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ABSTRACT The change of electric vehicle (EV) cluster schedulable capacity in each period under
multi-time scales has strong randomness and volatility. To ensure the trip demand and the charge and
discharge cost of users, and increase the reliability of load demand curve prediction, this paper proposes
a dynamic charge and discharge optimization strategy that takes the charge and discharge control coefficient
in each response period as the control object. According to the trip chain, the proposed method models the
trip time-space distribution of EV users, sorts each response period from small to large according to the
starting time, comprehensively considers the interests of users and the peak shaving demand of the power
grid, and uses Quantum Particle Swarm Optimization (QPSO) to solve the multi-objective optimization of
charge and discharge control coefficient for the sorted response period. The charge and discharge control
coefficient is modified by introducing virtual charge time and the virtual state of charge. Compared with the
traditional method, the proposed method considers the mismatch between the expected parking time of users
and the actual parking time of users and can update the load demand curve in real-time due to the dynamic
changes in users’ trip behavior, which is more practical. To verify the effectiveness of the method proposed in
this paper, according to the simulation results of the time-space distribution of electric private car users, the
load demand curves under different charge strategies, different optimization weights, and different vehicle-
to-grid (V2G) responsiveness are simulated and analyzed. The results show that the proposed method can
effectively reduce the peak valley difference and variance of the load demand curve under the condition of
ensuring the trip demand and economic benefits for EV owners.

INDEX TERMS Charge and discharge strategy, electric vehicles, quantum particle swarm optimization, trip
time-space distribution, vehicle-to-grid.

I. INTRODUCTION
EV charging load is a typical power consumption load on
the user side, and it is likely to become a flexible demand
response resource. In the future, there will be a large number
of EVs. The charging power of a single EV is much higher
than the daily household appliance load, and its charging
period has strong replaceability and schedulability. With
the breakthrough and development of power electronics
technology, modern control, and communication technology,
V2G technology is gradually maturing [1].

EV is not only a flexible load with schedulable potential
but also can be used as battery energy storage equipment
to feedback electric energy to the power grid at a certain
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standby capacity when necessary. In [2], for plug-in electric
vehicles, an intelligent charge strategy model is proposed
to assist the owner to find the optimal charging station
to optimize the load double-peak overlapping phenomenon.
Reference [3] considers various battery operation strategies,
takes the grid-side benefits as the main goal, and proposes
an EV charge and discharge optimization strategy based
on Multi-objective Particle Swarm Optimization (MOPSO).
Reference [4] proposes an EV charge and discharge strategy
based on coordinated control of energy pricing to ensure
maximum economic benefits for the EV user side. Refer-
ence [5] proposes an algorithm based on water injection,
which is specially designed for smoothing the grid load curve,
which can effectively coordinate the charge and discharge
periods of EV clusters. Reference [6] uses the K-means
clustering algorithm to divide EVs into different groups and
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uses PSO to solve the model with groups as units, so as to
avoid dimension disaster caused by centralized scheduling
of a large number of EV clusters. Reference [7] points
out that EVs should follow the V2G charge and discharge
scheduling on the premise of meeting basic trip needs.
Considering the convenience of user trips, a Preference-
inspired Co-evolutionary Algorithm (PICEAg-EV) based
on resource allocation is proposed to solve the multi-
objective optimal control problem. Based on the regional
power grid load, Reference [8] sets the load elasticity
coefficient to optimize the electricity price in each time
period and proposes an optimal control strategy for charge
scheduling to reduce the charging cost of users. To select
the target time slot with sufficient residual power in the
power grid for charge scheduling and determine the charge
priority of each EV in each time slot, Reference [9] defines
the capacity margin index and charge priority index, and
proposes a coordinated charge strategy employing a valley
filling strategy. Reference [10] combines the peak shaving
demand of the system, proposes the interactive incentive
price mechanism of the EV network, and constructed the EV
trip demand model based on the trip chain and the power
consumption model based on the trip demand. Based on
the proposed dynamic optimization method of time-of-use
electricity price, Reference [11] uses PSO to optimize the
charge and discharge behavior of each EV in two stages
by establishing a multi-objective function with the largest
charging amount and the smallest charging cost and modifies
the optimized charge and discharge behavior by introducing
virtual charge state.

Under multi-time scales, the changes in the schedulable
capacity of EV clusters in each period have strong random-
ness and volatility. Most EV users will have temporary trip
demand or prolong parking time due to special circumstances.
The actual schedulable capacity in each period may have
a large deviation compared with the predicted results,
which affects the accuracy of load demand curve prediction.
In addition, when simulating the load demand curve, the
above references do not optimize the charge and discharge
control coefficient of each response period in turn according
to the chronological order of EV participation in orderly
charge and discharge. In practical situations, the optimization
results of subsequent EVs connected to the grid are unknown,
which affects the reliability of the calculation results. Based
on the above research, these paper models the charging load
of private cars, taxis, and buses under disorderly charging
mode. The results show that the daily charging demand of
most electric private cars is not high, with sufficient parking
time and electricity to respond to V2G orderly charge and
discharge scheduling. Firstly, based on the 2017 national
household travel survey and the regional traffic road network
model, combined with the Floyd algorithm and the spatial
transition probability matrix, the Monte Carlo method is
used to simulate the trip time and space characteristics of
electric private vehicles. Assuming that each functional area
is equippedwith two-wayV2G equipment, the parking period

FIGURE 1. Basic information on EVs.

of electric private cars can be regarded as the schedulable
period, which is sorted according to the starting time of
each schedulable period from small to large. Secondly, based
on the ranking results, the peak and valley periods are
divided according to the basic load in the response period
when the EV is connected to the grid, and the charge
and discharge control coefficient is introduced to represent
the charge and discharge state of the EV in the response
period. Based on the expected parking time of users and
the state of charge (SOC) when the EV is connected to the
power grid, judge whether the EV meets the conditions for
participating in orderly charge and discharge optimization,
and introduce virtual charge time to modify the charge
and discharge control coefficient. Then, based on the V2G
incentive price for peak shaving proposed in [10], a multi-
objective function is established, which has the lowest user
charge and discharge cost, the smallest peak valley difference
of load in the response period, the smallest mean square
deviation of load fluctuation in the response period, the
smallest sum of the difference between the load in each
period after optimization and the daily average load before
optimization, and the highest user satisfaction. Considering
the constraints, the QPSO optimization algorithm is used
to optimize the charge and discharge control coefficient in
the EV response period, and the virtual SOC is introduced
to modify the optimized charge and discharge control
coefficient, so as to realize the calculation of the user’s
charge and discharge costs and the SOC of the EV when
it is expected to leave, which is convenient for the user to
decide whether to respond to V2G. When the user leaves
or reaches the expected departure time, update the load
demand curve again according to the actual situation. Finally,
simulation experiments are carried out on the load demand
under different charge modes, different optimization weights,
and different V2G responsiveness to verify the effectiveness
and rationality of the optimization strategy proposed in this
paper.

