-term memory
networks and spatio-temporal multiscale neural networks
considering spatio-temporal characteristics can effectively
capture the fault information of wind turbines in SCADA
data [10], [15], [16]. The method of generating reference
space or constructing residuals based on the normal behavior
of wind turbines detaches the abnormal conditions from the
normal data by measuring the difference between normal and
abnormal conditions of wind turbines [17]–[19]. Different
variants of auto-encoders and neural networks are widely
used for wind turbine fault diagnosis [18], [20].

Many studies can detect anomalies in wind turbines, but
no further identification of the detected anomalies is done.
Classification algorithms can be used to analyze fault data
features to identify specific faults in wind turbines [21], [22].
Optimized support vector machine classifiers can be better
implemented for wind turbine fault diagnosis [23], [24].
Various ensemble learning algorithms (e.g., random forest
and XGBoost) using decision trees as base learners can pro-
vide wind turbine condition monitoring schemes [25]–[29].
The XGBoost algorithm has been further improved in
terms of the loss function, regularization, and parallelization
processing, and has better classification performance, which
can improve the accuracy of fault identification more
effectively [30]. A wind turbine condition monitoring method
based on multi-feature monitoring parameter information
fusion is proposed using an optimization scheme based on
the Bayesian optimization algorithm and XGBoost feature
weight measurement [28]. Although XGBoost has high
classification accuracy, its training speed is not advantageous.

For wind turbine generator abnormal condition mon-
itoring and abnormal condition classification, this paper
builds a condition monitoring framework based on cascaded
stacked auto-encoder (SAE) and LightGBM to achieve early
abnormal condition capture and fast and accurate abnormal
condition classification of wind turbines. Firstly, the normal
wind turbine SCADA data are used to train the cascaded
SAE network and the alarm threshold is determined by the
isolation forest. For the wind turbine SCADA data containing
abnormal conditions, the magnitude of reconstruction error
and alarm threshold are compared to determine whether the
wind turbine is abnormal or not. Then Bayesian optimization
is used to search the hyperparameters of the LightGBMmulti-
classification model to identify different anomaly types.
Finally, the effectiveness of the proposed method is verified
with actual failure cases of wind turbines.

The paper is organized as follows. Section II describes
the wind turbine abnormal condition monitoring model.
Section III elaborates on the wind turbine abnormal condition
classification model. Section IV trains the wind turbine

condition monitoring framework. Section V analyzes the
effectiveness of the model with examples. Section VI briefly
presents the conclusions of this paper.

II. WIND TURBINE ABNORMAL CONDITION
MONITORING
To detect abnormal operating conditions of wind turbine
generator bearing assemblies promptly and improve the
accuracy of abnormalitymonitoring, a cascaded stacked auto-
encoder (SAE)-based abnormality monitoring model is con-
structed. Auto-Encoder (AE) adjusts the model parameters
in an unsupervised learning manner so that the model output
reconstructs the input as accurately as possible. An AE
consists of an encoder and a decoder, where the encoder
extracts abstract features of the data; the decoder is the inverse
of the encoder and constructs reconstructed values close to
the input. The reconstructed values have the same physical
meaning as the input values.

The data under normal conditions are selected as the input
for training AE. In this paper, the normalized Supervisory
Control and Data Acquisition (SCADA) data under normal
operation of wind turbines are selected as the input of
AE. The cross-sectional data of the wind turbine SCADA
measurement points under a certain moment are x. The
encoder and decoder are expressed as

h = σ1(W1x+ b1) (1)

x̂ = σ2(W2h+ b2) (2)

where x, h and x̂ are the input of the input layer, the output of
the implied layer and the output of the output layer of AE,
respectively. σ1 and σ2 are the activation functions of the
encoder and decoder, W1 and W2 are the weights of the
different layers, b1 and b2 are the biases of the different
layers.

The training process of AE is the process of adjusting
the parameter set {W1,W2,b1,b2} to minimize the distance
metric function dist(x, x̂) between the input and output. The
SAE is formed by connecting several AEs in series, which
can extract the higher-order features of the input data layer
by layer and reduce the dimensionality of the input data layer
by layer.

