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ABSTRACT Multimodal machine translation (MMT) is an attractive application of neural machine transla-
tion (NMT) that is commonly incorporated with image information. However, the MMT models proposed
thus far have only comparable or slightly better performance than their text-only counterparts. One potential
cause of this infeasibility is a lack of large-scale data. Most previous studies mitigate this limitation by
employing large-scale textual parallel corpora, which are more accessible than multimodal parallel corpora,
in various ways. However, these corpora are still available on only a limited scale in low-resource language
pairs or domains. In this study, we leveraged monolingual (or multimodal monolingual) corpora, which are
available at scale in most languages and domains, to improve MMT models. Our approach follows that of
previous unimodal works that use monolingual corpora to train the word embedding or language model
and incorporate them into NMT systems. While these methods demonstrated the advantage of using pre-
trained representations, there is still room for MMT models to improve. To this end, our system employs
debiasing procedures for the word embedding and multimodal extension of the language model (visual-
language model, VLM) to make better use of the pre-trained knowledge in the MMT task. The results of
evaluations conducted on the de facto MMT dataset for the English–German translation indicate that the
improvement obtained using well-tailored word embedding and VLM is approximately +1.84 BLEU and
+1.63 BLEU, respectively. The evaluation on multiple language pairs reveals their adoptability across the
languages. Beyond the success of our system, we also conducted an extensive analysis on VLMmanipulation
and showed promising areas for developing better MMT models by exploiting VLM; some benefits brought
by either modality are missing, and MMTwith VLM generates less fluent translations. Our code is available
at https://github.com/toshohirasawa/mmt-with-monolingual-data.

INDEX TERMS Multimodal machine translation, natural language processing, neural machine translation.

I. INTRODUCTION
In multimodal machine translation (MMT), a target sentence
is translated from a source sentence together with related
nonlinguistic information, such as images. Since the develop-
ment of a multimodal parallel corpus, namely, Multi30K [1],
most research in this area has focused on incorporating
static images into encoder–decoder neural machine transla-
tion (NMT) systems. In an image-guided machine translation
task, the multimodal NMT models are expected to disam-
biguate lexical ambiguity in the source and target languages

The associate editor coordinating the review of this manuscript and

approving it for publication was Arianna Dulizia .

or correct inaccurate expressions in the source sentence [2].
These models should also resolve language phenomena that
exist only in the target languages. The success of MMT has
encouraged its application in translating subtitles of movies,
utterances in conferences, and descriptions of paintings.

Following the proposal of the encoder–decoder NMT
model [3], large-scale parallel corpora have been built to train
better NMT systems. For news translation, an English–Czech
NMT system acquired 170k data and achieved quality on
par with that of human translators [4]. More recently, [5]
employed over 200M data to train an English–German and
English–Japanese NMT model that won first place in an
international competition [6]. However, the Multi30K [1],
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a well-established corpus for image-guided machine trans-
lation tasks, is annotated based on an image-captioning
dataset (Flickr30K [7]), and comprises 30k tuples of image,
English sentence, and German sentence. Compared to the
datasets used for news translation or other text-only transla-
tion tasks, the Multi30K dataset is considered a low-resource
dataset. Owing to a lack of available large-scale datasets,
training high-quality MMT models is challenging, and has
resulted in only ‘‘modest’’ improvement being achieved from
using image information [8]. To address this problem, pre-
vious studies employed large-scale textual parallel corpora.
[8] trained a text-onlyNMTmodel on a textual parallel corpus
(OpenSubtitles [9]) and translated a multimodal monolingual
corpus (MS-COCO [10]) to augment the data for training
MMT models. More recently, [11] also employed the same
strategy to augment the training data. They trained a visual
translation language model (VTLM)—an extension of the
translation language model (TLM) [12]—and transferred the
weight of the VTLM to initialize MMT models. Despite
the success of these approaches, the limitations on the use of
large-scale ‘‘parallel’’ corpora circumscribe their availability
in low-resource languages.

In this study, we focus on manipulating knowledge
obtained from either textual or multimodal monolingual cor-
pora, which is more feasible for the low-resource domain.
Specifically, we prove the usefulness of the pre-trained word
embedding and language model for MMT models. Although
these approaches were developed for text-only MT, their
application toward MMT has room for improvement and is
worthy of consideration.

The main contributions of this study are as follows:
1) We propose two approaches to incorporate a monolin-

gual (or multimodal monolingual) corpus into MMT
models; one uses a pre-trained word embedding using
a debiasing procedure and monolingual-corpus-based
subword tokenization; the other uses VLM.

2) We demonstrate that both approaches achieve substan-
tial improvement over their baselines; in particular,
the MMT model fused with VLM consistently outper-
forms its text-only counterparts across a range of target
languages.

A. WORD EMBEDDING
Pre-trained word embedding is considered an important part
of neural network models in many natural language process-
ing (NLP) tasks. In the context of NMT, pre-trained word
embedding has proved useful in low-resource domains [13],
in which FastText [14] embedding is used to initialize
the encoder and decoder of the NMT model. They also
indicate that the improvement achieved using the pre-
trained word embedding decreases as the training data
increases. Reference [15] introduced an MMT model with
embedding prediction that provided substantial performance
improvement.

However, many studies have proven that the vectors in a
pre-trained word embedding distribute unevenly in a narrow

conical subspace rather than evenly in the entire space. This
highly localized geometry of pre-trained word embeddings
harms the isotropy of word embedding and consequently
their advantage in downstream tasks. In these embedding
spaces, some words appear frequently in the nearest neigh-
bors of other words [16], [17]. This is called the hubness
problem in the general machine learning domain [18], and it
impairs the utility of pre-trained word embedding. To address
this problem, several post-process debiasing methods have
been proposed with respect to different bias scopes, such
as local bias [19] and global bias [20]. Recently, Kaneko
and Bollegala [21] proposed a debiasing method that uses
an autoencoder. Extending [22], which was proposed to
debias pre-trained word embeddings prior to integrating them
into MMT models for English–German and English–French
translations, we examined the latest debiasing techniques in
more language pairs.

Moreover, despite the application of subword-level tok-
enization over NLP tasks, its impact on pre-trained word
embeddings and downstream tasks has been less quantified.
Specifically, reusing subwords learned during pre-training
in downstream tasks is a well-established strategy in recent
emergent language models [23]. Thus, we hypothesize that
reusing subwords also benefits tasks using pre-trained word
embeddings. To this end, we conducted experiments in which
the training data for pre-training word embeddings were tok-
enized at either the word or subword level.

