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ABSTRACT In order to improve the torque and suspension performance and reduce the torque ripple of
spherical axial split-phase permanent maglev flywheel machine (S-AP-MF), a multi-objective optimization
design method based on kriging model was proposed. A joint simulation model of S-AP-MF is constructed
using Maxwell and Isight, and the sample data set is obtained. Then, latin hypercube method is used to
select samples evenly and hierarchically to conduct sensitivity analysis on S-AP-MF structural parameters
and obtain the variables to be optimized. Based on this, to improve the model accuracy and optimization
efficiency, the kriging model and neighborhood cultivation genetic algorithm (NCGA) are used to obtain the
optimal parameter set of S-AP-MF. Finally, the torque performance and levitation force characteristics before
and after optimization are analyzed and compared by finite element method. The results show that the torque
and average levitation force of the optimized S-AP-MF are increased by 9.54% and 5.51% respectively, and
the torque ripple is reduced by 27.95%, which verifies the effectiveness of the proposed method.

INDEX TERMS Spherical axial split-phase permanent maglev flywheel machine, kriging model,
multi-objective optimization.

I. INTRODUCTION
Flywheel energy storage system (FESS) has the advantages of
zero pollution, high energy storage density and rapid charge
and discharge. It can be used in the fields of uninterruptible
power supply, electric vehicle, rail transit, wind power system
frequency modulation and so on [1]–[4]. The machine used
in flywheel energy storage as the core component of FESS
directly affects the energy storage density and operation
reliability of the system. Considering the integration and
reliable and efficient operation of FESS, a new type of axial
split-phase permanent maglev flywheel machine (AP-MF) is
proposed in [5], and the characteristics of natural decoupling
of electromagnetic torque and levitation force of AP-MF
are verified by experiments. AP-MF sets a magnet separator
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between the suspension pole and the torque pole to weaken
the coupling effect of the levitation magnetic circuit and
the torque magnetic circuit. The permanent magnet arranged
between the two phases is also beneficial to improve the
suspension stability of the machine. However, the magnetic
pole of the machine adopts cylindrical salient pole structure,
which leads to the uneven distribution of magnetic flux
density in space. Changing all the magnetic poles of the
machine into a spherical structure can effectively improve
the global uniformity of air gap magnetic density and obtain
better torque and suspension performance. Therefore, based
on the characteristics of the improved spherical machine,
this paper studies and optimizes the torque and suspension
performance of the spherical AP-MF (S-AP-MF).

The finite element model (FEM) analysis method is
often used in the optimization design of the machine. The
high-order nonlinear machine model FEM with complex
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structure usually needs to be iterated many times, which
greatly weakens the optimization efficiency of the complex
structure. An agent model is a model that uses mathematical
methods to approximate the relationship between input and
output parameters. After meeting the accuracy, it can replace
FEM, reduce the workload of calculation and improve the
optimization rate. Therefore, to improve the optimization
efficiency of machine, different proxy models are applied
to the field of optimization, such as response surface
model [6], [7], neural network model [8], [9], Kriging
model [10], [11], support vector machines [12], [13] and
polynomial chaos expansion [14], [15] and so on.

Response surface method is based on experimental design,
which uses the determined polynomial function to approx-
imate the real function relation, and has the shortcoming
of low fitting accuracy in high-order complex system [16].
The generalization ability of the model established by the
neural network method is poor. The support vector machine
method is a complex machine learning modeling process,
while the polynomial chaos expansion method is abstruse
and suitable for uncertainty analysis [17]. Compared with the
surrogate model above, the Kriging model has higher fitting
accuracy for highly nonlinear and high-order processes,
simple modeling, and less sample points required for the
optimization of the machine [10].

The proposal of intelligent optimization algorithm broad-
ens the train of thought in the field of optimization
design. The intelligent solar tracking system proposed in
reference [18] integrates the two-axis solar tracking system
with the maximum power point tracker. The particle swarm
optimization algorithm is used to optimize the parameters
of the PI controller to improve the output power of solar
cells. The solar powered of Stirling engine is optimized by
genetic algorithm in reference [19]. Further, some researchers
combine intelligent algorithm with agent model to carry out
optimization design.