II. MODELING EV CHARGING LOADS
A day is discretized into 96 time periods, every 15 minutes
as a period. According to the trip purpose, EVs are roughly
divided into three categories: private cars, taxis, and buses.
Assuming that there are a total of 300 EVs in a certain
area, the basic information of various EVs is shown in
Figure 1.
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TABLE 1. Charging frequency and daily power consumption.

A. MODELING OF USER CHARGING BEHAVIOR
CHARACTERISTICS
1) USER TRIP CHAIN ANALYSIS
The trip chain model can be used to reflect the dynamic
characteristics of the trip mode. According to the structure
of the trip chain and regional functions, the regions are
divided into five categories: residential area (H), work
area (W), shopping area (S), entertainment area (E), and
other functional areas (O). On weekdays, the trip activities
of private cars are dominated by simple chain (H-W-H) [12].
Considering the trip chain structure with up to three driving
destinations, its structure can be divided into the simple chain
and complex chain, as shown in Figure 2.

2) CHARGING FREQUENCY ANALYSIS
In the disordered charge mode, a large number of users do not
charge EVs every day, so taking the user’s charging frequency
into consideration is beneficial to improve the prediction
accuracy of theMonte Carlo method. This paper assumes that
the relationship between the user’s charging frequency and
the daily power consumption is shown in Table 1.

3) USER DRIVING CHARACTERISTIC PARAMETER ANALYSIS
In the disorderly charge mode on weekdays, private car
owners often choose to charge in the parking lot in the
residential area after returning home from work or conduct
emergency fast charging near the destination. To reduce
battery loss, private car owners often adopt the conventional
charging method when charging at night. In the orderly
charge and discharge mode, since the daily electricity
consumption of most private car owners is low [13], there
is sufficient electricity to respond to the demand for urban
peak shaving and valley filling. To quickly put into operation
to earn profits, taxi drivers often use fast charging during
working hours, which is also one of the main reasons for the
increase in the peak-to-valley difference in the power grid.
In addition, the operation of electric buses is regular, and they
often adopt the fast charging method in groups. To ensure the
normal operation of urban traffic, this paper assumes that both
buses and taxis use disorderly charge mode during working
hours. In the disordered charge mode, the spatiotemporal
characteristic parameters of EVs are shown in Table 2.

B. EV LOAD PREDICTION IN DISORDERED CHARGING
MODE
1) CHARGING TIME
When the disordered charge mode is adopted, in the
conventional charge mode, the charging is stopped after

the power is fully charged. In the fast charging mode, the
charging is stopped when the SOC reaches 80%. The actual
charging time tm,rp of an EV can be divided into two cases,
that is, the charging time tm,in connected to the power grid
and the charging end time tm,out are on the same day, or the
charging time tm,in connected to the power grid is on the first
day and the charging end time tm,out is on the second day.
Then the EV charging time tm,rp can be expressed as:

tm,rp =

{
tm,out − tm,in, 1 ≤ tm,in ≤ tm,out ≤ 96
96− tm,in + tm,out , 1 ≤ tm,out ≤ tm,in ≤ 96

(1)

2) EV CHARGING CAPACITY
To simplify the model, assuming that EVs adopt a constant
power charge mode, the charging electricity of EVs during
disordered charge mode can be approximately expressed as:

Sm,rp =
tm,rpPr
4ηCm

(2)

where Pr is the rated charging power of the charging pile and
η is the charging efficiency.

3) MONTE CARLO SIMULATION METHOD
The Monte Carlo method is a statistical simulation method
that uses random numbers to solve practical problems. Its
main purpose is to obtain numerical solutions to practical
problems. It can produce random objects with probability
distribution when simulating a process and estimate the
digital characteristics of the model with statistical methods.
The specific process of predicting EV load by the Monte
Carlo method is shown in Figure 3.

According to the charging behavior characteristics of
users, this paper uses the Monte Carlo method [14] to
simulate the regional EV charging load. In the case of
disorderly charging, the charging load of buses and taxis is
very high, which will have a great impact on the power grid.
As shown in Figure 4, the EV load has four peaks in one
day. Around 2:30 p.m., the load peaks of the three models
are superimposed, and the total load reaches about 1400kW.
In the disordered charge scenario, the overall charging
demand for private cars is low, which shows that they have
great dispatch potential. If they are reasonably guided to
participate in orderly charge and discharge activities, they can
provide effective assistance for peak shaving demand on the
power grid side.

III. MODELING OF SPACE-TIME DISTRIBUTION AND
RESEARCH ON THE SCHEDULABLE TIME PERIOD OF
ELECTRIC PRIVATE CAR
Electric taxis and electric buses are the main sources of
excessive peak value in some time periods of the power
grid. However, due to the actual operation needs, the
charging demand for both is high. Electric buses adopt
centralized and rapid charge mode, while electric taxis
have the possibility of participating in a large number of
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FIGURE 2. Schematic diagram of the trip chain.

TABLE 2. Spatiotemporal parameters of EVs in disordered charge mode.

orderly charge and discharge activities only after the end of
working hours. Considering that private cars account for the
highest proportion of all models, and most private cars have
sufficient time and electricity to meet the basic conditions
for participating in orderly charge and discharge scheduling,
electric private cars with different battery capacities are used

as the research objects. It is assumed that each electric
private car is equipped with two-way V2G equipment, and
except for the running electric private car, other electric
private cars can obtain the SOC of EV users, willingness,
and location to participate in V2G peak shaving and valley
filling auxiliary services and other information through the
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FIGURE 3. Flow chart of Monte Carlo simulation.

communication function of V2G equipment. As shown in
Figure 5, this chapter simulates the driving path of EV users in
combination with the traffic network model and then obtains
the schedulable period of each electric private car.