Our main findings on the use of pre-trained word embed-
dings are as follows:

1) Integrating pre-trained word embeddings into MMT
models improves the translation performance, and
applying a debiasing method further boosts the gains
among a wide range of language pairs and MMT
models.

2) Models that reuse the subwords of pre-trained word
embeddings consistently outperform their counterpart,
showing the best translation performance when debias-
ing is applied.

B. LANGUAGE MODEL
The pre-trained language model (LM) improves the perfor-
mance of a target model for different NLP tasks, such as
text summarization [24], grammatical error correction [25],
and machine translation [26]. The bidirectional encoder rep-
resentations from Transformers (BERT) [23] comprises the
encoder of the transformer [27] architecture, and it learns
the general LM through pre-training on large-scale cor-
pora. This pre-trained BERT is then fine-tuned on down-
stream tasks [23] or serves as a feature extractor [24]–[26].
Inspired by pre-trained LMs, many pre-trained LMs of
vision–language modalities have been proposed. For exam-
ple, the LXMERT [28] model incorporates object-level visual
features into a BERT-like architecture, and it achieves state-
of-the-art results in visual question-answering tasks.

Several researchers have incorporated VLM into MMT
models. Reference [11] proposed to use a pre-trained MT
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model to translate the captions of images and train a VLM on
the pseudo multimodal parallel data, followed by fine-tuning
on an MMT dataset. [29] pre-trained an MMT-specific visual
feature extractor and incorporated the extracted visual fea-
ture into MMT models along with the BERT feature. Those
approaches achieved substantial improvement, however, they
required at least one expensive parallel corpus or high compu-
tational resource, which is unaffordable for training a model
in a low-resource language or domain.

To address this problem, we propose a multimodal trans-
former model fused with a general-purpose pre-trained
LXMERT system that utilizes the multimodal feature beyond
its visual and textual features. The proposed model uti-
lizes both textual and visual knowledge from the multi-
modal feature to improve the translation performance, which
is unattainable solely with textual modality. The results
obtained indicate the following:

1) The LXMERT-fused model improves the translation
quality, especially under a limited language context.

2) An extensive analysis of our model indicates that a
model fused with both LXMERT and BERT features
further benefits the translation quality and still has
room to fully exploit LXMERT and BERT features.

The remainder of this paper is organized as follows.
Section II briefly discusses related work. Sections III and IV
describe conventional MMT models with a pre-trained word
embedding and the proposed MMT model fused with a
visual–language LM, respectively. Sections V and VI respec-
tively describe the relevant experiments conducted and ana-
lyze the results obtained in detail. Finally, concluding remarks
are presented and future work is outlined.

II. RELATED WORK
A. MMT WITH DATA AUGMENTATION
Data augmentation is widely studied in MMT owing to the
lack of available large-scale corpora. Most previous stud-
ies adopted textual parallel corpora as external data for
Multi30K [1], a well-established multimodal parallel cor-
pus. Reference [8] proposed to pre-train an NMT model
on a large-scale textual parallel corpus (OpenSubtitles cor-
pus [9]) and translated a multimodal monolingual corpus
(MS-COCO [10]) to augment the data for training MMT
models. Although their system trained using the aug-
mented training data achieved state-of-the-art results in
both English–French and English–German translation, the
improvement made by images is moderate or even negative.
Reference [30] combined four different pseudo-parallel and
parallel corpora as additional data to train MMT models:
back-translation of Multi30K Task 2 data and in-domain
monolingual corpora of target language, in-domain data
extracted from general domain parallel corpora, and gen-
eral domain parallel data. Recently, [11] proposed a VTLM
to aggregate the recent development of TLM and VLM.
As training VTLM requires multimodal parallel data, they
employed a publicly available NMT model trained on mul-
tiple large-scale parallel corpora. Reference [29] acquired

approximately six million sets of image-caption data that they
used to pre-train an object recognition model, followed by
fine-tuning on Multi30K data concurrently with training an
MMT model.

In most studies on data augmentation in the MMT domain,
either large-scale out-of-domain textual parallel corpora
[8], [30] or pre-trained NMT models [11] of good quality
for back-translation [31] is mandatory. Some studies require
a large computational resource [29], which is considered
overabundance to train an MMT model. With this constraint,
the approaches cannot be adopted in low-resource domains.
Thus, we explore the use of either textual or multimodal
monolingual data, which tend to be available.

B. MONOLINGUAL CORPORA AUGMENTED NMT
Knowledge learned from monolingual corpora has been
widely exploited in NMT. Using word embedding or a lan-
guage model is a common method to incorporate monolin-
gual corpora in NMT systems.

Reference [13] made the first attempt to utilize pre-trained
word embedding in low-resource NMT. They revealed that
using a pre-trained word embedding to initialize embedding
layers in an MT system improves the translation quality.
Further, they stated that their approach is more effective
for more similar language pairs. Recently, [32] proposed a
search-based NMT model that predicts the embedding of the
output word, rather than the distribution over the vocabulary.
Their approach achieves not only faster training convergence
without decreasing translation performance, but also a more
accurate translation of rare words. This technique has been
extended to an MMT model by [15], with resulting improve-
ment in translation quality.

BERT [23] and its derivations [33], [34] employ a Trans-
former [27] architecture in a self-supervised learning manner
and have achieved new state-of-the-art results on several
natural language processing tasks. Moreover, several studies
that leverage BERT for NMT have been published. Previous
studies have revealed that simply initializing a transformer
encoder using pre-trained BERT parameters does not improve
translation quality [26], [35]. To address this problem, [35]
proposed two-stage curriculum learning, in which model
parameters initialized using pre-trained BERT are frozen
until convergence in the first stage; all model parameters
are then fine-tuned in the second stage. Meanwhile, [26]
proposed a BERT-fused model that incorporates the represen-
tations from pre-trained BERT into a transformer model by
feeding it into all the encoder and decoder layers. In both stud-
ies, models with BERT features outperformed naive trans-
former models to a substantial degree. Table 1 shows the
dataset used to train each model.

Recently, many studies on self-supervised learning for
vision–language tasks have been conducted. Similar to
BERT, the models in these studies are first pre-trained on
a large-scale text-image dataset, and then they are fine-
tuned on downstream tasks. Table 2 shows the performance
for the downstream tasks of each model that has publicly
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TABLE 1. Datasets used to train NMT/MMT models.

