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ABSTRACT This paper proposes a deep Reinforcement Learning (RL) based co-design approach for joint-
optimization of wireless networked control systems (WNCS) where the co-design approach can help achieve
optimal control performance under network uncertainties, e.g. delay and variable throughput. Compared to
traditional and modern control methods where the dynamics of the system are important for predicting a
system’s future response, a model-free approach can adapt to many applications of stochastic behaviour.
Our work provides a comparison of how the control performance is affected by network uncertainties such
as delays and bandwidth consumption under an unknown number of devices. The control data is transmitted
under different network conditions where several applications transmit background traffic data using the
same network. The problem contains several sub-optimization problems because the optimal number of
devices is non-deterministic under network delay and channel capacity constraints. The proposed approach
seeks to minimize control errors in wireless network control systems in order to improve Quality of Service
and Quality of Control. This proposed approach is used and compared using three model-free RL Q-learning
algorithms for high-throughput flow control in a double emulsion droplets formation application. The results
show that the allowable number of devices for reliable network communication under bounded network
constraints is 10 when using binary search. The control performance of the system without considering
network effect in the reward function (Scenario 1) was good with the C51 algorithm; when including
OMNet++ based network effect in the reward function (Scenario 2), the best performance was achieved
with all three algorithms (C51, DQN, DDQN) with an exponential reward function, and only with C51 in
the case of a linear reward function. Finally, under random network conditions (Scenario 3), C51 and DDQN
performed well, but DQN did not converge. Comparisons with other machine learning and non-machine
learning algorithms also highlight the superior performance of the utilized algorithms.

INDEX TERMS Wireless networked control systems, co-design strategies, reinforcement learning.

I. INTRODUCTION
The outset of this work in wireless networked control sys-
tems (WNCS) stems from a multidisciplinary research effort
related to a microfluidics application. Microfluidics has
enabled automation in the pharmaceutical and diagnostic
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fields thanks to the use of small reagent volumes, increased
particle monodispersity with uniform drug composition,
and efficient evaluation methods for drug testing [4], [49].
To integrate microfluidic devices in the consumer market,
a highly synchronized flow rate is a major challenge to be
addressed [64]. For example, in the case of liposomal drug
delivery [46], [47] which is promising for high-throughput
cell screening, double emulsion could help in the better
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formation of droplets. The formation of double emulsion
droplets depends upon the synchronized delivery of the
reagents at a specific flow rate [56]. The formation of double
emulsion requires at least four pumping units for generat-
ing emulsions and additional pumps for reagents delivery.
To achieve a high flow rate, different techniques have been
proposed, which include several microfluidic units working
in parallel [34], [71]. This raises issues that include not only
the control of the devices but also the data communication and
storage for achieving efficient control in a high throughput
production unit. Our previous research focused on integrating
wireless Cyber-Physical System (CPS) concepts [8], [9] with
bioanalytical devices, which could help with efficient control
in a high throughput laboratory setup. Such a Cyber Bioan-
alytical Physical System (CBPS) integrates the physical and
biological processes with the computation and communica-
tion domains, enabling an efficient remote operation of the
processes, which is the future of laboratory automation.

In a CBPS, synchronization between the devices is
important to ensure the overall stability and reliability of
the system [73]. The fault tolerance and delay requirement
restrictions put constraints on the overall performance of
the system (as in the case of Ultra-Reliable Low Latency
Communications (URLLC)) [18]. These factors are affected
by delays introduced by the control systems, which include
computation and prediction delays, as well as the uncer-
tainties of the wireless networks, including queuing delays,
transmission delays and backhaul delays [41], [43]. It is thus
important to see the design of this sub-domain of CPS, i.e.
WNCS, as a co-design problem, [12], [42] rather than an
interactive design in which one design lies on top of the
other. The control and information distribution aspects of the
application can be exploited by looking at the co-design of
WNCSs. The principle of co-design of networked control
systems is well established [17] and Figure 1 shows the design
framework for networked controlled systems (inspired by

FIGURE 1. Framework for the co-design of networked controlled systems
(inspired by [17]).

the above-mentioned work), which acted as a starting point
for our work in WNCS. In this paper, we use reinforcement
learning to compensate for the delays of the systems (both
wireless and control) in order to optimize the overall system’s
error response reliability. The reason behind usingmodel-free
RL rather than model-based approaches is that when dealing
with massive systems, the delaymodels are non-deterministic
in nature; additionally, the physical dynamics of the system
might be unknown.

In addition, over a shared communication network, the
traffic pattern [24] could be highly non-deterministic, specif-
ically when dealing with event-triggered control; i.e., devel-
oping a traffic model over a shared communication network
is also a non-deterministic problem. Because of factors such
as data storage capacities and adaptability, simple search
algorithms become infeasible when attempting to cope with
changes in real-time as the problem complexity increases
with network growth. The use of online learning algorithms
could help solve these issues at the expense of convergence
time as compared to offline algorithms, which require a lot
of data. The proposed concept could even be extended to
Ultra Reliable LowLatency Communication (URLLC) appli-
cations in which the system is subject to stringent delay con-
straints and system-wide optimization is necessary to achieve
reliable performance.

A. SUMMARY OF CONTRIBUTIONS
Our contributions are summarized as follows:

1) We present our proposed joint optimization of WNCSs
using a co-design approach. The aim is to analyze
the benefit of using a model-free RL in stochastic
systems as compared to classical and modern control
methods.

2) To analyze the problem in-depth, classical optimization
theory is used to formulate the problem. The objective
of the problem is defined as the minimization of control
errors under network constraints as well as errors intro-
duced via the used reinforcement Q-learning technique.