A. FLOYD ALGORITHM
This paper assumes that the shortest path of Floyd is the
total length of each trip chain of EV. The core of the Floyd
algorithm is to calculate the global optimal solution by using
the local optimal solution [15]. It can be divided into two
stages, finding the shortest path length and recording the path

FIGURE 4. Regional EV charging load simulation results.

FIGURE 5. Schematic diagram of the regional road network.

of finding length, that is, the optimal route can be found. The
specific steps are as follows:

1) Generate an adjacency table D according to the road
network nodes, and initialize the routing matrix P;

2) Using different routing nodes sn as intermediate points,
obtain the direct path length between the two nodes and the
indirect path length passing through the road network node sn,
and take the minimum value to update the adjacency table D;

3) The adjacency table D stores the shortest path length
between nodes, which is the distance matrix.

The Floyd algorithm is used to calculate the distancematrix
of the road network. The distance is expressed by the size and
color of the oval color block, as shown in Figure 6.

B. VEHICLE SPACE TRANSFER PROBABILITY
The trip chain is regarded as a Markov chain. In this paper,
each driving destination of an EV is regarded as a state, and
the next destination of the EV is determined by the current
state. Note that the current state is Ei, the next state is Ej, and
pij is the state transition probability from state Ei to state Ej.

For the five trip destinations studied in this paper (H, S, E,
W, and O respectively), the one-step transition probability of
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FIGURE 6. Distance matrix obtained by Floyd algorithm.

EV driving from one destination to another can be expressed
as:

Ak =



H S E W O
H pk11 pk12 pk

13
pk
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pk
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pk
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pk
23

pk
24

pk
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pk
34

pk
35
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pk
42

pk
43

pk
44

pk
45

O pk
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pk
52

pk
53

pk
54

pk
55


(3)

where k is the serial number of a certain sub-trip chain in the
trip chain of EV one day, and pkij will show the time-varying
of different spatial distributions according to the trip demand
of different sub trip chains. The specific value is set according
to [12].

C. SIMULATION OF EV SPATIOTEMPORAL DISTRIBUTION
BASED ON TRIP CHAIN
To obtain the V2G schedulable period of each EV, it is
necessary to simulate the spatial state distribution of each
EV user in each time period according to the trip chain,
so as to determine whether the EV is in the schedulable
state. Reference [16] points out that the daily trip time Ts of
EV users follows the normal distribution, and its probability
density function is as follows:

fs(Ts) =
1

√
2πσs

e
−
(Ts−µs)2

2σ2s (4)

where µs = 8.56 and σs = 1.57. The normal distribution
probability density diagram of user trip time is shown in
Figure 7.

According to the statistical results of the 2017 national
household travel survey [17], the time spent on trip activities
of entertainment and work types approximately meets the
normal distribution of N (2.39,0.732) and N (5.87,1.22). The

FIGURE 7. Normal distribution probability density diagram of user trip
time.

FIGURE 8. Normal distribution probability density diagram of time spent
on entertainment and work activities.

normal distribution probability density diagram of the two
trip activities is shown in Figure 8.

The time spent on shopping and other types of trip activities
approximately satisfies the exponential distribution:

Fso(T ) =


1
σs
e−

T
µs T ≥ 0

0 T < 0
(5)

For shopping activities, where µs = 0.56 and σs = 0.56. For
other types of activities, where µs = 0.45 and σs = 0.45. The
probability density diagram of the exponential distribution of
the two activities is shown in Figure 9.

The simulation process of EV trip temporal and spatial
distribution based on the trip chain is shown in Figure 10.
The specific steps are as follows:
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FIGURE 9. Probability density diagram of exponential distribution of
shopping and other types of activities.

1) Initialize the EV quantity M , set m = 1, and m
represents the serial number of EVs;

2) For the m-th EV, assume that the initial SOC value
of the first trip is a random number evenly distributed in
[0.8, 1], and randomly extract the length Q of the trip chain.
On weekdays, the number ratio of simple chains to complex
chains is about 2 [18]. Set k = 1, k is the sequence number
of a certain sub-trip chain in the trip chain of EV one day;

3) According to the current sub trip chain k , use the Floyd
algorithm to calculate the trip distance, and approximately
estimate the trip time according to the routing matrix and
the average speed of each road section in the corresponding
period of the road network;

4) Assume that both residential areas and work areas
adopt 10kW conventional charging, and other functional
areas adopt 30kW fast charging. The user’s SOC expectation
is a random number evenly distributed between [0.6, 1]. The
parking time tm,rp and the expected parking time tm,es are
randomly selected according to the trip chain;

5) Judge whether k is equal to Q. if it is equal, go to 6).
If it is unequal, make k = k + 1, random the destination of
the next sub trip chain according to the transfer probability
matrix, and go to 3);

6) Judge whether m is equal to M . if so, the process ends.
If not, make m = m+ 1 and go to 2).
It is assumed that all functional areas are equipped with

two-way V2G equipment, so the period during which EV
is expected to stay at a certain place can be regarded as a
schedulable period. Take the EV user’s family as the starting
point and endpoint of the daily journey. The schematic
diagram of the travel chain coupled between EV and traffic
network is shown in Figure 11.

IV. EV CHARGE AND DISCHARGE STRATEGY
OPTIMIZATION MODEL
A. V2G PRICE INCENTIVES FOR PEAK SHAVING
When setting the discharge service price for EVs participating
in peak shaving auxiliary services, the load situation of
the system and the electricity price should be taken into
consideration. If EV users participate in peak shaving when
the grid load fluctuates greatly, they will benefit more. A day
is divided into 96-time intervals at 15min intervals. If the
load Pt of the distribution network in the time period t is
greater than the daily average load Pavr of the distribution
network when EVs are connected to the power grid, this
time period is defined as the peak shaving period. To reflect
the difference between EV users participating in system
peak shaving in different time periods, the V2G service
compensation price is set according to the quality of EV
participation in auxiliary services. This paper introduces the
peak clipping compensation coefficient [10], and designs the
following compensation coefficient rules:

Qp = QsQj (6)

Qs =
Pwξ
Pavr

(7)