TABLE 2. Comparison of pre-trained LM in vision–language modalities.
‘‘Images’’ and ‘‘Sentences’’ denote the size of the data for pre-training
LMs. ‘‘VQA’’ shows the overall accuracy on the test–dev split in
VQA v2 [36].

available pre-trained models. Inspired by the progress in
vision–language LM, we explore a Transformer-based MMT
model incorporating vision–language LMs.

III. MULTIMODAL MACHINE TRANSLATION WITH
PRE-TRAINED WORD EMBEDDING
In this section, we present our proposal for exploiting pre-
trained word embedding for conventional MMT models.
Although pre-trained word embedding has been widely used
in NMT tasks after the emergence of [13], there is still room
to improve their effectiveness by alleviating the following
problems: (a) Learning word embedding of good quality is
challenging for rare words. (b) Somewords frequently appear
in the nearest neighbors of other words irrespective of their
similarity. To this end, our proposed approach comprises five
steps:

1) Tokenizing monolingual data at either the word or
subword level

2) Pre-training word embedding using a model
3) Applying the debiasing process to remove hubness

from pre-trained word embedding
4) Initializing the embedding of MMT encoder and

decoder to the pre-trained word embedding
5) Training the MMT model on the Multi30K dataset

To show that our approach is invariant with the archi-
tecture of MMT models, we employed four different MMT
models: decoder initialization [42] (‘‘DECINIT’’), IMAGI-
NATION [43] (‘‘IMAG+’’), hierarchical-attention NMT [44]
(‘‘HA-NMT’’), and visual attention grounding NMT [45]
(‘‘VAG-NMT’’).

A. CONVENTIONAL MMT MODELS
Conventional MMT models are based on the attentive recur-
rent neural network. All of these models handle machine
translation as a sequence-to-sequence learning problem in
which a neural model is trained to translate a source sentence
of N–tokens x = {x1, x2, · · · , xN } into a target sentence of
M–tokens y = {y1, y2, · · · , yM } along with the global visual
feature vg and/or the local visual feature vl .

The underlying text-only NMT model of all MMT models
comprises a bidirectional gated recurrent unit (GRU) [46]
encoder and a unidirectional GRU decoder. The encoder first
maps the source sentence x into the encoder hidden state
h = h0, · · · ,hN , which is a concatenation of outputs from
the forward GRU encoder and the backward GRU encoder.

Thereafter, the decoder computes a hidden state proposal
sj for each time step j ∈ [1,M ]:

sj = GRU(ŝj−1, edec(ŷj−1)) (1)

where ŝj−1 is the previous hidden state and edec(ŷj−1) is the
embedding for the previous output word ŷj−1. The initial state
ŝ0 is set to a zero vector.
The textual context vector is computed using an attention

mechanism, given sj as the query and hi as the key and
value. Technically, in each time step jwhile decoding, a feed-
forward layer is used to calculate a normalized soft alignment
αj,i with each source hidden state hi, and the textual context
vector ctj is computed as the weighted sum of the source
hidden states:

ztj,i = vttanh(U t
αsj +W

t
αhi) (2)

αtj,i =
exp(ztj,i)∑N
k=1 exp(z

t
j,k )

(3)

ctj =
N∑
i=1

αtj,ihi (4)

where vt, U t
α , andW

t
α are model parameters.

The decoder employs another GRU unit to compute the
final hidden state ŝj from the hidden state proposal sj, textual
context ctj , and visual context cvj :

ŝj = GRU(sj, ctj) (5)
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The system output at time-step j is obtained using the cur-
rent hidden state, previous word embedding, textual context,
and visual context:

oj = tanh(Lsŝj + Lwedec(ŷj−1)+ Ltctj) (6)

p(w|ŷ<j) = softmax(oj) (7)

ŷj = argmax
w∈V

{p(w|ŷ<j)} (8)

where Ls, Lw, and Lt are model parameters.

1) DECODER INITIALIZATION
This MMTmodel uses a projected global visual feature as the
initial decoder state ŝ0, rather than a zero vector:

ŝ0 = σ (W0vg + b0) (9)

whereW0 and b0 are model parameters.

2) HIERARCHICAL-ATTENTION NMT
Hierarchical-attentionNMT [44] incorporates the local visual
feature in an attentive manner. The model first computes the
textual context vector ctj and the visual context vector c

v
j using

two individual attention units, as described by (2)–(4). The
concatenation of two context vectors {ctj, c

v
j } is then fed into

another attention as the key and value, where the hidden state
proposal sj is used as the query. The second GRU in (5)
takes the obtained multimodal context vector, rather than the
textual context vector ctj.

3) IMAGINATION
IMAGINATION [43] is a multitask model that jointly learns
machine translation and visual latent space models. The MT
model is the vanilla NMT model that does not involve any
visual features; this model does not use images during infer-
encing. The latent space model is a feed-forward model that
calculates the average vector over the hidden states hi in
the encoder and maps it to the final vector v̂ in the latent
space:

v̂g = tanh(Wv ·
1
N

N∑
i

hi), (10)

whereWv is a model parameter.
We employ the max-margin loss to train the latent space

model to ensure that the model maps the encoder hidden
states closer to the global visual feature:∑

v′ 6=v

max{0, α − d(v̂g, vg)+ d(v̂g, v′g)}, (11)

where d is a cosine similarity function and α is the margin.1

The final loss is the sum of the losses for MT and latent space
learning.

1We use α = 0.1 in our experiment.

4) VISUAL ATTENTION GROUNDING NMT
Visual attention grounding NMT (VAG-NMT) [45] is another
multitask model comprising an MMT model and a latent
space model.

The model first computes the sentence representation t
from the global visual feature vg and encoder hidden states h:

zi = tanh(Wvvg) · tanh(Whhi) (12)

βi =
exp(zi)∑N
k=1 exp(zk )

(13)

t =
N∑
i=1

βihi (14)

Thereafter, VAG-NMT utilizes the sentence representation
to initialize the decoder hidden state:

ŝ0 = tanh(W init(ρt + (1− ρ)
1
N

N∑
i

hi)) (15)

whereW init is a model parameter and ρ is a hyperparameter
for determining the text representation ratio in the decoder
initial state.2

Further, the model learns to map the sentence representa-
tion t and the global visual feature vg closer in a latent space:

temb = tanh(W t t + bt ) (16)

vemb = tanh(Wvvg + bv) (17)

The loss for latent space learning is the max-margin loss with
negative sampling:∑
p

∑
k

max{0, γ − d(vg,p, tp)+ d(vg,p, tk 6=p)}

+

∑
k

∑
p

max{0, γ − d(tk , vg,k )+ d(tk , vg,k 6=p)} (18)

where d is the cosine similarity function; k and p are the
indexes for sentences and images, respectively; tk 6=p are the
negative samples for which all examples in the same batch
with the target example are selected; and γ is the margin that
adjusts the sparseness of each item in the latent space.3

The final loss is the weighted sum of losses for MT and
latent space learning.