3) The problem is extended for the application of droplet
generation using a stepper motor where the flow rate is
controlled by motor operation. To estimate the control
delays as close as possible to reality, we performed
the benchmarking of Raspberry Pi which is used as a
central control unit of fluidic pumps in our laboratory
setups. The wireless control of the pump is obtained
via WiFi and the network uncertainties were mimicked
using the OMNet++ simulation tool.

Furthermore, our proposed solution is evaluated under
three different network scenarios:
Scenario1: The network uncertainties, such as delay and

bandwidth consumption, were simulated using OMNet++.
The optimal number of devices was calculated using binary
search methods which satisfied the delay and bandwidth
constraints for reliable performance. Finally, RL was per-
formed using different algorithms, i.e., DQN, DDQN, C51,
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and LSTM, and a comparison was made based on the conver-
gence of the algorithms.
Scenario2: The delay and network data simulated via

OMNET++were used as a control factor during the RL envi-
ronment design and were also used as a dynamic parameter
in the reward function to obtain an efficient performance of
the algorithm under the network uncertainties.
Scenario3: The network uncertainties were defined as ran-

dom variables andwere introduced in the RL reward function.
To mitigate the overestimation errors, a deep Q-learning

algorithm is used instead of Q-learning and the performance
of the methods is compared with other model-free RL algo-
rithms including C51. Furthermore, our results show that
double-DQN is more efficient to mitigate overestimation
errors. These RL algorithms are equipped with an experience
replay buffer [5] which acts as a middle ground between
the offline and online algorithms; in turn this helps mak-
ing convergence faster. An experience replay buffer is used
to save the trajectory of previous experiences in order to
improve the learning process’s performance. The size of the
previous observation must not be too small nor too large;
i.e. updating the policy after each iteration will be extremely
time consuming, and updating it after too many observations
(which may overlook the pattern of change) will not improve
performance.

B. DESCRIPTION OF THE APPLICATION
The formation of single or double emulsion droplets helps in
high-throughput screening of the cell’s susceptibility for drug
formation and testing. There are several other applications of
microfluidic droplets in the chemical industry [20] other than
drug testing. In microfluidic applications, the formation of
a double emulsion requires a synchronized flow of the dif-
ferent reagents. As mentioned earlier, the generation of such
droplets requires at least four pumping units for emulsion
generation, and more if needed. These pumping units require
an efficient control method that guarantees the fluidic flow
from each pumping unit at a specified flow rate.

Control of such pumps over wireless networks could add
the possibility of cost-effective remote operation. However,
if the systems are running in parallel with other high-data-
consuming applications, such as video streaming, wireless
communication may introduce additional challenges such as
delay, packet loss, and channel congestion. Using classic
control methods or robust control methods, e.g. Proportional
Integral Derivative (PID) or Model Predictive Control (MPC)
could be highly inefficient for applications with high syn-
chronization requirements [28]. Indeed, one drawback of
PID is that it is ineffective for Multi-Input Multi-Output
(MIMO) systems and necessitates the tweaking of several
parameters to get the desired response; one drawback of
MPC it that it necessitates the modeling of the system’s
dynamics. The wireless network in a wireless control system
is non-deterministic by nature, necessitating the continual
adjustment of PID parameters or the development of theMPC
model.

However, using a model-free (Black box) [57] or semi-
supervised (grey box) implementation could help such a sys-
tem achieve an optimal response. RL is based on trial and
error methods and is derived from the field of psychology
e.g. animal learning [45]; several pumping systems controlled
over wireless networks will obtain the actions from the RL
agents working in parallel and might learn from each other
if necessary, as depicted in Figure 2. The use of the RL
algorithms assists in adaptation of the system to a higher level
without remodelling the system dynamics. Further details
of RL and its comparison with other control methods are
provided in the upcoming section II.

FIGURE 2. Reinforcement Learning Application for Distributed Systems.

C. PREVIOUS WORKS
Existing research in the topic of WNCS focuses on several
elements of its design challenge such as stability, reliabil-
ity, and energy efficiency. On the other hand, the use of
deep learning is mostly studied in the case of URLLC [53].
In work [29], a hybrid approach which combines wire-
less connectivity with wired connectivity for control of
Unmanned Aerial Vehicles (UAVs) has been provided. The
proposed reliable VANET routing decision scheme is depen-
dent on network conditions and is based on the Manhat-
tan mobility model. In [38], a model-free deep RL based
framework is analyzed for URLLC in downlink of OFDMA
systems while optimizing the power. A delay sensitive joint
optimization control studies has been carried out for net-
worked control systems in [41] for multi-loop systems,
emphasizing the importance of delay sensitivities in the
design of optimal control and network policies. In [36],
a clustering-based strategy for efficient energy optimiza-
tion in embedded processors for wireless sensor networks
is investigated in order to increase the lifetime of WSN
nodes and enhance better utilization of resources. In the
context of communication rivalry, an adaptive learning-based
approach for vehicle-to-vehicle and vehicle-to-infrastructure
communication has been presented in [52]. The gain settings
of the PID controller are explored under the influence of
non-linear delay using neural networks and ant colony opti-
mization in study [63], but other critical network parameters
such as packet error and channel capacity are not taken into
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account. The use of RL algorithms has been examined in
study [37] to handle the collision problem in vast IoT net-
works, with encouraging findings; the optimization problem
is modelled as a function of access delay, access success and
energy consumption rewards. A similar technique to ours has
been investigated in [68] with the goal of optimizing pla-
toon performance by accounting for wireless network delay
and control stability. However, the work models the vehicle
dynamics, which is a complex task in case the dynamics of
the application are unknown or difficult to model. In [35],
a framework for prediction and communication co-design has
been provided for improving reliability of URLLC systems
using optimization technique. However, a limitation of the
mentioned work is that the implementation requires the infor-
mation about the state transition of different parameters of
the system. In [26], an offline scheduling algorithm has been
proposed formachine-to-machine communications; however,
as mentioned earlier offline algorithms are less adaptable to
real-time changes. A joint optimization method for Quadratic
Linear Regulator (LQR) cost and energy consumption is
analyzed in [65], providing an energy-to-control efficiency
framework for URLLC in IoT systems, but where factors such
as channel capacity and number of users have not been taken
into account.