Qj = qjqjb (8)

Pw = Pt − Pavr (9)

qjb =
N t
j

Na
× 100% (10)

qj =

{
1.100 0 ≤ qjb ≤ 85%
1.205 85% < qjb ≤ 100%

(11)

Cd,t = Cc,tQp (12)

Cd,t,min ≤ Cc,t ≤ Cd,t,max (13)

where Qs is the peak shaving demand coefficient. Pw is
the system load to be reduced. Qj is the user participation
compensation coefficient. ξ is the peak shaving demand price
compensation coefficient, and the value in this paper is 1.1.
qj is the adjustment coefficient of EV user participation,
qjb is the participation of EV users. N t

i is the number of
EV users signed up to participate in V2G in the response
period. Na is the total number of EV users. Cc,t is the
current city time-of-use electricity price. Cd,t is the discharge
service compensation price for EVs participating in peak
shaving auxiliary services. Cd,t,min and Cd,t,max are the mini-
mum and maximum discharge service compensation prices
for EVs participating in peak shaving auxiliary services,
respectively.

B. POWER BATTERY LOSS MODEL
Charge and discharge rate, depth of discharge, state of charge,
number of cycles, and charge and discharge capacity are the
main factors that affect battery loss. Reference [11] points out
that the number of battery cycles and battery life is roughly
linear, and the calculation formula of battery degradation cost
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FIGURE 10. The modeling process of EV trip temporal and spatial distribution.

FIGURE 11. Schematic diagram of travel chain coupled with EV and traffic
network.

is as follows:CV2G
m,t =

∣∣∣∣ Bm100
∣∣∣∣ xm,tCm

CB

xm,t = max
{
0, (Sm,t−1 − Sm,t )Cm

} (14)

where CV2G
m,t is the battery degradation cost of the EV in

period t. Bm is the linear relationship coefficient between
battery life and cycle times, which is taken as −0.015625 in
this paper. Cm is the battery capacity of the EV. xm,t is the
cyclic charge and discharge capacity of the vehicle in period t .
Sm,t and Sm,t−1 are the SOC of the vehicle in period t and the
previous period respectively. When the EV responds to V2G
discharge in period t , there will be battery loss cost, while
there will be no battery loss cost when charging.

C. CHARGE AND DISCHARGE CONTROL COEFFICIENT
An EV will have 3 states after being connected to the grid:
charge, discharge, and silent. To conveniently control the
charge and discharge behavior of each EV, the charge and

discharge control coefficient is introduced:

CVm = [cm,1, cm,2, . . . , cm,t ] (15)

whereCVm is the set of EV charge and discharge control coef-
ficients. cm,t is the charge and discharge control coefficient of
each period under the single parking time of EV,which is used
to control the charge and discharge behavior and charge and
discharge power of the EV in each period. The control rules
are as follows:

0 < cm,t ≤ 1, charge
cm,t = 0, silence
−1 ≤ cm,t < 0, discharge

(16)

D. OBJECTIVE FUNCTION
1) THE LOWEST COST OF EV CHARGING AND DISCHARGING
After considering the battery cycle charge and discharge cost,
take the minimum charge and discharge cost of the EV during
the charge and discharge period as the objective function:

min fa =
tm,out∑
t=tm,in

(
cm,tytPr

4
+ CV2G

m,t

)
yt ∈

{
Ccp,t ,Ccu,t ,Ccv,t ,Cdp,t ,Cdu,t ,Cdv,t

} (17)

where tm,in is the starting time of EV response to charge and
discharge scheduling. tm,out is the period when the EV is
expected to leave the grid. fa is the charge and discharge cost
of the EV after considering the battery loss. Pr is the rated
charge and discharge power of the EV. Ccp,t , Ccu,t , and Ccv,t
are the charge prices in the peak period, the normal period,
and the valley period, respectively. Cdp,t , Cdu,t , and Cdv,t are
the discharge prices in the peak period, the normal period, and
the valley period, respectively.

2) THE MINIMUM LOAD PEAK-TO-VALLEY DIFFERENCE
DURING THE RESPONSE PERIOD
To avoid large-scale charging of EVs during peak power
consumption hours after being connected to the power grid,
causing peak-to-peak superposition, the goal is to minimize
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the load peak-to-valley difference during the response period:

min fb = Pm,pk − Pm,vl (18)Pm,pk = max
tm,in≤t≤tm,out

{
Pt + Pm,t

}
Pm,vl = max

tm,in≤t≤tm,out

{
Pt + Pm,t

} (19)

Due to the randomness of the trip chain, each EV may
respond to V2G scheduling many times a day. Therefore,
it is necessary to study multiple V2G response periods of
each EV in a day. Where Pm,t is the charge and discharge
power of the m-th EV in period t when responding to a V2G
dispatching. Pm,pk and Pm,v are the peak and valley values of
electric power consumption of the m-th EV in the response
period respectively.

3) THE MEAN SQUARE ERROR OF LOAD FLUCTUATION
DURING THE RESPONSE PERIOD IS THE SMALLEST
The mean square deviation of load reflects the fluctuation
of regional load. The smaller the mean square deviation, the
more stable the changing trend of load. The objective is to
minimize the mean square deviation of load fluctuation in the
response period:

min fd =
tm,out∑
t=tm,in

(Pm,t + Pt − Pavr )2

Pavr =
1

tm,es

tm,out∑
t=tm,in

Pt

(20)

where tm,es is the expected duration of EV participating in
V2G charge and discharge scheduling.