B. TOKENIZATION
The distribution of word occurrence follows Zipf’s law and
is long-tailed, where a few common tokens dominate and
most tokens appear several times. Consequently, the obtained
word embedding for tokens lying on the long tail may have
poor quality. Improving the word embedding for rare words
intuitively requires relaxing the slope of the distribution.
To this end, we propose learning the word embedding from
sentences that are tokenized at the subword level. Technically,
we employ Byte Pair Encoding [47] (BPE) to tokenize words
into subwords.

2We use ρ = 0.5 in our experiment.
3We use γ = 0.1 in our experiment.
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For training the MMTmodels, we adopt the same subword
vocabulary used in pre-training word embedding to tokenize
Multi30K sentences.

C. DEBIASING PRE-TRAINING WORD EMBEDDING
The geometry of pre-trained word embeddings is anisotropic,
and the word representations are distributed locally in a con-
ical subspace. This geometry causes problems such as hub-
ness [16], [17] and undermines the usefulness of pre-trained
word embeddings. To address this problem, we employ three
different debiasing methods as follows: localized center-
ing [19] (‘‘LC’’), All-but-the-Top [20] (‘‘AbtT’’), and an
approach using an autoencoder [21] (‘‘AE’’).

1) LOCALIZED CENTERING
Localized centering shifts each word based on its local bias.
The local centroid for eachword x is computed and subtracted
from the original word x to obtain the new embedding x̂:

ck (x) =
1
k

∑
x ′∈kNN(x)

x ′ (19)

x̂ = x − ck (x), (20)

where k is a hyperparameter called the local segment size4

and kNN(x) returns the k–nearest neighbors of the word x.

2) ALL-BUT-THE-TOP
All-but-the-Top uses the global bias of the entire vocabulary
to shift the embedding of each word. The All-but-the-Top
algorithm comprises three steps: subtract the centroid of all
words from each word x, compute the PCA components for
the centered space, and subtract the top n PCA components
from each centered word to obtain the final word x̂:

x ′ = x −
1
|V|

∑
w∈V

w (21)

u1, u2, · · · , uD = PCA(x ′ ∈ V) (22)

x̂ = x ′ −
D∑
i=1

(uT
i x
′)ui, (23)

where D is a hyperparameter used to determine how many
principal components of the pre-trained word embedding are
ignored.5

3) AUTOENCODER
Reference [21] showed that applying centering and PCA
is the same as applying an autoencoder. Following their
approach, we first train an autoencoder upon a pre-trained
word embedding using the L2 reconstruction loss. Subse-
quently, we extract the hidden state of each word embed-
ding in the autoencoder as the revised word embedding. The
centering and PCA effects of the autoencoder result in the
obtainedword embeddings being both debiased and isotropic.

4We use k = 10 in our experiment.
5We use D = 3 in our experiment.

IV. MULTIMODAL MACHINE TRANSLATION WITH LM
In this study, we use a variant of the BERT-fused
model [26], namely, the LXMERT-fused model, in which
the LXMERT [28] system is used as the feature extractor
instead of the BERT system. As the performance of the
LXMERT system is the best among available pre-trained
systems (Table 2), we employ LXMERT as our feature
extractor.6

This model tackles MMT as a sequence-to-sequence learn-
ing problem, in which a neural network model is trained to
translate a source sentence of N–tokens x = {x1, · · · , xN }
and the corresponding image into the target sentence of
M–tokens y = {y1, · · · , yM }.

A. LXMERT
The LXMERT model is a pre-trained VLM that represents
cross-modal connections, as well as each modality. It takes
both a sentence x and an image as its inputs and generates two
different features: language output HL and vision output HR.

More specifically, LXMERT first encodes each modal-
ity using individual single-modality encoders, and then it
encodes cross-modality connections using another individ-
ual encoder with a cross-modality attention mechanism. The
LXMERT model is pre-trained with four tasks: masked
cross-modality LM, masked object prediction (feature vector
regression and detected-label classification), cross-modality
matching, and image question answering.

1) SINGLE-MODALITY LANGUAGE ENCODER
The single-modality language encoder is a BERT-like
encoder. It is composed of a stack of nine layers, with
each layer containing a self-attention sub-layer and a feed-
forward sub-layer. Two special tokens, CLS and SEP, are
appended before and after the input sentence words, respec-
tively. The resulting input sequence {CLS, x1, · · · , xN ,SEP}
is fed into the encoder to generate the language-modality
representation h0.

2) SINGLE-MODALITY VISION ENCODER
The single-modality vision encoder is also a BERT-like
encoder. However, it is composed of a stack of five layers
and takes visual features as inputs. Rather than using a raw
image, LXMERT uses a bag-of-objects representation of K
objects {(p1, f1), · · · , (pK , fK )} that a Faster R-CNN [48]
system detects from the image. Here, pj is the position feature,
and fj is the region-of-interest (RoI) feature for j ∈ [1,K ]. The
position-aware embedding oi for each object is derived from
the position and RoI features:

p̂j = LayerNorm(WPpj + bP) (24)

f̂j = LayerNorm(WF fj + bF ) (25)

oj = (p̂j + f̂j)/2 (26)

where LayerNorm is the layer-normalization func-
tion and WF , bF , WP, and bP are model parameters.

6We plan to release our implementation upon publication.
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The position-aware embeddings o = {o1, · · · , oK } are fed
into the single-modality encoder to deliver vision-modality
representation v0.

3) CROSS-MODALITY ENCODER
The cross-modality encoder is composed of a stack of five
identical layers. Each cross-modality layer consists of two
unidirectional cross-attention, two self-attention, and two
feed-forward sub-layers. In the k-th layer, two unidirectional
cross-attention sub-layers are first applied—one from lan-
guage to vision and the other from vision to language. The
query and context vectors are the outputs of the (k − 1)-th
layer:

ĥki = Headkh→v(h
k−1
i , vk−1, vk−1) (27)

v̂kj = Headkv→h(v
k−1
j ,hk−1,hk−1) (28)

where Headkh→v and Headkv→h are two different multi-
headed attention modules.