The operating condition of the wind turbine is coupled with
each SCADA variable. Considering the high-dimensional
features of SCADA feature variables and the influence of
polynomial features among variables on SAE, a combined
model of 2 SAE cascades is constructed in this paper to
improve the effectiveness of anomaly monitoring. To obtain
the high-dimensional features and interrelated features of
SCADA feature variables x, the polynomial and interaction
features of x are generated. For example, for the n-th
polynomial feature between two variables a and b as

[1, anb0, an −1 b1, an −2 b2, . . . , a0bn] (3)

The input to the first SAE is the polynomial feature x′

(which does not contain the constant 1 and the variable x

VOLUME 10, 2022 67533



L. Wang et al.: SCADA-Data-Driven Condition Monitoring Method of Wind Turbine Generators

itself), and the output x̂′ is obtained by training the SAE. The
reconstruction error e′ between the original input x′ and the
output reconstructed value x̂′ is defined as the Euclidean norm
of the difference between the two, i.e.

e′ =
∥∥x′ − x̂′

∥∥
2 (4)

The input of the second SAE is the feature [x, e′] of the
original SCADA feature variable x combined with the recon-
struction error e′ of the first SAE. The reconstruction error e
of the 2nd SAE input and output is used as the monitoring
variable to measure whether the wind turbine is abnormal or
not. The structure of the wind turbine abnormal condition
monitoring model is shown in Section IV. Cascading SAE
enables the reconstruction error to describe the operating state
of the wind turbine more accurately, and reduces the situation
that the large fluctuation of the wind turbine is mistakenly
identified as abnormal.

Under normal operating conditions of wind turbines, there
is a stable correlation between their SCADA variables. When
an abnormality occurs in the generator components, it is
manifested as an abnormal value of one or several SCADA
variables, resulting in a large deviation of SAE reconstruction
value. With the further aggravation of the abnormality, the
reconstruction error value also increases gradually, so the
reconstruction error can be used to judge whether the wind
turbine is abnormal. When the reconstruction error exceeds
the alarm threshold, it can be judged that the wind turbine
enters the abnormal alarm condition, which may be the
development stage of the early fault of the wind turbine.

In this paper, the alarm threshold for wind turbine anomaly
monitoring is determined by the isolated forest algorithm.
Isolated forest is similar to random forest, but the selection
of features for division and points for segmentation is
random each time, rather than based on information gain
or Gini index. During the tree building process, if a sample
reaches the leaf node quickly (i.e., the distance from the
leaf to the root is short), this sample may be anomalous.
Anomalous samples can be isolated by fewer times of random
feature segmentation compared to normal samples. The
reconstruction error of the second SAE is used as the input
of the isolated forest, and the alarm threshold is determined
by the value of the detected reconstruction error anomalies.

III. WIND TURBINE ABNORMAL CONDITION
CLASSIFICATION
To determine the type of abnormal condition of wind
turbine found by cascaded SAE, this paper predicts the
type of possible early fault or abnormal condition of the
wind turbine by LightGBM. LightGBM is an improved
optimization algorithm based on Gradient Boosting Decision
Tree (GBDT), by building multiple decision trees (base
learners) to synthesize the output of the decision tree
population to obtain the final result [31].

For given a data set with n examples and m SCADA
features D = {(xi, yi)}ni=1(xi ∈ Rm, yi ∈ R), LightGBM
predicts the abnormal condition type of wind turbines as ŷi.

yi is the target value corresponding to xi, i.e., the abnormal
condition categories of wind turbines. xi denotes the selected
SCADA features.

LightGBM uses K additive functions to predict the final
classification target, i.e.

ŷi = φ(xi) =
K∑
k=1

fk (xi), fk ∈ 0 (5)

where 0 = {fk (x) = ωq(X)} (q: Rm
→ T , ω ∈ RT ) is

the function space composed of decision trees. q denotes
the structure of each tree that maps an example to the
corresponding leaf index. T denotes the number of leaves in
the tree. Each fk corresponds to an independent tree structure
q and leaf weights ω.