4) THE SUM OF THE ABSOLUTE VALUE OF THE DIFFERENCE
BETWEEN THE LOAD IN EACH PERIOD AFTER THE
OPTIMIZATION OF THE RESPONSE PERIOD AND THE DAILY
AVERAGE LOAD BEFORE THE OPTIMIZATION IS THE
SMALLEST
To reduce the fluctuation of the overall load and further guide
EV peak shaving and valley filling, the goal is tominimize the
sum of the absolute value of the difference between the load
in each period after the optimization of the response period
and the average load of the whole day before optimization:

min fd =
tm,out∑
t=tm,in

∣∣Pavr − (Pm,t + Pt )
∣∣

Pavr =
1
96

96∑
t=1

Pt

(21)

5) HIGHEST USER SATISFACTION
EV users can obtain certain economic benefits by responding
to V2G dispatch. However, when EVs respond to V2G,
on the grid side, the main goal should be to ensure the
normal travel of users and minimize the frequent charge and
discharge conversion of EVs during the dispatching process,
so as to improve the enthusiasm of users to respond to V2G
dispatching.

a: USER SOC SATISFACTION INDEX ω
In fact, users may have temporary trip needs due to
emergencies. If the EV is excessively discharged during the
user’s response to V2G, it will affect the user’s trip, thus
reducing the user’s enthusiasm to respond to V2G scheduling.
Therefore, this paper introduces the user SOC satisfaction
index ω:

ω = min
{
Sm,out
Sm,tg

, 1
}

(22)

Sm,out = Sm,in +

tm,out∑
t=tm,in

Pm,t

4Cm
(23)

where Sm,out is the SOC when EV leaves. Sm,in is the SOC
when EV starts responding to V2G. Sm,tg is the ideal SOC set
by the user. It can be seen from (22) that the value range of
ω is within (0, 1]. The larger the value, the higher the user’s
SOC satisfaction.

b: SATISFACTION OF CHARGE AND DISCHARGE EXCHANGE
TIMES γ
Frequent charging and discharging of the battery has a great
impact on the life of the battery, which will affect the
user’s evaluation of V2G. Therefore, this paper introduces the
satisfaction index γ of the number of charge and discharge
exchanges:

γ = min
{

tes
6nm,cg

, 1
}

(24)

where nm,cg is the number of charge and discharge exchanges
of EVs in a certain scheduling period. It can be seen from (24)
that the value range of γ is (0, 1]. The larger the value is, the
higher the satisfaction of the user with the number of charge
and discharge exchanges.

Based on the above considerations, user satisfaction is
defined as the opposite number of the product of user
SOC satisfaction and charge and discharge exchange times
satisfaction:

fe = −ωγ (25)

It can be seen from (25) that the value range of EV user
satisfaction is within [−1, 0). The smaller the value, the
higher the user satisfaction.

6) TOTAL OBJECTIVE FUNCTION
Based on the linear weighted sum method, each objective
function is normalized:
min f = λa

(
fa
f max
a

)
+ λb

(
fb
f max
b

)
+ λc

(
fc
f max
c

)
+ λd

(
fd
f max
d

)
+ λe (fe)

λa + λb + λc + λd + λe = 1

(26)

where f is the multi-objective optimization function. f max
a ,

f max
b , f max

c and f max
d are the maximum values of the single-

objective function respectively. λa, λb, λc, λd , and λe are
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the optimization weights of the single objective function,
respectively.

E. CONSTRAINT CONDITION
1) EV MILEAGE CONSTRAINT
The remaining power of the EV after discharging to the
grid needs to meet the power demand of the next trip, and
the discharge capacity should be between the maximum and
minimum battery capacity:

Sm,out ≥
L�m,max

100Cm
(27)

where L is the driving mileage of the next section of the EV.
�m,max is the maximum energy consumption per 100 km of
the current EV.

2) BATTERY DISCHARGE CAPACITY CONSTRAINT
The service life of the EV battery is not only related to the
number of cycle discharges but also related to the discharge
depth. In order to avoid an additional loss to the service life
of the EV battery, this paper makes the following constraints
on the electric quantity Sm,t and schedulable electricity Sm,d
of EV responding to discharge in the discharge period:{

0.3 ≤ Sm,t ≤ 1
Sm,d = Sm,t − 0.3

(28)

Sm,d ≥

tm,dout∑
t=tm,din

∣∣Pm,t ∣∣
4Cm

(29)

where tm,din is the start time of discharge phase. tm,dout is the
end time of discharge phase.

3) TRANSFORMER CAPACITY CONSTRAINT
During any period of time, the overall regional load shall not
be greater than the upper limit ST of the regional transformer
capacity:

M∑
m=1

Pm,t + Pt ≤ ST , t ∈ {1, 2, . . . , 96} (30)

4) CHARGE AND DISCHARGE POWER CONSTRAINT
The size of the charge and discharge control coefficient cm,t
will affect the charge and discharge power Pm,t of the EV.
Constraining the charge and discharge power is beneficial
to the reasonable scheduling on the grid side. Therefore, the
following constraints are imposed on Pm,t :

Pm,t ∈ {[−10,−5], [5, 10], [15, 30]} (31)

5) CONSTRAINT ON THE NUMBER OF CHARGE AND
DISCHARGE TRANSITIONS
Switching charge and discharge behavior multiple times in
a short period of time can negatively impact battery life.
Therefore, it is considered that the number of charge and
discharge transitions nm,cg in a single response period does
not exceed 1/3 of the total length of the period.

V. MULTI-OBJECTIVE COLLABORATIVE
OPTIMIZATIONSTRATEGY FOR ORDERLY CHARGE AND
DISCHARGE
After the EV is connected to the power grid, the system
obtains the battery capacity Cm and current SOC Sm,in of
the EV through the EV’s battery management system, and
records the access time tm,in of the EV to the power grid.
To facilitate the reasonable dispatching of the power grid, the
user also needs to input whether to respond to the charge and
discharge strategy. If the user has the willingness to respond,
the user also needs to input the expected residence time tm,es
of the EV and the expected SOC value Sm,tg when leaving.
The user’s actual departure time tm,rout is random. If the user’s
departure time is greater than the expected departure time,
the system will notify the user and ask the user to update the
expected departure time to continue the charge and discharge
optimization.

A. FIRST-STAGE CHARGE OPTIMIZATION CENTERED ON
USER CHARGING NEEDS
The schedulable period simulation results of electric private
cars are sorted from small to large according to the starting
time. If the user chooses to respond to V2G charge and
discharge scheduling within a schedulable period, this period
is the response period. The load prediction results of taxis
and buses are superimposed with the basic load of the power
grid, and peak, flat and valley sections are divided on this
basis. If the expected stay time tm,es input by the user is less
than or equal to 3, it will not discharge it. If the user has the
willingness to charge, the disordered charge mode is adopted
by default until the SOC of the EV reaches the desired state
Sm,tg or the user leaves, otherwise, the control coefficient of
this period is corrected to a silent state.