Subsequently, we apply the self-attention sub-layers to the
output of the cross-attention sub-layers, which is followed by
the feed-forward sub-layers to obtain the k-th layer outputs
hk and vk .

4) OUTPUT REPRESENTATIONS
The corresponding outputs of the last cross-modality encoder
are denotedHL for language andHR for objects. Technically,
we use h5 as HL and v5 as HR.

B. LXMERT-FUSED MODEL
The LXMERT-fused model takes the LXMERT representa-
tions as the embedding of the images. In addition, we use
a concatenation of HL and HR as the LXMERT represen-
tations HLR = [HLandHR] to ensure that the model can
exploit both language-to-vision and vision-to-language cross-
modality information.

1) ENCODER
The encoder is composed of a stack comprising one embed-
ding layer and six encoder layers. Each encoder layer contains
one fusion sub-layer and one feed-forward sub-layer. A resid-
ual connection is applied around each of the two sub-layers,
and then layer normalization proceeds.

The encoder first projects tokens in a sentence x =
{x1, · · · , xN } to vectors via the embedding layer, followed by
a tanh activation. It then injects positional encoding into the
input embedding and applies layer normalization to obtain the
position-aware word embeddings H0

E = {H
0
E,1, · · · ,H

0
E,N }:

H0
E,i = LayerNorm(tanh(eenc(xi))+ PE(i)) (29)

where i ∈ [1,N ] denotes each position in a source sentence,
eenc(xi) is the embedding representation for a word xi, and
PE(i) is the positional embedding for a position i.
In the l-th encoder layer, the fusion sub-layer is first

applied, where two context vectors are computed using two

different attention modules: self-attention and encoder-to-
lxmert attention. The fusion sub-layer then interpolates two
context vectors and obtains the final context vector H̃l

E:

H̃ l
E,i = λEHead

l
E→E(H

l−1
E,i ,H

l−1
E ,Hl−1

E )

+ λLRHead
l
E→LR(H

l−1
E,i ,HLR,HLR) (30)

where λE and λLR are interpolation coefficients7 and λE +
λLR = 1 and HeadlE→E and HeadlE→LR are multi-head
attention modules with different parameters. Dropnet [26] is
applied for all fusion sub-layers.

The context vectors are then processed by the position-wise
feed-forward sub-layers, and the output of the l-th layer Hl

E
is derived:

H l
E,i = ReLU(H̃ l

E,iW
l
1 + b

l
1)W

l
2 + b

l
2 (31)

where W l
1, W

l
2, b

l
1, and bl2 are the model parameters, and

ReLU is a ReLU activation.

2) DECODER
The decoder is also composed of a stack comprising one
embedding layer and six decoder layers. Each decoder layer
contains one self-attention sub-layer, one fusion sub-layer,
and one feed-forward sub-layer. The residual connection and
layer normalization are applied between sub-layers.

In each position t , while decoding, the decoder first
computes the position-aware word embeddings H0

D,<t =

{H0
D,1, · · · ,H

0
D,t−1} from the predicted tokens ŷ<t =

{ŷ1, · · · , ŷt−1}:

H0
D,j = LayerNorm(tanh(edec(ŷj))+ PE(j)) (32)

where j ∈ [1, t − 1] denotes each position in the predicted
tokens, and edec(ŷj) is the embedding representation for a
word ŷj.
In the l-th decoder layer, the output of the l − 1-th layer

is fed to a self-attention module HeadD→D to generate the
intermediate representation Ĥ l

D,j:

Ĥ l
D,j = HeadlD→D(H

l−1
D,j ,H

l−1
D,<t ,H

l−1
D,<t ) (33)

The fusion layer in the decoder works similar to that in
the encoder; however, it uses decoder-to-encoder attention
(rather that self-attention) to generate the final representa-
tion H̃ l

D,j:

H̃ l
D,j = ρEHead

l
D→E(Ĥ

l
D,j,H

l−1
D,<t ,H

l−1
D,<t )

+ ρLRHead
l
D→LR(Ĥ

l
D,j,HLR,HLR) (34)

where ρE and ρLR are the interpolation coefficients8 and
ρE+ρLR = 1. Further, HeadlD→E and Head

l
D→LR are multi-

head attention modules with different parameters. Dropnet is
also applied for all fusion sub-layers in the decoder.

7We use 0.5 for both λE and λLR in our experiments.
8We use 0.5 for both ρE and ρLR in our experiments.
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The context vectors are then processed by the position-wise
feed-forward sub-layers, and the output of the l-th layer Hl

E
is derived:

H l
D,j = ReLU(H̃ l

D,jW
l
3 + b

l
3)W

l
4 + b

l
4 (35)

whereW l
3, W

l
4, b

l
3, and b

l
4 are the model parameters.

The output of the last decoder layer H6
D is fed into the

projection layer to generate the output distribution p(ŷt |ŷ<t ):

p(ŷt |ŷ<t ) = softmax(H6
D,t−1W5 + b5) (36)

where W5 and b5 are the model parameters. In particular,
W5 is a projection matrix that maps the decoder state into
vocabulary space.

C. TRAINING
A preliminary study, reported by [26], has indicated that
training LXMERT-fused models from scratch does not lead
to a good model performance, which is also while using the
BERT feature.

To address this problem, we employ a two-step procedure
to train LXMERT-fused models. We first train an LXMERT-
fused model with ρE = 0, where only the language part of
the training data is included. After the model has converged,
we then set ρE for a specific value to fine-tune the model
on both language and vision data. During fine-tuning, the
learning rate and batch size are set to smaller values than those
in the first step.

V. EXPERIMENT
A. WORD EMBEDDING
In our experiments, we used three different well-established
word embedding models: word2vec [49], GloVe [50],
and FastText [14]. The publicly available pre-trained
word embeddings use different training corpora; however,
we trained the word embeddings of different models using
an identical monolingual corpus for fair comparison.

1) TRAINING CORPUS
We downloaded Wikidump9 for English, German, French,
and Czech and extracted the article pages. All the extracted
sentences were preprocessed by lower-casing, tokenizing,
and normalizing the punctuation using a Moses script.10

For the subword-level experiments, we used Byte Pair
Encoding to split words into subwords. We used subword-
nmt11 to process the sentences. The number of merge oper-
ations was 30,000, and the vocabulary threshold was set
to zero. Table 3 shows the statistics of the preprocessed
Wikipedia corpus for each language.