In order to learn the set of functions in the model, the
learning objective function of LightGBM is

L(φ) =
∑
i

l(ŷi, yi)+
∑
k

�(fk ) (6)

where l is a differentiable convex loss function that measures
the difference between the prediction ŷi and the target yi.
�(f ) = γT + 1

2λ ‖ω‖
2 is the regularization term to penalize

the complexity of the model and prevent overfitting. γ and λ
are regularization coefficients.

let ŷ(t)i be the prediction of the i-th instance at the
t-th iteration, LightGBM adds a new function ft , i.e., uses a
stepwise forward additivity model to maximize the reduction
of the following objective function.

L(t) =
n∑
i=1

l(yi, ŷ
(t−1)
i + ft (xi))+�(ft ) (7)

Second-order approximation can be used to quickly
optimize this objective function.

L̃(t) ≈
n∑
i=1

[gift (xi)+
1
2
hif 2t (xi)]+�(ft ) (8)

where gi =
∂l(yi,ŷ

(t−1)
i )

∂ ŷ(t−1)i

, hi =
∂2l(yi,ŷ

(t−1)
i )

∂(ŷ(t−1)i )2
.

Define Ij = {i |q (xi) = j} as the instance set of leaf j. The

model complexity can be written as �(f ) = γT + 1
2λ

T∑
j=1
ω2
j .

The model objective function is

L̃(t) =
T∑
j=1

[ωj
∑
i∈Ij

gi +
ω2
j

2
(
∑
i∈Ij

hi + λ)]+ γT (9)

For a fixed structure q(x), the optimal weight of leaf j and
the corresponding optimal objective function value are

ω∗j = −(
∑

i∈Ij
gi)/(

∑
i∈Ij

hi + λ) (10)

L̃(t)(q) = −
1
2

T∑
j=1

[(
∑
i∈Ij

gi)2/
∑
i∈Ij

hi + λ]+ γT (11)

Assume that IL and IR are the instance sets of left and right
nodes after the split. Letting I = IL ∪ IR, the structure loss
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FIGURE 1. Structural framework of wind turbine condition monitoring.

reduction after the split can be used to determine whether to
divide and to identify the division candidates.

LightGBM’s base classifier is the classification and
regression tree based on histogram algorithm, which divides
feature values into many bins and searches for split points
on the bins. LightGBM abandons the level-wise decision
tree growth strategy and uses the leaf-wise algorithm with
depth restrictions. The LightGBM algorithm contains two
innovative techniques, which are the gradient-based one-side
sampling and the exclusive feature bundling, respectively,
that enable the model to handle large-scale data and features
more efficiently.

IV. WIND TURBINE CONDITION MONITORING
A. MODEL FRAMEWORK
In order to detect abnormal conditions during wind turbine
operation and to identify the type of that abnormality, a wind
turbine condition monitoring framework that incorporates
cascaded SAE and LightGBM is designed, as shown in
Figure 1.

The anomaly monitoring model based on two cascaded
SAEs is trained using wind turbine normal operation data.
The isolated forest algorithm is used to mine outliers for
the reconstruction error constructed by the second SAE, and
the alarm threshold is determined by the outliers. If the
reconstruction error is greater than the alarm threshold, the
operating status of the wind turbine is abnormal. The wind
turbine anomaly data are used as input to the cascaded
SAE model to calculate the reconstruction error. The input
SCADA data samples are labeled as normal or abnormal
based on the magnitude between the reconstruction error and
the alarm threshold. By adding labels to SCADA data with
known abnormal types, the LightGBM classification model
can be trained to further determine the fault category for the
abnormal data screened by the cascade SAE.

The idea of the wind turbine condition monitoring
framework is: based on the wind turbine SCADA data, the
cascade SAE monitors whether the wind turbine is abnormal
in a certain period, and LightGBM further identifies the
specific type of the abnormality.

B. MODEL TRAINING
The inputs to the training cascade SAE are multiple
SCADA characteristic variables of wind turbines under
normal conditions. In this paper, three types of faults in

TABLE 1. Selected SCADA feature variables.

generator bearing components of wind turbines are collected
and 10 important SCADA variables are selected, namely,
wind speed v, grid side power P, generator front bearing
temperature Ta, generator rear bearing temperature Tb, grid-
side three-phase voltage U1∼U3, and grid-side three-phase
current I1∼I3 as shown in Table 1.
The cascaded SAE-based abnormal condition monitoring

model for wind turbines requires training two SAE networks.
Different models of wind turbines need to be trained
separately for their respective anomaly monitoring models
and to determine the alarm thresholds. Before training the
first SAE in the anomaly monitoring model, polynomial
features need to be constructed.