When the expected residence time tm,es input by the user is
greater than 3, the virtual charging duration tvm is introduced to
calculate the time required to reach the user’s expected SOC
Sm,tg under the constant power charge mode, in the case that
the user’s expected SOC Sm,tg is larger than the SOC Sm,in of
the EV connected to the power grid:

tvm =
Cm(Sm,tg − Sm,in)

Prη
(32)

If the expected parking time tm,es input by the EV user
is less than or equal to the virtual charging time tvm, the
system determines that the EV does not meet the orderly
charge and discharge conditions, and sets the charge and
discharge control coefficient within the EV charging period
to 1. Otherwise, the system judges that the EV meets the
conditions of orderly charge and discharge, and will arrange
for the EV to participate in the second stage of orderly charge
and discharge optimization.

B. SECOND-STAGE ORDERLY CHARGE AND DISCHARGE
OPTIMIZATION BASED ON QPSO
The search for particle swarm optimization (PSO) depends
on speed because the speed is limited and can only search
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along a fixed trajectory, which leads to a limited search area
and low global searchability. In view of the shortcomings
brought by this certainty, the idea of uncertainty is considered
to be introduced into PSO. QPSO transforms the search space
of particles from the original classical space to the quantum
space, so that the particles have quantum behavior so that
the motion of particles conforms to the motion behavior
of particles in quantum mechanics. In the quantum system,
the individual particles of the population have no definite
trajectory. The particles can appear at any position in the
feasible search domain with a certain probability, or even at
a position far away from the current position. This position
may have better fitness than the global optimal position of
the current population. Therefore, compared with the general
PSO, the global search ability of QPSO is greatly improved.

When an EV participates in orderly charge and discharge,
the charge and discharge control coefficient of the EV is
optimized by QPSO. First, initialize random particles whose
dimension D is the same as the expected residence time tm,es.
Assuming that each population consists of M particles, the
initial position cmi of the i-th particle can be expressed as a
vector of dimension D:

cm
i
= [cm

i,1
, cm

i,2
, · · · , cm

i,D
], i = 1, 2, · · · ,M (33)

After the particles of the charge and discharge control
coefficient are randomly initialized, the charge and discharge
control coefficient of the EV within the response period
has been preset. Considering the battery discharge capacity
constraints, it is necessary to modify the charge and discharge
control coefficients after initialization. The virtual SOC
variable Svm,t is introduced, and the virtual SOC after the
completion of the charge and discharge behavior in each
period is sequentially calculated according to the charge and
discharge control coefficient cm,t initialized by the EV:

Svm,t = Sm,t−1 +
cm,tPr
4Cm

(34)

where Sm,t−1 is the actual SOC value of the previous
period. When the virtual SOC variable Svm,t of a certain
period is greater than the threshold value of 0.95, if the
expected departure time of the user exceeds 3 periods and the
subsequent period does not belong to the valley period, the
charge and discharge control coefficient of the next 3 periods
is corrected to a negative number, otherwise, the correction is
0. Considering the battery discharge capacity constraint and
the user’s SOC satisfaction, when the virtual SOC variable
Svm,t of a certain period is less than the threshold value
of 0.3, if the user’s expected departure time is more than
3 periods, the charge and discharge control coefficient of the
next 3 periods is corrected to a positive value. If the time from
the user’s expected departure is less than 3 periods, the charge
and discharge control coefficients of this period and adjacent
periods are corrected to positive.

After the correction of the charge and discharge control
coefficient is completed, the particle swarm performs itera-
tive optimization, and the optimal position searched by the

i-th particle is called the individual extreme value, which is
recorded as:

Pmi,best = [Pmi,1,P
m
i,2, · · ·P

m
i,D] (35)

The optimal solution searched by the entire population so
far in this iteration process is called the global extremum,
which is recorded as:

Gmbest = [Gmg1,G
m
g2, · · ·G

m
gD] (36)

When the entire particle population finds the individual
extreme value Pmi,best and the global extreme value Gmbest ,
the iteration is completed, and each particle will update its
position through (37)-(40):

nmi,best =
1
M

M∑
i=1

Pmi,best (37)

ϕ = z1r1/(z1r1 + z2r2) (38)

pmi,best = ϕP
m
i,best + (1− ϕ)Gmbest (39)

cmi+1 = pmi,best ± α
∣∣nmi,best − cmi ∣∣ ln 1/u (40)

where nmi,best is the average optimal position of the particle
swarm. z1 and z2 are acceleration coefficients. r1 and r2 are
random numbers uniformly distributed in the range of [0,
1]. α is the coefficient of shrinkage and expansion, which
decreases linearly from 1 to 0.5 for better performance. u is
a random number between [0, 1]. After the position of the
particle is updated, it enters the next iteration until all the
iterative processes are completed, and the final optimal fitness
value is the optimal value of the particle swarm.

When the user chooses to respond to V2G charge and
discharge, the load demand curve is updated according to
the optimal solution result. Under normal circumstances, the
user’s actual stay time often has a certain deviation from the
expected stay time. When the user leaves the power grid,
V2G equipment will update the load demand curve according
to the current state of the EV, so as to avoid affecting the
accuracy of orderly charge and discharge optimization of
EVs that are subsequently connected to the grid after the
EV leaves. The two-stage optimization flow chart of orderly
charge and discharge is shown in Figure 12. where tb is a
temporary variable that represents three consecutive periods
after a certain period t , and tvp represents the valley period of
load demand curve in a day.

VI. CASE ANALYSIS
A. PARAMETER SETTING
Assuming that the basic load in the area refers to the basic
load distribution of the IEEE33 node distribution system
in [19], as shown in Table 3, the basic load of the 96 time
periods in this paper can be obtained after fitting.

Assuming that the number of EVs of each type in the area
is shown in Figure 1, the basic load in the corresponding
period is superimposed with the load of buses and taxis to
update the basic load distribution in each period. The battery
replacement cost CB is set with reference to [11], taking
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FIGURE 12. Two stage optimization flow chart of orderly charge and discharge.
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TABLE 3. Basic load distribution of IEEE33 nodes.

TABLE 4. Basic load distribution of IEEE33 nodes.