II. REINFORCEMENT LEARNING VERSUS
PREDICTIVE CONTROL
In reinforcement learning algorithm, an agent learns a strat-
egy to control an environment based on feedback and reward
strategy.

The state of the system is determined by valuation function
Q(s, a) which is based on the sum of expected rewards R
associated with previous states plus the discount factor γ
related to next states. The overall reward Rt is given by:

Rt = rt + rt+1, . . . , rn (1)

whereas the long-term reward is based on γ discount factor
is given by:

Rt+1 = rt+1 + γRt (2)

For policy π that defines the probability distribution for any
action a for state s, the valuation function is given by:

Qπ (s, a) = E[
T∑
i=t

γ i−tr(si, ai)] (3)

The valuation function tries to achieve an optimal value
Q∗(s, a) [58] where:

Q∗(s, a) = maxπQπ (s, a) (4)

Q-Learning is based on following Bellman update rule [6]:

Qt+1(st , at ) = Qt (st , at )+ α(rt+1
+ γ max

at+1∈A
Q(st+1, at+1)− Q(st , at )) (5)

where α denotes the learning rate. The reward function plays
a significant role in RL; to reach a particular objective. The

major challenges while designing a reward function includes
positive infinitive loop in the feedback of a reward function as
the objective would be achieved sooner while the agent has
not still learned all the possible scenarios. Including a dis-
count factor [39] in the reward function which comprises the
factor affecting the overall performance of the system such
as bandwidth assigned to each device after a certain device
has left the network could help solve the infinite loop. The
discount factor used in RL is similar to the quasi-hyperbolic
discount as mentioned in Equation 6.

f (t) = βρt (6)

The quasi-hyperbolic discount function gets a value of ρ
when β = 1; the discount factor solves the problem of
positive loop in the infinite horizon as well as adds the
contribution from the next states.

A. REINFORCEMENT LEARNING AND
PREDICTIVE CONTROL
Predictive control of any system is regarded as an optimiza-
tion problem where the problem is solved over a control
horizon based on the system dynamics. Classic and robust
control methods revolve around achieving a stable response
of the system e.g. PID, LQR, MPC, etc. MPC has been in
use for decades for solving networked control system prob-
lems thanks to its stable response [10], [67]. On the other
hand, RL is based on agent(s) and an environment where the
agent tries to learn the policy based on the feedback from
the environment to solve an optimization problem through
exploration and exploitation [66]. RL deals with how to learn
control strategies by acting as an optimization framework for
complex problems.

MPC algorithms might not converge in the real world
where problems are more complex and non-deterministic in
nature. Table 1 shows a brief comparison of RLwithMPC and
LQR. MPC might perform as close as to the RL algorithms
for convex problems [15], but for WNCS where the network
problem itself could be non-deterministic or non-convex in
nature, MPC control will fail to solve the problem in an
efficient manner [53] (see also Table 1).

B. MODEL-FREE REINFORCEMENT
LEARNING ALGORITHMS
In RL, an agent learns the policy or valuation function based
on dynamics of the system i.e. the model is given or learns
the model of the environment with provided data or practi-
cal implementation [21], [27], [54]. RL algorithms can be
model-based or model-free. In real-world problem where
the system model might not be present or demonstration
for a specific action is impossible, model-free algorithms
could play an undeniable role. The model-free RL algo-
rithms are divided into policy or valuation based learning
techniques [33], [59] and are further classified into different
algorithms as shown in Figure 3. In this work, our main focus
was to highlight the use of value-basedmodel-free algorithms
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TABLE 1. Reinforcement learning vs control methods.

FIGURE 3. Model-free Reinforcement Learning Algorithms.

in wireless networked controlled systems. Although provid-
ing only the bounds or rules for the environment should be
sufficient for these algorithms, we evaluated the response of
the algorithms with deterministic data.

The algorithms chosen in this work are extensions of
simple Q-learning algorithms including DQN, DDQN and
C51 also known as categorical DQN. The only difference
between Q-learning and DQN [62] is that the agent in DQN
is based on neural networks rather than a simple Q-table.
In DQN, an overestimation phenomenon is well observed due
to the maximization function [7]. To solve this overestimation
problem, DDQN uses two identical neural network models
where one learns the Q-value and the other is a copy of the
model learned from the last stage. Using a second model in
combination with the current state model helps the system
to evaluate different actions which might be more suitable
for some states rather than the one on which the system is
trained [1]. As compared toDQNorDDQN, categorical DQN

uses a distribution value of the return rather than an expected
value [11]. In multi-modal distributed data, where several
peaks may be present in the data and a single average can-
not truly represent the system’s response, categorical DQN
can solve the problem by looking at the distribution of the
Q-function.