The theoretical maximum power output of the wind turbine
is

P =
1
2
ρAv3Cp (12)

where Cp is called wind energy utilization coefficient, its
maximum value is 0.59. In the actual wind turbine power
limit is smaller than Baez’s law, usually take the value of
0.35∼0.45.

Since the theoretical maximum power output of the wind
turbine is proportional to the third power of wind speed, the
third power of wind speed v3 is added as the characteristic
variable. The above ten feature variables (removing the power
generation P and adding v3) are the base feature variables.
Since wind turbine power is related to a variety of parameters,
polynomial features of power 2 are generated with the wind
turbine SCADA base features. The constructed polynomial
features retain only the combined features between each
feature, i.e., they do not contain 0-th power features (i.e., 1),
features themselves (i.e., a, b), and combinations of features
themselves and themselves (i.e., a2, b2). After generating the
polynomial features, the correlation coefficient between the
polynomial features and P is found using wind turbine power
generation as the reference variable. The feature variables
with correlation coefficients greater than 0.8 are selected, and
finally 35 polynomial features are retained.
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FIGURE 2. Loss function curves of the first SAE.

FIGURE 3. Reconstruction errors between inputs and outputs of cascaded
SAEs.

These 35 polynomial features are used as the input of
the first SAE, and the output dimensions of each layer in
this SAE encoding process are set to 1000, 500, 250, and
50, respectively. The activation function is chosen as ReLU,
the loss function is chosen as MSE. The model parameters
are adjusted with the Adam optimizer. The variation of the
loss function curves in the training SAE process is shown in
Figure 2, which indicates that the fitting effect of both the
training and validation sets is good.

Letting the reconstruction error between the input and
output of the 1st SAE be the feature variable e′, the 10 features
in Table 1 with e′ (i.e., [x, e′]) are used as the input of the
2nd SAE. The output dimensions of each level of the 2nd
SAE coding process are set to 500, 250, and 50, respectively,
and other parameters are the same as the 1st SAE. The
reconstruction error (denoted by Re) constructed based on the
anomalymonitoringmodel of the two SAE cascades is shown
in Figure 3.

The alarm threshold for cascaded SAE anomaly monitor-
ing is determined by the isolated forest algorithm, and the
proportion of anomalies in the sample is set to 0.02. The
outlier points of the isolated forest detection reconstruction
error data distribution are shown in Figure 4. The average
value of all outliers detected by the isolated forest is
taken. In order to reduce the misjudgment of the condition
monitoring caused by the large fluctuation of the wind turbine

FIGURE 4. Distribution of outlier points of reconstruction error.

TABLE 2. Tuning parameters of LightGBM.

during normal operation, the reconstruction error is set to be
twice this average value. In this paper, if the reconstruction
error is greater than the alarm threshold and its duration
exceeds 30s (for wind turbines with a 1s acquisition interval),
these wind turbines are considered to have an abnormal
operation after that time.

The actual anomaly labels are added to the anomaly
feature samples [x, e′] detected by the cascaded SAE as
the input for training LightGBM. Because the proportion
of data corresponding to each anomaly label in the wind
turbine SCADA data is uneven, this paper uses stratified
sampling to ensure that the proportion of label samples used
for LightGBM training is the same as the original data set.
Bayesian optimization search and k-fold cross-validation are
used. The number of cross-validation is chosen as 5-fold to
determine the optimal LightGBM hyperparameters at one
time, as shown in Table 2. The trained LightGBM can output
the predicted anomaly types.

V. CASE STUDY
A. CASCADE SAE ABNORMAL CONDITION MONITORING
The reconstruction error calculated by the cascaded SAE
anomaly monitoring model is small under the normal
operation of the wind turbine. During abnormal hours or
early fault development, the reconstruction error increases
suddenly or has a creeping process. Comparing themagnitude
of the reconstruction error value with the alarm threshold can
identify whether an early failure or anomaly exists in the wind
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FIGURE 5. Reconstruction error of the wind turbine in Case 1.