1 yuan/(W·h). There are a total of 3 transformers with a
capacity of 1600kVA in the area. The charge and discharge
efficiencies are both taken as 0.9. Set themaximumnumber of
iterations of QPSO to 600, the population size to 50, and the
acceleration coefficient z1 = z2 = 1.5. Based on the general
industrial time-of-use electricity price in Jiangsu Province,
the time-of-use electricity price in this region is formulated
during peak, flat and valley periods, as shown in Table 4.

According to the simulation results of the time-space
distribution of electric private car travel, the regional load
demand is simulated in different scenarios within a day. The
simulation process is shown in Figure 13. Among them, i is
the number of the schedulable periods of electric private cars
sorted according to the starting time from small to large,
S is the sum of the number of schedulable periods, and Si
represents the start time of the i-th schedulable period.

B. SIMULATION RESULTS
1) OPTIMIZATION RESULTS UNDER DIFFERENT
OPTIMIZATION WEIGHTS IN THE SAME RESPONSE PERIOD
Taking a response period as an example, the results of the
charge and discharge optimization method proposed in this
paper are displayed. V2G responsiveness is defined as the
ratio of the number of electric private cars participating in
orderly charge and discharge to the total number of electric
private cars. Assuming that the user’s responsiveness is
100%, the EV charging information in this response period
is: Cm = 20, Pr = 10, tm,in = 30, tm,es = 19,
tm,rout = 50, Sm,in = 0.8162, Sm,tg = 0.95. When the
user responds to V2G, the charge and discharge optimization
results with optimization weights of λ1:λ2:λ3:λ4:λ5 =

0.2:0.2:0.2:0.2:0.2, λ1:λ2:λ3:λ4:λ5 = 0.1:0.2:0.3:0.3:0.1,
and λ1:λ2:λ3:λ4:λ5 = 0.1:0.3:0.3:0.2:0.1 are analyzed. The
charge and discharge power distribution and load demand

curve under different optimization weights are shown in
Figure 14-16, and the charge and discharge control coefficient
distribution is shown in Figure 17.

From Figure 14-17, under the three optimization weights,
the method proposed in this paper reduces the load demand
of the power grid during the peak period in the response
period and increases the load demand of the power grid
during the valley period in the response period. The charge
and discharge costs under the three optimization weights
are approximately 0 yuan, and the SOC values when users
expect to leave are 0.8050, 0.8360 and 0.8468 respectively.
Obviously, the proposed method takes into account the
interests and needs of power grid side and user side, and gives
a reasonable and effective charge discharge optimization
strategy. In this case, the response period of EV is short,
and the response period is almost completely within the peak
period of the power grid. In terms of the peak regulation
demand on the power grid side, discharging EVs during the
peak period can effectively reduce the optimal fitness value
of the function and make the function closer to the optimal
solution. However, the user also puts forward a high demand
for charging. After discharging the EV in some periods, it is
necessary to charge it in other periods. At the same time,
it is also necessary to take into account the user’s charge and
discharge cost to keep it within a reasonable range. Therefore,
the overall optimization space is small. The optimization
effect of the proposed method can be effectively improved
when the EV is connected to the power grid for a longer time
and the time distribution of peak and valley periods in the
response period is uniform.

Figure 18 shows the QPSO optimization process of orderly
charge and discharge under different optimization weights.
It can be seen that different optimization methods reach
the optimum within 500 iterations, and the convergence
speed is the fastest when the optimization weight ratio is
λ1:λ2:λ3:λ4:λ5 = 0.1:0.3:0.3:0.2:0.1.

2) ANALYSIS OF PEAK SHAVING EFFECT AND USER
EXPERIENCE UNDER DIFFERENT OPTIMIZATION WEIGHTS
AND V2G RESPONSIVENESS
Analyze the peak shaving effect of electric private cars
when the V2G response is 0%, 20%, 40%, 60%, 80%
and 100% respectively under different optimization weights.
In multi-objective optimization, take λ1:λ2:λ3:λ4:λ5 =

0.2:0.2:0.2:0.2:0.2, λ1:λ2:λ3:λ4:λ5 = 0.1:0.2:0.3:0.3:0.1,
and λ1:λ2:λ3:λ4:λ5 = 0.1:0.3:0.3:0.2:0.1 as examples, and
the simulation results are shown in Figure 19-23.

The average income of orderly charge and discharge
is defined as the opposite number of the average value
of the actual charge and discharge cost of all EV users
participating in V2G orderly charge and discharge in each
response period in a day. The average SOC satisfaction is
defined as the average value of the sum of SOC satisfaction
when the user actually leaves in each response period in a
day. The average charge and discharge conversion times are
defined as the average value of the sum of the charge and
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FIGURE 13. Load demand simulation process.

FIGURE 14. Charge and discharge power and load demand curve when
the optimization weight is λ1:λ2:λ3:λ4:λ5 = 0.2:0.2:0.2:0.2:0.2.

FIGURE 15. Charge and discharge power and load demand curve when
the optimization weight is λ1:λ2:λ3:λ4:λ5 = 0.1:0.2:0.3:0.3:0.1.

FIGURE 16. Charge and discharge power and load demand curve when
the optimization weight is λ1:λ2:λ3:λ4:λ5 = 0.1:0.3:0.3:0.2:0.1.

discharge conversion times from the beginning of the orderly
charge and discharge of V2G to the actual departure of the
user in each response period in a day. The average optimal
fitness value is defined as the average value of the optimal
fitness value in each response period in a day. Under different
responsivity, the above indicators are calculated, as shown in
Table 5-9.

By comparing the above charts, it can be seen that different
responsiveness will affect the peak shaving effect of V2G and
user experience. In general, when the optimization weights

FIGURE 17. Charge and discharge control coefficient distribution.

FIGURE 18. Optimization process with different optimization weights.

are the same, the higher the V2G responsivity is, the average
benefit of orderly charge and discharge and the average
SOC satisfaction are increasing, while the average optimal
fitness value is decreasing. In the case of high responsiveness,
the number of EVs participating in V2G increases, and the
response period of more EVs will coincide with the load peak
and valley period. In the peak load period, the incentive price
of V2G is high, resulting in the increase of the average income
of orderly charge and discharge of EVs, and the average
optimal fitness value has also been improved. Under different
responsivity, the peak valley difference optimization rate and
load variance optimization rate are shown in Figure 24.When
the responsivity is 20% and 40%, the peak shaving effect
of V2G is not obvious. This is due to the fact that when
the responsiveness is low, the number of EVs participating
in V2G is small, and the response period that coincides
with the peak period is also less. At the same time, the
charge and discharge strategy proposed in this paper is
more inclined to ensure the travel demand of users, and
will not over-discharge the EV due to the high demand for
peak regulation. When the responsivity is greater than or
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FIGURE 19. Optimization results of charge and discharge when the responsiveness is 20%.