Literature [20] combines kriging proxy model with
genetic algorithm and selects spherical function to construct
Kriging surface interpolation to optimize the torque ripple
of switched reluctance motor. In [21], Kriging model and
genetic algorithm are combined to improve the optimization
efficiency for torque ripple optimization of permanent
magnet motors. However, the traditional genetic algorithm
has the problems of poor local search ability. The internal
magnetic field of S-AP-MF has the characteristics of high-
order nonlinearity, which puts forward higher requirements
for the accuracy and reliability of the optimization algorithm.
The neighborhood cultivation genetic algorithm (NCGA)
can solve the multi-objective optimization problem. And the
neighborhood crossover mechanism in it helps to improve the
local search ability and improve the accuracy of the optimal
solution.

Considering the present situation of the research above,
in order to improve the accuracy and speed of the optimiza-
tion algorithm, taking improving the torque and suspension
performance of the S-AP-MF as the optimization goal, this

paper proposes a NCGA optimization method based on
Kriging proxy model to realize the optimization design.
In order to improve the accuracy of the proxy model,
the multi-disciplinary analysis software Isight and Maxwell
were used for joint simulation. The latin hypercube method
was used to select samples uniformly and stratified, and
the sensitivity analysis of S-AP-MF structural parameters
was carried out to obtain the variables to be optimized.
Combined with the kriging model, the high-precision kriging
model of S-AP-MF was established, and the multi-objective
optimization model was established. NCGA was used to
optimize the parameters to get the best combination. Finally,
the torque and suspension performance before and after
optimization were compared by finite element analysis.

The core contributions of this study are summarized as
follows:

1) The integration of Isight and Maxwell realizes the
efficient and accurate acquisition of sample point data
sets by the data interaction between the two software.

2) The sensitivity analysis of the parameters affecting the
optimization goal is carried out to obtain the main
variables affecting the optimization goal.

3) The kriging model with few sample points and high
fitting accuracy is applied to the machine optimization
problem instead of the traditional FEM, which greatly
improves the optimization efficiency.

4) The optimization method of the combination of kriging
model and NCGA is used to optimize the three
optimization objectives globally. The neighborhood
crossover mechanism in NCGA helps to elevate the
local search ability and improve the accuracy of the
optimization solution.

The remainder of this article is organized as follows.
In Section II, we provide the basic structure of S-AP-MF.
In Section III, we propose an optimization method based
on kriging model applicable to S-AP-MF. In Section IV,
we describe the multi-objective optimization and thoroughly
analyze the optimization results by finite element method in
Section V. Finally, we draw conclusions in Section VI.

II. THE BASIC STRUCTURE OF THE MACHINE
The structure of S-AP-MF is shown in Figure 1. The basic
structure of the machine mainly includes flywheel, rotor,
stator core, magnetic isolation ring, permanent magnet and
so on.

S-AP-MF is divided into A and B phases in the axial
direction, and the axial length is short, which is beneficial to
the integration of the machine. There are 8 torque poles and
4 suspension poles in each phase, and a magnetic isolation
ring is arranged between the torque pole and the suspension
pole, which weakens the electromagnetic coupling between
the torque magnetic circuit and the suspension magnetic
circuit. The torque pole control coils are connected in series
to form torque windings, and the radial relative suspension
control coils on the two suspension poles are connected in
series to form suspension windings; An axially magnetized
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FIGURE 1. Topology of machine.

TABLE 1. Initial structural parameters.

permanent magnet is arranged between the two phases to
provide permanent magnet bias magnetic flux to generate
levitation force. The stator and rotor cores adopt spherical
structure with a common spherical center, and when the rotor
is deflected, the electromagnetic force always points to the
spherical center of the rotor, thus avoiding the generation
of disturbing torque. The initial structural parameters of the
S-AP-MF are listed in Table 1.