FIGURE 6. Curves of wind speed and Ta in Case 1.

turbine. The cascade SAE abnormality monitoring capability
is analyzed with actual cases of 3 different wind turbines in
wind farms.

A wind turbine in Case 1, which collects SCADA cross-
section data every 1s, was shut down at the site on
2015-10-17 01:11:15 for the generator front bearing tem-
perature overrun fault. The cascade SAE found the anomaly
at the red dot in Figure 5 (i.e., 2015-10-16 13:03:21),
12:07:54 ahead of the site time (the alarm threshold set by
the isolated forest is 0.3786). The generator front bearing
temperature overrun fault is triggered by the generator front
bearing temperature greater than 95 degrees Celsius and lasts
for 5 seconds. In this paper, in order to reduce the false alarm
generated by operating fluctuations, the moment after the
reconstruction error is greater than the alarm threshold and
lasts for more than 30s is taken as the moment when the
hidden trouble occurs in the wind turbine.

As can be seen from Figure 5, the reconstruction error
of this wind turbine in the sample index interval [110000,
130000] after the red point falls back to normal. By analyzing
the curves of wind speed v and generator front bearing
temperature Ta (as shown in Figure 6), the wind turbine
was found abnormal near the red point moment. Larger
increases and decreases in Ta occurred, but Ta did not meet
the conditions for this wind turbine to trigger the temperature
overrun fault. In the sample index interval [110000, 130000],
the cascaded SAE judged that the abnormality of the wind
turbine has disappeared.

FIGURE 7. Reconstruction error of a single SAE in Case 1.

FIGURE 8. Reconstruction error of the wind turbine in Case 2.

A single SAE was constructed as a comparison to the
cascaded SAE model with the coding process with output
dimensions of 500, 250, and 50 for each layer, and the inputs
were the variables in Table 1. The wind turbine anomaly
monitoring of the single SAE is shown in Figure 7, which
amplifies the larger fluctuations of this wind turbine in the
sample index interval [90000, 130000]. At this point, the
variable Ta physically directly reflects the fluctuations of this
wind turbine and dominates the trend of the reconstruction
error. Although a single SAE can detect the abnormal
condition of wind turbines earlier than the cascaded SAE, it is
less robust and more affected by the larger fluctuations.

A wind turbine in Case 2 records a section data every 1s
and fails to shut down at 2015-07-24 04:50:00 in the field
due to generator rear bearing temperature overrun fault. The
cascade SAE model of this wind turbine was constructed,
and the isolated forest determined its alarm threshold to
be 0.4218. The reconstruction error of the cascade SAE at
2015-07-24 02:06:42 was greater than the alarm threshold,
and the wind turbine was judged to have an abnormality. This
fault was found earlier than the site at 02:43:18, as shown in
Figure 8. The trigger condition for the generator rear bearing
temperature overrun fault is after the generator rear bearing
temperature is greater than 95 degrees Celsius and lasts for
5 seconds.
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FIGURE 9. Reconstruction error of a single SAE in Case 2.

FIGURE 10. Curves of wind speed and Tb in Case 2.

Comparing the single SAE model (the model structure is
the same as the setup of the single SAE in Case 1), as shown
in Figure 9, the time to detect anomalies is similar to that
of the cascaded SAE. The single SAE is less resistant to
interference than the cascaded SAE, and both have roughly
the same reconstruction error variation trend.

The variable Tb physically directly reflects this fault of
this wind turbine. After the sample index value of 45000,
the trend of the reconstruction error is similar to the trend
of Tb, as shown in Figure 10. The generator bearing
temperature overrun fault needs to focus on the trend of
bearing temperature.

A wind turbine in Case 3 records a section data every
10min and fails to shut down at 2015-10-23 17:00:00 due to
damage to the front and rear bearings of the generator. The
cascade SAE model of this wind turbine was constructed,
and the isolated forest determined its alarm threshold to
be 0.3702. The reconstruction error of the cascade SAE at
2015-10-21 07:50:00 was greater than the alarm threshold,
and the wind turbine was judged to have an early fault. Its
fault was found at 09:10:00 earlier than the site, as shown in
Figure 11.