We applied each debiasing method to the obtained word
embeddings with the same options as in its original paper.

9https://dumps.wikimedia.org/. We used the July 20, 2020 version for
English, German, and French and the December 20, 2020 version for Czech
and Japanese.

10We used a script from Multi30K to preprocess the sentences.
https://github.com/multi30k/dataset/blob/master/scripts/task1-tokenize.sh

11https://github.com/rsennrich/subword-nmt

TABLE 3. Statistics of wikidump corpus for each language.

2) TRAINING SETTING
All word embeddings were trained on a dimension of 300.
The specific options for training were as follows (default
values were used for other options).

We trained the word2vec model12 using the CBOW algo-
rithm (with window size of 10, negative sampling of 10, and
minimum count of 10), the GloVemodel13 (with window size
of 10 and minimum count of 10), and the FastText model14

using the CBOWalgorithm (withmaximum character n-gram
of 5, window size of 5, and negative sampling of 10).

3) UNKNOWN WORDS
Unknown words are of two types: words that are a part of a
pre-trained word embedding but are not included in a vocab-
ulary (Out-Of-Vocabulary (OOV) words) and words that are
a part of a vocabulary but are not included in pre-trained
word embedding (OOV words for embedding). OOV words
for embedding only exist when using word-level embed-
ding (word2vec and glove); the embedding of such words in
FastText are calculated as the mean embedding of character
n-grams consisting of the word.

The embeddings for both types of OOV words were cal-
culated as the average embedding over the words that were a
part of the pre-trainedword embedding, but were not included
in the vocabularies, and they were updated individually dur-
ing training.

B. MODEL
Tables 4 and 5 show the hyperparameters of the conven-
tional and LXMERT-fused MMTmodels in our experiments,
respectively. Note that each conventional MMTmodel has an
encoder size of 320; therefore, the size of bidirectional GRU
is 640. All models were implemented using the nmtpytorch
toolkit v4.0.0 [51].

1) GLOBAL AND LOCAL VISUAL FEATURE
Weencoded each image using pre-trained ResNet-50 [52] and
selected the hidden state in the res4f layer of 1024D as its
global visual feature, and that in the pool5 layer of 2048D as
its local visual feature.

12https://github.com/tmikolov/word2vec.
13https://github.com/stanfordnlp/GloVe.
14https://github.com/facebookresearch/fastText.
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TABLE 4. Hyperparameters of conventional MMT models.

TABLE 5. Hyperparameters of the LXMERT-fused MMT model.

2) LXMERT FEATURE
We used a publicly available LXMERTmodel15 in our exper-
iment. We first employed the alternative pre-trained Faster
R-CNNmodel16 to encode all images in theMulti30K dataset
and selected 36 RoI features of the 2048-dimension and
36 positional features of the four-dimension for each image
in the samemanner as [28]. Finally, the pre-trained LXMERT
model processed the selected visual features and the corre-
sponding source sentence to obtain LXMERT features of the
768-dimension.

3) OTHER FEATURES
We also examined two types of features with LXMERT-
fused models, in which the feature is fed into the model
(rather than the LXMERT feature). The BERT feature
(‘‘BERT’’) denotes the output of bert-base-uncased provided
by PyTorch-Transformers.17

The all-inclusive feature (‘‘All-inclusive’’) is a concatena-
tion of ‘‘LXMERT’’ and ‘‘BERT’’ features.

15http://nlp.cs.unc.edu/data/model_LXRT.pth
16https://github.com/airsplay/lxmert#alternative-dataset-and-features-

download-links
17https://github.com/huggingface/pytorch-transformers

TABLE 6. Number of tokens and types for each language in the Multi30K
training set.

TABLE 7. Corpus-level BLEU scores of the 2016 test set for
English–German translation. ‘‘English’’ and ‘‘German’’ show the
tokenization strategies. The bold values are higher than the value of the
Word–Word tokenization strategy.

C. MULTI30K DATASET
We used the Multi30K [1] dataset for all translation direc-
tions and the 2017 test set [53] for English–German
and English–French translations. The training, validation,
2016 test, and 2017 test sets have 29,000, 1,014, 1,000,
and 1,000 instances, respectively. We selected English as the
source language and German/French/Czech as the target lan-
guages. All sentences in English/German/French/Czech were
preprocessed by lower-casing, tokenizing, and normalizing
the punctuation using the same scripts described in V-A.

For the subword-level experiments, we applied BPE using
the subwords obtained from Wikipedia; consequently, no
OOV tokens appeared in the training and other sets. Table 7
shows the results of the preliminary experiments. Considering
the results, we decided to perform our experiments only
on the BiGRU-based MMT models and omit BPE-to-word
translation.

We also evaluated the LXMERT-fused models on a
degraded version of Multi30K (2016N ), where the first noun
of each noun phrase is masked. Note that the models for the
2016N test set were trained on the degraded version of the
training set.

D. EVALUATION
We used BLEU [54] and METEOR [55] as our evaluation
metrics. BLEU evaluates the hard matches on unigrams,
bigrams, trigrams, and 4-grams between the system output
and the reference. METEOR is a BLEU-like metric that
employs WordNet [56] to relax the hard alignment between
the prediction and reference, which allows the metric to
take more account of semantics. Note that METEOR is only
available for German, French, and Czech; we did not eval-
uate Japanese translation using METEOR. We trained each
model three times using different seeds and averaged the
scores.
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TABLE 8. Corpus-level BLEU / METEOR on the 2016 test set for English–German translation using different tokenization strategies, pre-trained word
embeddings, and MMT models. ‘‘+ debias’’ shows the best score of the three models using different debiasing methods. The underlined scores are higher
than the score of randomly initialized models. The bold score is the best score of each model. ‘‘†’’ indicates the statistical significance of the improvement
over randomly initialized models.

E. RESULTS
1) MMT WITH PRE-TRAINED WORD EMBEDDING
Table 8 shows the BLEU and METEOR scores across the
‘‘text-only’’ model and MMT models for English–German
translation. First, we observe that applying the Wikipedia-
based BPE to both English sentences and German translation
results in substantial improvement (+1.01 BLEU on average)
for all models. Note that applying BPE to English sentences
also boosts the model performance, which is contrary to
the report by [57] that Multi30K-based BPE to source sen-
tences is not beneficial. Second, debiasing pre-trained word
embedding further improves the model performance. Given
the use of BPE on both sides, models using debiased word
embedding have a higher BLEU score than their counterparts
that use vanilla word embedding.