FIGURE 20. Optimization results of charge and discharge when the responsiveness is 40%.

TABLE 5. Charge and discharge optimization results at 20% response (Peak valley difference before optimization is 2.4096E+03, the load variance before
optimization is 3.4516E+07).

equal to 60%, the load peak valley difference optimization
rate and load variance optimization rate are significantly
improved. When the responsivity is 100%, the load variance
optimization rate even reaches 50%, which is because more
charging demand is transferred to the valley period through

the charge and discharge optimization strategy during the
peak period.

When the responsiveness is the same, the peak shaving
effect and user experience of V2G will show different char-
acteristics due to different optimization weights. Generally
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FIGURE 21. Optimization results of charge and discharge when the responsiveness is 60%.

FIGURE 22. Optimization results of charge and discharge when the responsiveness is 80%.

TABLE 6. Charge and discharge optimization results at 40% response (Peak valley difference before optimization is 2.3898E+03, the load variance before
optimization is 3.3876E+07).

speaking, when the optimization weight is λ1:λ2:λ3:λ4:λ5 =
0.1:0.2:0.3:0.3:0.1, the average charge and discharge con-
version times are low, the average income of orderly
charge and discharge is high, and the performance in
peak shaving is relatively good. When the optimization

weight is λ1:λ2:λ3:λ4:λ5 = 00.1:0.3:0.3:0.2:0.1, the average
charge and discharge conversion times are low and the
average income of orderly charge and discharge is high,
but the performance in peak shaving and average SOC
satisfaction shows volatility. When the optimization weight
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FIGURE 23. Optimization results of charge and discharge when the responsiveness is 100%.

TABLE 7. Charge and discharge optimization results at 60% response (Peak valley difference before optimization is 2.3709E+03, the load variance before
optimization is 3.3211E+07).

TABLE 8. Charge and discharge optimization results at 80% response (Peak valley difference before optimization is 2.3551E+03, the load variance before
optimization is 3.2629E+07).

TABLE 9. Charge and discharge optimization results at 100% response (Peak valley difference before optimization is 2.3329E+03, the load variance
before optimization is 3.1959E+07).

is λ1:λ2:λ3:λ4:λ5 = 0.2:0.2:0.2:0.2:0.2, the performance of
each index shows volatility. Overall, the higher the respon-
siveness, the better the performance in various indicators.
In the same responsiveness, the advantages and disadvantages
of various indicators under different optimization weights do
not reflect the regularity.

Under the condition of adopting the charge and discharge
optimization strategy proposed in this paper, the optimized
load demand shows the characteristics of a decrease in peak
load and an increase in valley load. In addition, it can be
observed that the load demand curve under each responsive-
ness shows strong volatility. On the one hand, the strategy
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FIGURE 24. Peak valley difference optimization rate and load variance
optimization rate under different responsiveness.

proposed in this paper takes the charge and discharge control
coefficient in the EV response period as the optimization
goal, and the basic charging information of users participating
in V2G has strong randomness, so the charge and discharge
control coefficient in each response periodwill also be greatly
different. On the other hand, the actual departure time of
the user is often inconsistent with the expected departure
time under normal circumstances, so the dynamic update of
the grid load demand is relatively frequent. In conclusion,
considering the temporary travel behavior of users, the
method proposed in this paper not only ensures the power
demand and economic benefits of discharge on the user
side but also takes into account the demand of reducing
peak valley difference and load variance on the power grid
side, which is effective. In addition, the method proposed
in this paper takes a certain response period of individual
EV as the research object, and the required data can be
identified by the device end or provided by the user end.
It has feasibility and universal applicability and is more
practical.

VII. CONCLUSION
In this paper, the Monte Carlo method is used to model
the charging demand of private cars, taxis, and buses in
the disorderly charge mode. Based on NHTS2017 data set
and regional traffic network information, the trip time-space
distribution model of electric private cars is established, and
then the schedulable period of each electric private car in
the whole day is obtained. Considering the temporary trip
demand of users and the time sequence of each response
period, this paper proposes a two-stage optimization strategy
of orderly charge and discharge, which takes the charge and
discharge control coefficient in the response period as the
optimization object. According to the simulation results of
the trip time-space distribution of electric private cars, the
following conclusions are drawn:

1) There are a large number of electric private cars, but the
daily charging demand is the lowest among the three models.
It has sufficient time to participate in V2G orderly charge and
discharge scheduling to assist the power grid in peak shaving
and valley filling.

2) The method proposed in this paper considers the tem-
porary travel needs of users under multiple time scales and
can formulate charge and discharge optimization schemes
according to the different needs of EV individual users. The
basic information required can be obtained through V2G
equipment or users, which is highly feasible. At the same
time, this paper optimizes the charge and discharge control
coefficients of each response period in turn according to
the time sequence of EV participation in orderly charge and
discharge, and the simulation results of the load demand
curve are more practical.

3) The method proposed in this paper can bring consider-
able discharge benefits to EV users on the premise of ensuring
the travel needs of EV users, and can effectively reduce the
load variance of the load curve, ensuring the interests of the
grid side and the user side.

4) When optimizing the charge and discharge behavior
of EV, different responsiveness and different optimization
weights will affect the experience of EV users and the peak
shaving effect of the power grid. Generally, the higher the
responsiveness of EV, the greater the benefits obtained by
both parties. Under the same responsiveness, the pros and
cons of each index obtained by different optimization weights
do not show regularity.

This paper only studies the effect of electric private
vehicles participating in V2G orderly charge and discharge
optimization. However, the charging demand for electric
taxis is relatively high. If the charge optimization of taxis
is carried out during working hours, and the orderly charge
and discharge optimization of taxis is carried out during rest
periods, the peak regulation effect can be further improved.
In addition, this paper only studies the orderly charge and
discharge optimization strategy of EV, and the demand
response policy to encourage users to participate in orderly
charge and discharge optimization still needs to be further
studied.
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