III. OPTIMIZATION METHOD BASED ON KRIGING MODEL
Kriging surrogate model was first put forward by krige in
the field of geostatistics, Matheron developed the concept
of geostatistics and used kriging proxy model to deal with
deposit preservation and error estimation [22]. In recent
years, among many agent models, kriging agent model has
attracted wide attention because it can accurately and effec-
tively deal with high-dimensional nonlinear problems. The
kriging agent model can effectively improve the optimization
speed of the machine instead of the FEM, and its construction
process is shown in Figure 2.

A. OPTIMIZATION OBJECTIVES AND SELECTION OF
OPTIMIZATION VARIABLES
S-AP-MF adds a permanent magnet from the point of view of
improving the suspension control precision, but its operation
principle is still similar to that of the switched reluctance
motor and follows the ‘‘magnetoresistance minimum prin-
ciple,’’ which leads to the inherent defect of the switched
reluctance motor-large torque ripple. Therefore, in order to
improve the torque and suspension output and reduce the
torque ripple, the torque, suspension force and torque ripple

FIGURE 2. Kriging model construction process.

are selected as the target variables, in which the torque ripple
m can be theoretically calculated by formula (1).

m =
Tmax − Tmin

Tavg
(1)

where, Tmax , Tmin and Tavg refer to the maximum, minimum
and average of the measured torque, respectively.

The change of the parameters between the stator and rotor
poles will affect the flux conduction path, and then affect the
electromagnetic performance of the machine [23]. Therefore,
this paper selects 8 design variables: stator ball radius R, rotor
tooth width W1, suspension tooth width W2, torque pole arc
P, torque tooth width W3, torque yoke high H1, rotor tooth
height H2, rotor yoke height H3 to study the influence on
torque performance and suspension force.

B. DESIGN OF EXPERIMENT (DOE)
With mathematical statistics as the theoretical support,
DOE arranges the experimental scheme scientifically and
reasonably, which is helpful to correctly analyze the influence
of input parameters on output parameters and improve
the accuracy of the agent model to a certain extent. This
experimental design adopts latin hypercube sampling and
selects eight design variables: stator ball radius, rotor tooth
width, suspension tooth width, torque pole arc, torque tooth
width, torque yoke height, rotor tooth height and rotor yoke
height to study the influence on machine output performance.
The initial values and ranges of design variables are listed in
Table 2.
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TABLE 2. Initial value and variation range of design variables.

There are many parameters that affect the torque and
suspension performance of S-AP-MF. From the point of
ensuring the accuracy of proxy model and improving
optimization efficiency, sensitivity analysis is carried out on
eight design variables: stator ball radius, rotor tooth width,
suspension tooth width, torque pole arc, torque tooth width,
torque yoke height, rotor tooth height and rotor yoke height.
Eight design variables are sampled by latin hypercube and
20 sets of data sets are obtained by simulation, and then the
sensitivity analysis of 20 sets of data is shown in Figure 3.

As can be seen from Figure 3, the factors that have great
influence on torque are stator ball radius, suspension tooth
width, torque tooth width, rotor yoke height and torque
yoke height; the factors that have great influence on torque
ripple are stator ball radius, suspension tooth width, torque
tooth width and torque yoke height; The factors that have
great influence on suspension force are stator ball radius,
suspension tooth width, torque tooth width and torque yoke
height. There is little difference between the absolute values
of the sensitivity of rotor yoke and torque yoke to torque,
indicating that the effects of rotor yoke and torque yoke
on torque are similar. Considering the sensitivity of each
design variable to the target variable, the stator ball radius,
suspension tooth width, torque tooth width and torque yoke
height are selected as the optimization variables.

C. AGENT MODEL
The mathematical expression of the relationship between the
variables and responses represented by the Kriging surrogate
model is shown in (2):

y(x) = u(x)+ z(x) (2)

where, y(x) represents the response function, u(x) is the
polynomial used to approximate the model, z(x) is a
stationary random process related to the deviation of the
regression model and the objective function, the mean is zero,
and its covariance matrix is

Cov[z(xi), z(xj)] = σ 2R(θ, xi, xj) (3)

where, σ 2 represents the variance of z(x), and R(θ, xi, xj)
takes θ as the parameter to represent the spatial relationship

FIGURE 3. Parameter sensitivity analysis. (a) torque. (b) torque ripple.
(c) average levitation force.

between the two test points i and j. In this paper, the Matern
Cubic function is used as the relevant function, and the
function is expressed as:

R(θ, xi, xj) =
∏1+ θ

∣∣∣xi − xj
∣∣+ 1

2θ
2
∣∣xi − xj

∣∣
3


× e−θ|xi− xj| (4)

In the formula above, θ is the fitting correlation coefficient,
and the kriging fitting effect of the three target values is shown
in Figure 4.