III. PROBLEM FORMULATION
The problem can be considered as a single task being com-
pleted by a number of centralized distributed event-triggered
systems over a shared communication network where Table 2
provides definitions for necessary variables and symbols.
Data from each system is timed stamped, un-synchronized
and is transmitted under network imperfections (random
delay, variable sampling time, packet drops, packet reorder-
ing). The tasks are divided into p1, p2, . . . , pn systems and are
controlled via a series of controllers (c1, c2, . . . cn) with some
or no inter dependency. The input of any single system will
depend upon the learning parameter of controller i as well as

TABLE 2. Symbols & definitions.
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on the output of the same controller and on the output from
other controllers.

ui(t) = λi(y1(t), y2(t), . . . , yn(t)) (7)

Here we are trying to minimize the delay and mean square
error of the control system by prediction (model-free), where
ui(t) is the input of the ith system. Consider the ith systems is
defined by Equation 8 [50]:

xi(t + 1) = f (xi(t), ui(t), t)+ w(t) (8)

yi(t) = g(xi(t), ui(t), t) (9)

where w(t) is the additive disturbance, xi(t) is the state of the
system, yi(t) is the output of the ith system and ui(t) is the
input of the system. The control error of the system is given
by Equation 10

eic = yr (t)− yi(t) (10)

The learning algorithm is designed to compensate for con-
trol errors and additive disturbances in order to follow the
reference trajectory for optimum control performance as per
Equation 11:

λ1ui(t) = eic(t)+ w(t) (11)

A. DECISION VARIABLES | CONSTRAINTS
Several decision variables influence the control performance
of the systems, including network and control constraints.
The few variables that we included in our problem formu-
lation are as follow:

1) TRANSMISSION ACK
The binary valued vector for transmission acknowledgment
is defined such that:

δ(σ ) =

{
1 Transmission happens at t = σ
0 No transmission is happening

(12)

where δ is a function of σ (trigger condition)

2) DELAY CONSTRAINTS
The overall delay reduction for the system will ensure the
stability of the system. In the case of a wireless networked
controlled system with prediction and transmission happen-
ing over uncertain/un-reliable networks, the overall delay is
the sum of transmission delay dt , processing delay dp and
queuing delay dq. The delay of the overall system is random
in nature and could be modelled as Markov chains as if the
network is under congestion so all the systems over the net-
work will face delay. However, to ensure the stability of any
system i, the system should satisfy the following constraint:

d it + d
i
p + d

i
q ≤ Dmax (13)

where the transmission delay is upper bounded by the maxi-
mum channel capacity and is given by:

d it =
N i
p

Tr
(14)

where N i
p are the bits to be transmitted and Tr is the transmis-

sion rate. A complete End-to-End delay model has been dis-
cussed in [43]. There exists an inverse relationship between
transmission delay and effective bandwidth of network which
eventually puts a bound on queuing delay. However, in the
case of non-deterministic network, delay models (where an
upper bound on the overall E2E delay and channel capacity
is defined by separate tuning of different delay parameters)
might not be required. For further details about the relation-
ship between delay and number of devices one can refer
to [55], [72].

3) CHANNEL CAPACITY CONSTRAINTS
To ensure the efficient utilization of resources and minimum
transmission errors as well as packet loss, the information
transferred by the cumulative systems should be less than
the channel capacity. The channel capacity [13] is a function
of bandwidth and Signal-to-Noise Ratio (SNR) and is given
by Equation 15, where at any instance t the relation between
channel capacity and bandwidth is given by:

C = B log2(1+ SNR) (15)

where the SNR can be represented as a function of transmis-
sion power Pt , channel gain h and noise spectral density σ 2.

C = B log2(1+
Pt ||h||2

σ 2(B)
) (16)

To ensure reliability of the overall systemwhenN systems are
transmitting, the upper bound on channel capacity is given by:

N∑
i=1

Bi log2(1+
Pti ||hi||

2

σ 2
i (Bi)

) ≤ Cmax (17)

where N is number of devices and the upper bound on the
number of devices (Nmax) is effected by both capacity and
delay constraints.

4) SYNCHRONIZATION ERRORS
The synchronization error [43] between i and j agents is given
by:

es = E[
N∑

j=1,i6=j

Kij(yj(t)− yi(t))] (18)

where Kij is communication links between the ith and jth
agent. For simplicity, we define here a synchronization
parameter ξ is which depends upon how much output of agent
ith is delayed which will affect eventually output of jth agent.

ξ is = yj(t)− yi(t)) (19)

5) OVERESTIMATION ERRORS
RL is based on learning optimal policies in the Markovian
decision process where the objective function Q(s, a) learns
incrementally. The state learning depends upon reward r
and discount factor γ as in Equation 21. In presence of
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external noise ζ as′ , the q-learning overestimation phenomenon
occurs [61].
Lemma 1: Assuming the Q-learning happens under the

stochastic environment with i.i.d variablesX = X1,X2, . . .Xn
which introduces a noise ζ as′ with zero mean in the evaluated
function value, Q-learning overestimates in stochastic envi-
ronments.

This phenomenon was first reported by Thrun, Anton in
1993. In presence of noises the evaluation function approxi-
mates as

Qapproxt+1 (st , at ) = Qtargett+1 (st , at )+ ζ atst (20)

where the target evaluation function is given by

Qtargett+1 = Rt+1 + γ max
at+1∈A

Q(st+1, at+1) (21)

The error introduced by the environmental noise in Equa-
tion 21 is given by:

ϑ = Rt+1 + γ max
at+1∈A

Qapprox(st+1, at+1)− Rt+1

−γ max
at+1∈A

Qtarget (st+1, at+1)

= γ (Qapprox(st+1, at+1)− Qtarget (st+1, at+1)) (22)

The upper bound on this overestimation is given as in
equation:

E[ϑ] ≤ γ c; c = ε
n− 1
n+ 1

(23)

The upper bound is well proved by Thrun, Anton and is
included for the reader’s convenience (Lemma 2).
Lemma 2: [60] While f (x) denoting the density of noise

variables ζ as′ , in interval [−ε, ε] i.e., f (x) = Pr[ζ as′ = x] = 1
2ε

B. OBJECTIVE FUNCTION
The goal is to maximize Quality of Service (QoS) and Quality
of Control (QoC), which is achieved by minimizing synchro-
nization and control errors, and is expressed as follows:

max(QoS and QoC)

Which is based onminimization of control errors eic and noise
w(t) for ith system.

minf (eic,w(t))

The cost function for Mean-square control error is given by:

J ec = E[
N∑

j=1,i6=j

(yr (t)− yi(t))T (yr (t)− yi(t))] (24)

where yr (t) is the reference output. Based on constraints and
optimization goal, the overall objective with the constraints
is given as below:

min(E[
N∑

dq,dp,dt
Cmax ,j=1,N ,i6=j

(yr (t)− yi(t))T (yr (t)− yi(t))]) (25)

s.t. dt + dp + dq ≤ Dmax (25a)

N∑
i=1

Bi log2(1+
Pt
Biσ 2 zt ) ≤ Cmax (25b)

N ≤ Nmax (25c)

δ(σi) ≥ 0, δ(σi) ∈ {0, 1} (25d)

E[ϑ)]+ es ≤ εmax (25e)

E[ϑ] ≤ γ c; c = ε
n− 1
n+ 1

(25f)

es = E[
N∑

j=1,i6=j

Kij(yj(t)− yi(t))] (25g)

The objective is to reduce MSE under reliability con-
straints (25a, 25b, 25e) where constraint (25c) shows the
upper limit on maximum number of devices and con-
straint (25d) is a feasibility constraint.

C. FORMAL DESCRIPTION
The importance of the use of formal methods in understand-
ing the behaviour of stochastic systems has been discussed
in our previous research [8]. Learning automata have been
used for decades to solve complex problems like routing in
stochastic environments [31]. In this context, RL provides the
core of learning automata. A learning automaton based for-
mal description of the problem could help to understand the
considered problem in a perspective to replicate the approach
for multi-agent systems as shown in Figure 4.

FIGURE 4. Learning Automata for mutli-agent systems.

This section provides the necessary definitions for learning
automaton.
Definition: A learning automaton [3] is a tuple described

as L= (η, Act, P, pt , un, ζn, R)
where:
η→ Set of bounded input
Act → Defines the set of action in the action space

(a1, a2, . . . , an)
ζn → Defines the sequence of environmental response.

ζn ⊆ η

un→ Set of outputs/actions
P → Probability Space, which depends upon Probability

and Sigma-Algebra function (F) of a set for bounded inputs
and output sequence
Fn = σ (ζ1, p1, u1; . . . ; ζn, pn, un)
pt → Set of probability distribution
pt = [pn(1), pn(2), . . . , pn(n)]T
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pn(i) is conditional probability for the set of actions occur-
ring under σ algebra function and sum of probabilities
equates to 1
pn(i) = Pr{ς : un = u(i)|Fn−1} where Fn−1 ⊂ F
R→ defines the reinforcement scheme where
Rt+1 = rt+1+ γRt where Rt represents the overall reward

for the previous actions and γ is the discount factor
ζn→ conditional probability of the environment responses
ζt = [ζn(1), ζn(2), . . . , ζn(n)]T

IV. PROPOSED SOLUTION
As mentioned in the introduction section, a co-design
approach offers a more satisfactory optimal control perfor-
mance in the presence of wireless network constraints as
compared to an interactive design approach. To formulate the
problem, conventional optimization theory is used. The prob-
lem is formulated in mathematical form as indicated in Equa-
tion 25 with network constraints 25a, 25b, 25c, 25d, 25e, 25f
and 25g. The problem under consideration is highly
non-deterministic subjected that the number of devices (N )
communicating is unknown. To solve the problem, the initial
step is to calculate the maximum number of devices subject to
channel capacity, delays and errors. Here we assumed that the
minimum channel capacity required for each device to ensure
delay and a small error probability isC∗. The constraint (23g)
comes into play for multi-agent interaction; to simplify the
problem to a single agent, we have dropped the constraint
from (23g). Finding the solution to the problem consists of
the following steps:
Learning: As mentioned earlier, to ensure optimal control

performance a RL technique is used. Allocating a reward to
the output response of the system in a stochastic environment
under network constraints will help to achieve the desired
performance. In case of error greater than the defined control
threshold, the rewardwill be−1 i.e. a penalty, whereas in case
of small error the reward will be+1. Section III-C provides a
formal representation of the problem and the proposed algo-
rithm 1 summarizes the approach used to solve the problem.
Reliability: To ensure reliability, the channel capacity con-

straint must be satisfied, which puts a limit on the maximum
number of devices communicating. Thus, delays and errors
are co-related with the assigned channel capacity. To make
the problem simpler, constraints 23a, 23b, 23e are assumed to
satisfy a reliability upper bound κopt . κopt provides minimum
delay and errors under channel capacity constraints.

The maximum number of devices is obtained via a com-
mon binary search algorithm. Further discussion and expla-
nation can be obtained from the simulation and results
section V.

A. TIME COMPLEXITY ANALYSIS
1) TIME COMPLEXITY ANALYSIS FOR OUR APPROACH
For the proposed Algorithm 1, if a RL based approach is
used, the computational complexity for step1 for determin-
ing the channel capacity for each user and step2 for the

Algorithm 1 Proposed Algorithm to Solve the Co-Design
Problem
Require: End to End Delay, dp, d t , dq,N ,Bmax , bit-rate,

power, sensitivity, Signal-to-Noise Ratio(SNIR) threshold
and trigger coefficient

Ensure: min(J ec )
N ← n
Step1 :Determine Channel capacity for each user
Step2 :Determine Delay for each user
Step3 :Determine maximum number of allowable Users
while N ≤ Nmax and C ≤ Cmax do

if yref − yi is positive then
r ⇐ r + 1
yref ⇐ yi F Dynamic Reference Change

else if yref − yi is negative then
r ⇐ r − 1

else if yref − yi is zero then
yref ⇐ yi

end if
end while

delay estimation for each user is O(n). For step3, where the
upper bound on the number of maximum allowable users is
determined using a common binary search, the computational
complexity is O(logn). As for the while loop, the complexity
is O(n2). The complexity of the value iteration algorithm is
O(S2 × A× n) [22], where S are the states, A are the actions
and n is the number of iterations. Therefore, the total time
complexity of the proposed algorithm is given as

O(n+ n+ logn+ (S2 × A× n)2)

Thus, the overall time complexity of the proposed algorithm
becomes O((S2 × A× n)2).
In what follows, we also present, for reference, the time

complexity of approaches based on MPC and LQR.