We observed a slightly different trend for other transla-
tion pairs. Table 9 shows the BLEU scores of three models
for English–French, English–Czech, and English–Japanese
translation. Using debiased word embedding still results in
improvements over randomly initialized models. However,
Wikipedia-based BPE no longer benefits model perfor-
mance (−0.37, +0.01, and −0.52 BLEU for English–
French, English–Czech, and English–Japanese on average,
respectively).

2) LXMERT-FUSED MMT
We trained all the models three times with different seeds and
averaged the scores.

Table 10 shows the BLEU and METEOR scores across
three test sets in Multi30K. Adding to the text-only

TABLE 9. Corpus-level BLEU on the 2016 test set for English–French,
English–Czech, and English–Japanese translation. ‘‘+ debias’’ shows the
best score of the three models using different debiasing methods. The
bold score is the best score of each model. ‘‘†’’ indicates the statistical
significance of the improvement over randomly initialized models.

Transformer and LXMERT-fused Transformer, we also con-
ducted experiments on models fused with the BERT feature
(‘‘BERT’’), ResNet-50 local visual feature (‘‘ResNet-50’’),
and RoI feature (‘‘Faster R-CNN’’). We observed that the
MMT models incorporating BERT (or all-inclusive feature)
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TABLE 10. Quantitative comparison of Transformer-based MMT models on the 2016, 2017, and 2016N test sets; corpus-level BLEU/METEOR of the
Transformer-based MMT models on the 2016, 2017, and 2016N test sets. The underlined scores are higher than the score of the text-only Transformer
model (‘‘None’’). The bold score is the best score of each language. ‘‘†’’ and ‘‘?’’ indicate the statistical significance of the improvement or deterioration
over the text-only Transformer model (‘‘None’’) and the BERT-fused model (‘‘BERT’’), respectively.

outperformed other models on the 2016 and 2017 test
sets. This suggests that, when the input sentence is com-
plete, the textual modality is more important than the visual
modality.

However, in the 2016N test set, the benefit of using the
BERT feature is less than those in the 2016 and 2017 test
sets. This suggests that, while the textual context is lim-
ited, visual features profit more than the textual feature.
We can further observe the significant improvement resulting
from using most visual feature; the LXMERT feature prof-
its more than most of the other visual features (ResNet-50
and Faster R-CNN). Moreover, the model achieves the best
score along with the all-inclusive feature in many translation
directions, which is a concatenation of BERT and LXMERT
features. We may conclude that the LXMERT-fused MMT
model is not only capable of utilizing visual features but
is also good at working with both strong textual LM and
visual-language LM.

Furthermore, these properties are consistent among trans-
lation directions, which is different from what we observed
when using pre-trained word embedding. In all transla-
tion directions, the models fused with BERT, LXMERT,
or the all-inclusive feature perform the best. We provide a
detailed model comparison for English–German translation
in Section VI-C.

VI. DISCUSSION
In this section, we first examine the effectiveness of each
debiasing method. Subsequently, we conduct an extensive
quantitative analysis of the LXMERT-fused model.

A. DEBIASING METHOD
Table 11 reports the average BLEU and METEOR scores
of each model using different word embeddings and debi-
asing methods over different tokenization strategies. We can
observe that All-but-the-Top (‘‘AbtT’’) achieves the best
scores for nine out of 15 combinations of MMT models and
word embedding. This is followed by localized centering
(‘‘LC’’), which achieves the best scores for two. Conversely,
autoencoder (‘‘AE’’) seems less capable with pre-trained
embedding in the MMT scenario.

More interestingly, whereas the debiasing procedures only
improve the benefit on six out of 10 benchmarks for
word2vec, GloVe and FastText benefit on all benchmarks.
This difference may be caused by how each embedding
learns the global property of the training corpus. In con-
trast to word2vec, which learns to predict local context
words from each word, GloVe learns based on the global
co-occurrence matrix of the training data. FastText com-
prises each word embedding from its subword embeddings,
which results in the generalized embedding rather than the
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TABLE 11. Detailed comparison of pre-trained word embeddings and debiasing methods across conventional MMT models for English–German
translation. The score in boldface is the best score among the vanilla and debiased embeddings for each embedding.

TABLE 12. BLEU (‘‘B’’) and METEOR (‘‘M’’) scores with various available
features extracted from LXMERT for English–German translation.
‘‘(language)’’ and ‘‘(visual)’’ show the results of models that use only the
language and vision part of each feature, respectively. The underlined
scores are higher than the score of the text-only Transformer model
(‘‘None’’). The score in boldface the best score for each test set.

localized embedding. Consequently, GloVe and FastText
learn the global property of the training corpus more than
word2vec does, which makes GloVe and FastText more capa-
ble with the debiasing method based on the global bias of
the entire vocabulary. This result is consistent with the report
by [21], which stated that word2vec with the autoencoder-
based debiasing procedure is less capable than GloVe and
FastText on word disambiguation tasks.

B. FEATURE ABLATION
Selecting the appropriate feature is essential for leveraging
the visual information for NMT. To reveal which part of
the LXMERT feature contributes the most, we conducted
experiments with various features extracted from LXMERT:
(1) Object-level visual features as defined in (26) (Objects);
(2) features before single-modality encoders (Embedding);
(3) output of single-modality encoders (Single-M); and
(4) output of cross-modality encoders (Cross-M).

Table 12 reports the results of ablation experiments con-
ducted on the 2016, 2017, and 2016N test sets. Although the

model exploiting the cross-modal feature (‘‘Cross-M’’) is not
the best model w.r.t. most of the test sets, it achieves almost
the best performance. Interestingly, the best feature for any
test sets is either a cross-modality feature or a concatenated
single-modality feature. This suggests that the multimodal
feature is more feasible for the model than single-modality
features. Moreover, we need to select features from different
layers to make the model best fit with different test sets. This
would be caused by the pre-training tasks of LXMERT that
are not optimized for NMTmodels and would present decep-
tive information in the LXMERT representations. The obser-
vation also suggests that selecting appropriate pre-training
tasks will further boost translation quality.

C. ALL-INCLUSIVE FEATURE
A key finding of this study is that the fuse-based model can
utilize both LXMERT and BERT features in degraded scenar-
ios. Table 13 shows the statistics of sentence sets that benefit
from either LXMERT, BERT, or all-inclusive features.