The analysis of the fitted plots of Figure 4 is as follows: The
influence of the stator ball radius on the torque pulsation is
more prominent. As the stator ball radius becomes larger, the
torque pulsation is effectively suppressed; The torque value
shows an increasing trend when the stator ball radius and the
torque pole tooth width increase in size. This is due to the
fact that the inductance value becomes larger as the square
area between the stator torque pole and rotor pole becomes
larger; Similarly, the suspension force increases with the
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FIGURE 4. Fitted value of response variable based on Kriging model. (a) torque. (b) torque ripple. (c) average levitation force.
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grow in the size of the suspension tooth width. It is worth
mentioning that the suspension force increases as the stator
ball radius decreases. This is probably due to the fact that
the overall size of the machine becomes smaller as the radius
of the stator ball decreases, and the levitation force gener-
ated by the biased permanent magnets becomes relatively
larger.

D. ERROR ANALYSIS
In order to ensure the accuracy of the agent model, it is
very necessary to analyze the error of the established
kriging model. The usual method is to select additional
sample points for error analysis, and the error can be
calculated approximately instead of the original one within
a reasonable range. In this paper, R2 coefficient (multiple
correlation coefficient) is used to evaluate the accuracy of the
approximate model [24].

R2 = 1−

n∑
i=1

(
yi − yip

)2
n∑
i=1
(yi − ȳ)2

(5)

where, n is the number of additional sample points selected
for error test; p is a number between 1 and n; yi is the true
response value corresponding to the ith sample point; yip is
the predicted value of the proxy model corresponding to the
ith sample point; ȳ is the average of the true response values of
n sample points. The value of R2 ranges from 0 to 1.When the
value of R2 is zero, the proxy model has no correlation with
the actual model at all. The closer the value of R2 is to 1, the
higher the accuracy of the approximate model is. Generally,
if the value is greater than 0.9, it is considered to have a high
precision.

As shown in Figure 5, the 45◦ diagonal line in it represents
that the predicted and actual values coincide completely, and
the actual and predicted values of torque, torque pulsation
and suspension force are basically on this diagonal line,
and the R2 value of them is 0.9865, 0.9851 and 0.917
respectively.

This error result shows that the approximation model
selected in this paper has high confidence and can replace
the FEM for subsequent optimization calculation.

IV. MULTI-OBJECTIVE OPTIMIZATION
In the multi-objective optimization problem, the optimal
solution satisfying one objective will not satisfy other
objective functions at the same time, so it is necessary to
find the non dominated solution, that is, the pareto solution.
The mathematical expression of multi-objective optimization
problem is as follows [25]:

MinF(x) = (f1(x), f2(x), · · ·, fk(x))T

x = (x1, x2, . . . , xn)T ∈ D (6)

where: x is the decision variable; D is the decision space; k is
the number of target functions; F(x) refers to the objective

FIGURE 5. Error analysis. (a) torque. (b) torque ripple. (c) average
levitation force.

vector consisting of objective functions f(x), and n is the
objective space.

Suppose xA is a feasible solution of Eq. (6), and there is no
other feasible point xB to make formula (7) hold, then xA is a
non-dominated solution (pareto solution).{

fi(xB) ≤ fi(xA) ∀i = 1, 2, · · · , k
fj(xB) < fj(xA) ∃j = 1, 2 · · · , k

(7)

The Kriging model built above is used to replace FEM,
and NCGA is used to optimize the S-AP-MF. NCGA is
developed from genetic algorithm, in which all targets have
the same importance. After sorting all targets, ‘‘adjacent
propagation’’ is realized by crossing, thus increasing the
probability of cross propagation of solutions close to pareto
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frontier and accelerating the convergence process [24]. The
steps of NCGA optimization algorithm are as follows:

¬ Initialization: t = 0, set the first generation individ-
ual P1, the population number is N , calculate the fitness
function A corresponding to the individual.