2) TIME COMPLEXITY FOR AN MPC-BASED APPROACH
Assuming that the model of the system is given, the relation-
ship between the input and output variables of the system is
known. The complexity of the algorithm remains the same as
described above for our approach for step1, step2 and step3.
However, for the while loop, the complexity for determining
the output depends upon the number of inputs m and the
prediction horizon p [70]; thus, the overall time complexity
of an MPC-based approach under capacity and number of
devices constraint is given as:

O(n+ n+ logn+ ((m× p× n)3)2)

Hence, the overall time complexity will be O(m × p × n)3

in case of conventional MPC and O(mi × p × n)3 in case of
step-based MPC, where i represents the number of steps.

3) TIME COMPLEXITY FOR AN LQR-BASED SOLUTION
Assuming that the system dynamics are known and step1 −
step3 remains the same, solving the control problem
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(least-square) [14], [69] alone gives the time complexity as:

O(p× n3)

The total complexity, including the while loop, would turn
out as:

O(n+ n+ logn+ (p× n3)2)

where p is the control horizon; thus the overall time complex-
ity would be O(p× n3)2).

V. SIMULATIONS AND RESULTS
To evaluate the performance as close as possible to a real-life
scenario, we obtained the network and control parameters for
the pump used in our laboratory as shown in Figure 5. The
pump is integrated with a Raspberry Pi (RPi) to implement
a wireless controller over WiFi. The pump unit is a compact,
portable, dual-channel piezoelectric pump that uses 2 Bartels
mp6 piezo pumps in a closed-loop regulated pressure gen-
erator setup. The internal low-level controller is an ESP32
microcontroller, which will be connected to an RPi4 board.
RPI4 benchmarking was performed to obtain an overview of
its capabilities in terms of computation.

FIGURE 5. Our compact, portable, dual−channel piezoelectric pressure
generator (i.e. pump) for droplet microfluidics application.

A. NETWORK SIMULATIONS
OMNET++ is a powerful C++ based simulation tool for
wireless, wired and many other networks. OMNet++ was
used to obtain network parameters such as delay and channel
capacity for different numbers of devices. The results of
the network simulations were aimed at acquiring End-to-
End (E2E) delay, which consists of transmission delay (dt ),
processing delay (db), propagation delay (dp), and queuing
delay (dq) for control and background traffic applications.
The network was simulated around 802.11e standards with
the Quality of Service (QoS) service enabled and disabled [2].
In 802.11e, the MAC uses enhanced distributed channel
access (EDCA) by which the video and audio packets sent
can have different priorities, which helps achieve minimum
delay in delay-sensitive applications. Using the same ser-
vices, control commands were sent at the same priority level
as video in 802.11e which enforces that control packets will
be transmitted before the background traffic. The background
traffic model represents unnecessary load over the network

while transmitting control data. The network configuration
included controllers with static processing delay defined as
5 Sec, server, configurator, Access Point (AP) and radio
medium.

The upper bound on End-to-End (E2E) delay was defined
as 200 ms for control applications. The bit rates were defined
as 800 kbps and 33.3 Mbps for each control and background
application, respectively. The maximum channel capacity
was defined as 54 Mbps (2.4 GHz center frequency). The
network simulations were performed for different numbers
of devices i.e. 1, 5, 10,. . . , 15. Figure 6 gives an overview
of the delay achieved for control devices versus background
application when QoS is enabled for a single host. The con-
trol application experiences a constant and almost negligible
delay whereas background applications experience a huge
delay at the start and then tries to stabilizes; this initial delay is
due to packet accumulation when the application initializes.

FIGURE 6. End-to-End Delay [s] vs. Time [s] when simultaneously
transmitting control data and background data (QoS enabled).

FIGURE 7. End-to-End Delay [s] vs. Time[s] when transmitting control
data for 1 and 10 hosts (QoS enabled).

Figure 7 depicts how the delay increases when 10 hosts are
communicating control data, versus the case with 1 host due
to shared bandwidth. As the number of hosts increases, the
delay experienced by the control applications also increases.

Next, when QoS is not enabled, the control applications
are not prioritized and the control devices experience severe
delay and low throughput. Figure 8 shows the throughput for
the control versus background traffic when the QoS is not
enabled.

The simulations were repeated for different numbers of
host applications (N=1, 5, 10, 15); Figure 9 gives an overview
of the maximum throughput achieved for control applications
while QoS service is enabled.
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FIGURE 8. Throughput [Mbps] vs Time[s] when simultaneously
transmitting control data and background data (Non-QoS).

FIGURE 9. Throughput [Mbps] vs Time[s] when transmitting background
data for 1, 5, 10, and 15 hosts (QoS enabled).

As compared with the non-QoS case, the throughput of
the network changes over time, depending upon the data
transmitted by high priority applications. Because of this, the
throughput for control applications is comparatively higher
than the throughput of the background applications. The
average delay and throughput were calculated for control
and background applications from the gathered data under
QoS-enabled services; Table V-A summarizes the average
delay and throughput achieved for a different number of
applications.