Evidently, the largest contribution is made by 214 sen-
tences (2016 test set) and 166 sentences (2016N test set)
that are improved by all features. In the 2016N test set, the
difference in the improvement made by the LXMERT feature
and the all-inclusive feature is substantial (+0.83 BLEU).
However, almost no additional improvement (+0.05 BLEU)
is made by the all-inclusive features for Multi30K. Based
on these results, we can conclude that the fuse-based model
can utilize both LXMERT and BERT features when the input
sentences are incomplete.

Moreover, by using the all-inclusive features, our model
improved 47 samples (2016 test set) and 46 samples (2016N
test set) that are not improved by using either the LXMERT
or BERT features. These samples validate the assertion that
the fused-based model with the LXMERT feature is capa-
ble of not only selectively using the better features from
the BERT features or LXMERT features but also extracting
novel information that is imperceptible in the underlying
features.
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TABLE 13. Statistics of the sentence subsets in the 2016 test set for English–German translation that benefit from the features with up arrow (green) and
do not benefit from the features with down arrow (red). ‘‘L,’’ ‘‘B,’’ and ‘‘A’’ denote the models with the LXMERT feature, BERT feature, and all-inclusive
feature, respectively. ‘‘Samples’’ shows the number of samples in each set. ‘‘Avg. 1BLEU’’ shows the gain (or loss) of each feature from the text-only
baseline.

TABLE 14. Each cell contains the ratio of wins and losses between the
model in the row against the model in the column on the 2016 test set
(top) and its image-demanding subset (bottom) for English–German
translation.

However, our model failed to improve 33 samples (2016
test set) and 34 samples (2016N test set) that were improved
by using a single feature, but not by the all-inclusive fea-
ture. This demonstrates that the model failed to utilize two
promising features for some samples. Further, the pairwise
comparison (Table 14) of the models supports this idea,
where the LXMERT feature contributes more than BERT
and all-inclusive features in sentences that need images for
translation.18 Therefore, the model still has room for fur-
ther improvements, especially in exploiting multiple features
simultaneously without losing the individual benefits from
composing features. We will explore this issue in future
work.

D. VISUAL AWARENESS
To determine whether the LXMERT-fused model is aware
of visual context, we performed adversarial evaluation [58]
on the 2016 and 2016N test sets. In adversarial evaluation,
we measure how a system performs when it is presented
with the correct text data and either the correct image data
(congruent) or incorrect image data (incongruent). To this
end, we reversed the order of 1,000 images in each test set to
obtain incongruent text–image data pairs. As we assumed that
the input sentences are congruent, the incongruent LXMERT
features were extracted from congruent sentences, giving
incongruent images.

18Some translations in the 2016 test set were modified during the post-edit
process with the presence of images, indicating that images aremandatory for
these samples. We determined post-edited sentences by extracting sentences
in WMT17 that differ from those in WMT16, obtaining 150 samples.

TABLE 15. BLEU scores on the 2016 test set in the incongruent setting for
English–German translation. Subscripts are the difference to testing with
congruent images.

Table 15 shows the corpus-level BLEU scores for each
model in the adversarial evaluation. A large difference is
observed between the congruent and incongruent settings in
the 2016N test set, but almost no difference in the original
Multi30K. This observation is consistent with the assertion
made in [59], claiming that the source text in Multi30K is
sufficient to perform the translation and prevents the visual
features from affecting the model.

E. HUMAN EVALUATION
To investigate the characteristics of our models for human
users, we asked human judges to rank the systems from best to
worse for each source text. The 2016 test set, which consists
of 1,000 input sentences, serves as evaluation data. For each
input sentence, we sampled an output for each model from
three translations generated by three trained systems. Ties
were allowed, as multiple systems may generate the same
translation for an input sentence. Finally, we turned absolute
ranks into pairwise comparison of the two selected systems.

TABLE 16. Pairwise comparison by human judges on the 2016 test set for
English–German translation. Each cell contains the ratio of wins and
losses of the model in the row against the model in the column.

Table 16 shows pairwise comparison of the four systems.
While our proposed method still outperforms the text-only
baseline, ties dominate human judges across all pairs. This
result suggests that not only visual features but also the
linguistic knowledge brings only a moderate improvement.
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TABLE 17. Examples of English–German translation in the 2016 test set.

Furthermore, we observed a small yet remarkable gap
between LXMERT-bused and BERT-fused models, which
contradicts the fact that the LXMERT-fused model has a
higher BLEU score than the BERT-fused model. We consider
the perplexity of each model’s account for this gap; the per-
plexity19 of BERT-fused model (8.59) is slightly lower than
that of LXMERT-fused model (8.96). As BERT is pre-trained
on larger data than those used for LXMERT, the BERT-
fused model might generate more fluent translations than the
LXMERT-fused model.

F. TRANSLATION EXAMPLES
Table 17 shows the English–German translation generated
with different features. In this sample, the word ‘‘pyramid’’ is
not translated by the text-only model and models with either
BERT or RoI features. However, the LXMERT feature suc-
cessfully guides the model to generate the German translation
word ‘‘pyramide.’’ This sample demonstrates a good interac-
tion between language and visionmodalities. Specifically, the
LXMERT feature guides the model to construct the sentence
structure by leveraging the language modality, which is also
observed when using the BERT feature, and then completes
uncertain words by leveraging the vision modality.

VII. CONCLUSION
In this paper, we introduced two approaches to incor-
porate a monolingual corpus to improve MMT models.
We showed that pre-trained word embeddings improve the
translation performance along with the debiasing procedure
and/or monolingual-corpus-based subword tokenization.
Pre-trained VLMs are also proven to boost the translation
quality. The results on multiple language pairs support the
usefulness of monolingual data. Compared to the approaches
based on parallel corpus, our proposed approach requires
less-expensive annotations and is, therefore, more applicable
for low-resource languages. Although we conducted exper-
iments on various target languages to show the applicability
across languages, the utility may deteriorate if our approaches
are applied to a language with a culture that is distant from
that of LXMERT. In future work, we would like to inspect
the impact of this cultural gap for cultural-distance language
pairs (e.g., English–Arabic).

19We employed bert-base-multilingual-uncased to compute
the perplexity.

After manipulating knowledge obtained from monolin-
gual corpora, conventional MMT models still outperformed
Transformer-based MMT models in some language pairs.
However, through extensive analysis, we found the focus
areas to develop better MMT models fused with pre-trained
VLMs. In future work, we will examine training tasks for
pre-trained VLMs that are more appropriate for multimodal
NMT. Further, we will investigate models fused with multiple
features that preserve every benefit made by their underlying
features.
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