 When t = t + 1, Pt = At−1.
® Sorting: individuals are sorted according to the direction

of the target value.
¯ Grouping: divided into several groups according to the

order of step ®, each group has two individuals.
° Crossover and variation: the two parent individuals

generated in step ¯ produce two offspring individuals, and
at the same time, delete the parent individuals.

± Recombination: all progeny form a new Pt .
² Update: N individuals were selected between At−1 and

Pt based on the environment selection mechanism.
³ Termination: if the conditions are met, end, otherwise

return to step .
Due to the analysis above, the mathematical model of

S-AP-MF’s torque T , torque pulsatio m and suspended force
Favg can be described as follows:

F(x) = (f1(x), f2 (x) , f3 (x))
s.t. x = (R,W2,W3,H1)

f1(x) = maxT
f2(x) = minm
f3 (x) = maxFavg

(8)

According to the fitting analysis of the agent model above,
in the multi-objective optimization problem of torque, torque
pulsation and suspension force, there is a contradiction in
the parameter selection of stator ball radius. At this time,
we need a compromise solution to reconcile the two objective
function values, so it is necessary to apply the multi-objective
optimization algorithm.

Figure 6 shows the optimization iteration process. The
optimal scheme is obtained after 142 iterations. At this
time, the machine optimization scheme is listed in Table 3.
Figure 7 shows the pareto front of the feasible solution
obtained in the optimization process, and the circled feasible
solution is the optimal solution selected by this optimization
design. Torque, torque ripple and levitation force can not
be optimal at the same time, and there is a contradiction
among them, so we can only choose our optimal solution by
compromise. It can be seen from Figure 7 that the torque
and levitation force of S-AP-MF are ideal and the torque
ripple is low in 142 iterations. Therefore, the feasible solution
of 142 iterations is selected as the optimal solution of this
decision.

V. ANALYSIS OF OPTIMIZATION RESULTS
According to the NCGA optimization method based on the
kriging surrogate model, the optimized parameter values
are obtained, and the FEM is established. The torque
and suspension performance of FEM before and after

FIGURE 6. The optimization iteration process. (a) torque. (b) torque
ripple. (c) average levitation force.

TABLE 3. Optimization results.

optimization are compared to verify the rationality of the
proposed optimization method.

Figure 8 presents a comparison of torque and suspension
performance before and after optimization. The analysis
results show that the optimized torque and suspension
performance are significantly improved. From Figure 8(a),
it can be seen that the torque curve of the optimized machine
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FIGURE 7. Pareto front of optimization.

FIGURE 8. Comparison of optimization results. (a) torque performance.
(b) average levitation force.

is smoother than that before optimization. The torque ripple
value is dropped from 1.578 N·m, to 1.137 N·m, and the
torque ripple is effectively suppressed. While the torque
ripple is optimized, the torque output is also improved, and
the average torque is rose from 1.699 N·m to 1.861 N·m. The
average suspension force of the machine is increased from
269.67 N to 284.52 N, which is 5.51% higher than that before
optimization.

VI. CONCLUSION
In this paper, the spherical axial split-phase permanent
maglev flywheel machine has been taken as the research

object, and the torque, torque pulsation and levitation force
of the machine have been optimized based on kriging model
and NCGA algorithm. The latin hypercube was used to
construct the sample set, and combined with the finite
element calculation, an approximate model is fitted to replace
the FEM with high calculation cost. For this model, the
pareto solution set was derived by NCGA algorithm to obtain
the optimal solution. The optimized parameters and initial
structural parameters were calculated by FEM. The analysis
results show that the torque and average levitation force
have been increased by 9.54% and 5.51% respectively, the
torque tripple has been reduced by 27.95%, which verifies
the effectiveness and reliability of the optimization method.
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