Summary of the average delay and throughput achieved for
different number of applications (hosts) with QoS enabled

Number
of Hosts

Avg.Delay
[ms]

Avg.Throughput
[kbps]

1 2 32.4
5 102 39.2
10 119 52.6
15 245 65.6

B. REINFORCEMENT LEARNING RESULTS
As mentioned in the introduction section, the RL control of
the pump was obtained under network uncertainties using
three different approaches. To reduce the problem complex-
ity, the agents were assumed to be performing independently
from each other and the problem was solved for a single
agent interacting with the environment where other agents are
present and affecting the same environment. To add the effect
of delay and bandwidth consumption parameter in the reward
function, a reliability parameter ρ 6 was introduced in the

reward function. For accommodating different possibilities
where either delay or bandwidth consumed by the application
exceeds the upper bound, which in turn leads to packet loss,
the reliability parameter ρ was assigned a probability value
between 0 and 1.

The ρ factor was introduced in two different ways: as a lin-
ear multiplier, as well as an exponential multiplier, to analyze
the effect of it in the convergence of the algorithm.
Scenario 1:
In the first scenario, the network effects were not included

in the reward function of the RL environment. Three algo-
rithms, namely DQN, DDQN and C51 were used for the
learning of the agent. In addition to the state of the sys-
tem, the difference between allowable upper and lower
bound of the flow rate was factored in the reward function.
Figures 10, 11, and 12 show the average returns and loss for
DDQN, DQN and C51 agents, respectively.

FIGURE 10. Average returns and loss for DDQN without network.

FIGURE 11. Average returns and loss for DQN without network.

FIGURE 12. Average returns and loss for C51 without network.
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The performance was best with the C51 algorithm where
average returns were more stable; on the other hand, the
performance with DDQN and DQN was poor.
Scenario 2: As mentioned earlier, to mimic the real net-

work scenario, OMNET++ simulations were performed.
In Scenario 2, the simulation results were included as a
learning factor in the reward function either as an exponential
or a linear multiplier.

The results with C51 algorithmwith either exponential and
linear rewards, see Fig. 13, outperformed DDQN and DQN
with linear rewards.

FIGURE 13. Average returns for C51 with network simulations with Linear
and Exponential Rewards.

The results with DQN (see Fig.14) and DDQN (see Fig.15)
with exponential reward performed well.

FIGURE 14. Average returns for DQN with network simulations with
Linear and Exponential Rewards.

FIGURE 15. Average returns for DDQN with network simulations with
Linear and Exponential Rewards.

Scenario 3: To accommodate more uncertain network sce-
narios, both bandwidth consumption and delay were intro-
duced in the reward function as random variables.

Under random network conditions, C51 (see Fig.16) and
DDQN (see Fig.18) performed well whereas DQN (see
Fig.17) did not converged. This implies that although DQN
performed satisfactory average reward when the problemwas
limited to a single agent but taking into account for network
congestion or delay caused by other networks showed the
unsuitability of the agent in high network traffic scenarios.

FIGURE 16. Average returns for C51 with random network conditions
with Linear and Exponential Rewards.

FIGURE 17. Average returns for DQN with random network conditions
and Linear Rewards.

FIGURE 18. Average returns for DDQN with random network conditions
and Linear Rewards.

Figure 19 shows the variation of flow rate obtained over
30000 iterations where network simulations were included
in the reward function. It is evident from figure 19 that
the DQN takes a bit longer to reach a stable response for
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FIGURE 19. Flow Rate Prediction Under Network Constraints using
OMNet++ Network Simulation data.

flow rate; however, DDQN and C51 reach stable response
comparatively faster.

In addition to the above discussed scenario, we also ana-
lyzed other learning algorithms like LSTM using RNN for
scenario 2. A reliability parameter depending upon E2E
delay, number of devices and data rate was chosen between
0-1, the Poisson distribution of which was then used as a con-
trol error. A Poisson distribution for control error (based on
network parameters) is assumed due to the non-deterministic
nature of the system leading to no predefined distribution
of control error. The total time of computation for 30,000
iterations was recorded as 4m 12 sec. Figure 20 shows the
control error for prediction on training and test data for LSTM
algorithm using an RNN dense layer. Both of them look
back (previous timestamps) and the batch sizes were chosen
to be 50, and 333 different events were used as input data.
Covariance, Pearson’s correlation, and Spearman’s correla-
tion between two test flow rate data inputs (lying within the
constraints) and flow rate achieved by agents utilizing various
RL algorithms were analyzed for further evaluation of the
algorithms. Here, the covariance shows a linear relationship
between the test data and the actions taken by the agent for
achieving the optimal/desired response. The reported value
in Table 3 is the covariance between the variables and itself;
a positive value indicates a variable change in the same
direction whereas a negative value suggests a change in
the opposite direction. However, as the covariance is not a
best measure to characterize the relationship between data

FIGURE 20. LSTM Control Error vs Events.

TABLE 3. Performance evaluation of reinforcement learning algorithms
results.

because it is hard to interpret, the Pearson and Spearsman’s
relationships between variables is also analyzed. The possible
value of Pearson’s correlation lies between −1 to 1, and
values above 0.5 show a strong correlation between data in
the same direction, while values below −0.5 show a strong
correlation between data in the opposite direction. To account
for a non-linear relationship between test data and agent
actions, Spearsman’s correlation was also calculated, where
−1 shows a strong negative correlation and+1 shows a strong
positive correlation. As evident from the results summarized
in Table 3 for these evaluation metrics, C51 in scenario 1 and
scenario 2 outperforms the other algorithms, whereas DDQN
shows satisfactory results in some cases.