Compared with the single SAE model, as shown in
Figure 12, the single SAE model basically cannot detect the
early failure of this wind turbine, it only detects anomalies
in very short intervals. Its abnormality monitoring capability

FIGURE 11. Reconstruction error of the wind turbine in Case 3.

FIGURE 12. Reconstruction error of a single SAE in Case 3.

FIGURE 13. Curves of wind speed, Ta and Tb in Case 3.

is worse than the cascaded SAE. The trends of wind speed,
Ta and Tb of this wind turbine are shown in Figure 13. The
values of Ta and Tb fluctuate within the normal range before
the failure shutdown of this wind turbine.

When early faults occur in wind turbine operation, the
correlation relationship between variables is destroyed. But
the cascaded SAE model still outputs the corresponding
reconstructed variables for abnormal data according to the
correlation relationship in normal time, which leads to an
increase in the reconstruction error value, so the abnormal
condition or early faults of wind turbines can be monitored.
The samples with reconstruction error greater than the alarm
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TABLE 3. Confusion matrix for LightGBM anomaly identification results.

TABLE 4. Comparison of different classifiers.

threshold are added with normal or fault labels to practice
the LightGBM algorithm for further abnormal condition
categories.

B. LIGHTGBM ABNORMAL CONDITION CLASSIFICATION
After detecting the sample data of wind turbine reconstruc-
tion errors greater than the alarm threshold, the LightGBM
model is trainedwith the above three types of faults to identify
the corresponding anomaly categories. The LightGBM is
trained with the anomaly data detected by the cascaded SAE
for these three types of wind turbines, including three types of
fault conditions: generator front bearing temperature overrun
fault F1, generator rear bearing temperature overrun fault F2,
and generator front and rear bearing damage F3.
The wind turbine anomaly identification results are shown

in the confusion matrix in Table 3. The values in the table
indicate the number of entries of wind turbine SCADA data.
The diagonal data of the confusion matrix is the number of
correct classifications, and the off-diagonal is the number of
incorrect classifications in the corresponding row or column.

Table 3 shows that LightGBM was able to identify faults
F1 and F2 100% of the time, and for fault F3, there were very
few times when it was incorrectly classified as fault F2. The
reason for this could be the similar fluctuations in the changes
in the SCADA characteristics of the wind turbines for both
early faults after the reconstruction error was greater than the
threshold.

The cascaded SAE anomaly monitoring algorithms are
constructed in the same way for these three fault types
of wind turbines. Different types of classifiers are trained
based on SCADA anomaly data with added anomaly labels.
LightGBM was compared with support vector machine
(SVM), decision tree, random forest, and XGBoost, as shown
in Table 4.

FromTable 4, LightGBMhas better classification accuracy
than other classifiers. Random forest and XGBoost are
both decision tree based algorithms and their accuracy is
close to LightGBM. The Decision tree training speed is

faster than LightGBM because of the low complexity of
the decision tree model, so its training parameters take a
short time, but the decision tree accuracy is lower. XGBoost
accuracy is closest to LightGBM, and its training speed
is faster than other classifiers, but it is 6 times longer
than the training time of LightGBM. LightGBM has certain
advantages in training time and classification accuracy.
The effectiveness of LightGBM for wind turbine abnormal
condition classification is verified.

VI. CONCLUSION
In order to detect early faults or abnormal conditions of wind
turbine generator components in a timely manner, this paper
designs a framework for wind turbine generator condition
monitoring based on cascaded SAE and LightGBM, and
verifies the effectiveness of this framework through case
studies. By training the cascade SAE with normal operation
data of wind turbines and setting appropriate alarm thresholds
for different wind turbines, the abnormal data capture of early
faults of generator components is achieved. The problem of
difficulty in obtaining early fault samples in the field is also
solved. The cascaded SAE is less affected by the fluctuation
of wind turbine operation than the single SAE and has a
certain anti-interference capability. The parameters of the
LightGBM anomaly classification model are determined by
Bayesian optimization search and combined with stratified
sampling and 5-fold cross-validation. Compared with other
classifiers, LightGBM has higher classification accuracy and
faster training speed, and can accurately identify wind turbine
anomaly categories.
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