Another perspective to analyze is the role of the experience
replay buffer. As mentioned earlier, C51 is an offline learning
algorithm while DQN and DDQN are online learning algo-
rithms; the experience replay buffer provides a middle ground
for efficient operation. Based on the evaluation results, the
role of the replay buffer in improving the overall performance
of the C51 algorithmwas further analyzed for Scenario 2. Dif-
ferent batch sizes were used to store the previous observations
in the experience replay buffer and the cumulative rewards
were calculated. It is evident from Figure 21 that increasing
the batch size helps increase the average rewards in early
stages of the learning process, and the use of a small batch
size, leads to fewer cumulative rewards. However, drawing
a conclusion that ’the bigger the batch size the better the
performance’ is not true as continuous observation and update
improves policy. A frequent update of the observations is
required, making sure that storing enough past history for the
system to learn but not all of the observations. The overall
simulation results showed that even if the random network
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FIGURE 21. Replay Buffer: Batch Size vs. Average Returns for C51
Algorithm (Scenario 2).

conditions are used still C51 performs well to achieve an
optimal control performance in a stochastic environment.
Overall, the results show that reliability can be well achieved
using model-free RL approaches. The scalability of the sys-
tem is restricted by network constraints such as capacity and
system requirements, i.e. delay; this sets an upper bound on
the number of devices that can be supported under specific
network conditions. Event-triggered network control reduces
network load but introduces reliability issues which are out of
the scope of this work. However, as the problem complicates,
the method could take more time to converge. Although a
binary search can provide an estimate for the optimal number
of devices, it is best to include the network effects in the
reward function for the system to learn the possible network
scenarios for dynamic adaptation to network changes.

VI. CONCLUSION
In this work, we focused on the co-design for joint-
optimization of wireless networked controlled systems using
model-free RL. The research emphasized the importance of
wireless network constraints in addition to the control system
constraints to achieve an optimal system performance. The
paper focused on many aspects of the problem in terms
of optimization theory and argued the presence of various
factors which motivated the use of RL as compared with
classical and robust control methods. As a use case, the appli-
cation of the theory was implemented for double emulsion
droplet formation unit; DQN, DDQN and C51 algorithms
were used to achieve the control performance of the system
under bounded constraints. C51 was found to outperform
the other algorithms due to its multi-modal problem-solving
capabilities. The results also showed that the reward function
plays an important role in the agent’s learning process and
that designing the reward function carefully could help to
achieve better performance. Currently, our work does not
investigate the reliability issues introduced via event triggered
control for better efficiency. In the future, the aim is to explore

a middle ground between better performance and reliabil-
ity under different network scenarios using hybrid control
approaches. Also, the power constraints have not been studied
and are left for future work.

APPENDIX. LEMMAS
Lemma 1: Assuming the Q-learning happens under the

stochastic environment with i.i.d variablesX = X1,X2, . . .Xn
which introduces a noise ζ as′ with zero mean in the evalu-
ated function value. Q-learning overestimates in stochastic
environments:

With the noise introduced during learning the reward
attached with the Q-function is given as below:

ˆr(s, a) = r(s, a)+ ε

From probability theory the expectation of any variable Xi
is given by its distribution over the N samples and can be
formulated as below:

E[Xi] =
1
|Ni|

∑
xi∈N

xi

At each stage the reward will be higher than expected due
to cumulative errors added at each stage. Even if function
values are too small at any stage, due to maximum operator in
q-learning the function will tend to select the maximum from
the estimated distributions ψi.

max
i∈1,2,...,n

E[Xi] = max
i∈1,2,...,n

E[ψi]

At each stage the estimation is made from the maximized
estimates of the previous stages which leads to:

E[ max
i∈1,2,...,n

ψi] ≥ max
i∈1,2,...,n

E[ψi]

Under the assumption of ψi has non-zero probability the q-
learning will tend to overestimate.
Lemma 2: [60] While f (x) denoting the density of noise

variables ζ as′ , in interval [−ε, ε] i.e., f (x) = Pr[ζ as′ = x] = 1
2ε

E[ϑ] = E[γ (Qapprox(st+1, at+1)− Qtarget (st+1, at+1))]

= γE[ max
at+1∈A

ζ as′ ]

= γ

∫
∞

−∞

x n f (x)
(∫
∞

−∞

f (z)dz)
)n−1

dx

= γ n
∫
∞

−∞

x
1
2ε

(
1
2
+

1
2ε

)n−1

= γ n
∫ 1

0
(2εy− ε)yn−1dy

= γ n ε
∫ 1

0
2yn − yn−1dy = γ n ε(

2
n+ 1

−
1
n
)

E[ϑ] ≤ γ c; c = ε
n− 1
n+ 1
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APPENDIX. OTHER RESULTS
A. COMPARISON TO OTHER NON-MACHINE
LEARNING METHODS
To support our argument of using RL instead of simple search
algorithms, we analyzed the problem in more depth. For the
optimization problem Equation 25, we tried to compute the
linear approximation of the control error under constraints
based on the desired output and input data-set gathered using
simulations. For the computation, we used the well-known
‘‘Newton Raphson Method’’. However, the method failed to
converge within the first 50 iterations under the subset of the
acquired data. The use of ‘‘Least Square Minimization’’ and
‘‘Trust Region Constrained’’ algorithmswas also considered,
but as discussed earlier, the problem is non-deterministic in
nature, which did not lead us to any feasible implementation.
We also tried using ‘‘Binary Search’’ to solve other con-
straints of the problem, but the algorithm did not find any
solutions with the provided simulation data-set. The use of
a ‘‘Brute Force’’ algorithm was also tested; however, using
the whole dataset led our system to run out of memory,
or under best conditions, the algorithm was not able to find
any solution in a 4-5 hour period. This led to trying the use of
a smaller subset of the data; however, the algorithm did not
manage to find the optimal/desired solution.

B. COMPUTATION TIME
For the simulations, we used a Lenovo IdeaPad L340 Gaming
Laptop equipped with an Intel (R) Core (TM) i5-9300H CPU
@ 2.4 GHz. Table 4 shows the computation time for the three
scenarios for the implemented RL algorithms.

TABLE 4. Computation time taken by reinforcement learning algorithms.
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