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ABSTRACT Networked radar is an emerging and effective alternative to traditional radar systems to provide
improved performance by fusing information from multiple radars. Further, networked radar systems (NRS)
have found numerous deployments in military and civilian infrastructures in recent years. Electronic
countermeasures (ECM) like jamming, Range Gate Pull-Off (RGPO), and Velocity Gate Pull-Off (VGPO)
generally pose a high risk to the radar systems by injecting intentional interference. This paper proposes
networked radar to detect the RGPO ECM attack and estimate the range gate deception parameter of the
deceived local track in an NRS. Each radar comprises a local tracker to provide the local estimates (updated
state and updated covariance), and these estimates are then sent to the fusion node. Thereafter, a track-to-
track association (T2TA) is formulated at the fusion node to detect the deceived tracks using all the available
local tracks. For the deceived track, the pseudo-measurements are created using the inverse Kalman filter-
based tracklets. All the local tracks except deceived track are compensated and sequentially fused to create
a reference measurement. After that, the deception parameter of the deceived track is estimated by using
pseudo-measurement and the reference measurement by employing the recursive least square estimator
(RLSE). In addition, the proposed algorithm is analyzed for single andmultiple RGPO based ECM scenarios.
Further, the Cramer Rao Lower Bound (CRLB) for the proposed methodology is derived. The results are
quantified with a Position Root Mean Square Error (PRMSE), CRLB, innovation test, normalized estimation
error squared (NEES) test, and confidence interval. The simulation results demonstrate that the proposed
estimation technique provides good performance in the presence of all the local tracks are being attacked
by RGPO ECM. Besides, it is evident from the results that estimator efficiency is falling below the 5% tail
probability of the chi-square distribution.

INDEX TERMS Cramer-Rao lower bound, electronic counter countermeasure, networked radar, range gate
pull-off, sequential fusion, tracklets.

I. INTRODUCTION
Networked radar has been very prominent in recent years for
the abundant resources it can use, specifically in target track-
ing applications. A networked radar system (NRS) connects
several heterogeneous radar systems geographically located
at different locations to a fusion center to jointly detect and
monitor targets in a large surveillance region [1]. Since an
NRS can significantly boost the precision of detection and
monitoring targets, it finds a wide range of applications, such
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as air traffic control, military intelligence, and autonomous
vehicles etc. Further, radar networks are widely adopted
in civilian and military infrastructures, ECM attacks may
pose a significant challenge to national security and to the
economy [2].

Electronic countermeasure (ECM) techniques have
become increasingly important in modern warfare, with rapid
advances in electronic technology and military intelligence.
Various ECM techniques have been proposed in the litera-
ture, namely noise jamming, Stand-Off Jamming (SOJ), Self
Screening Jamming (SSJ), RGPO, and VGPO [3]. Noise
jamming is an ECM in which the enemy radar transmits
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a noise signal with increased strength at the radar’s oper-
ating frequency, such that the signature from the target is
completely melded with the interference. On the other hand,
in the SOJ technique, the high-power jamming signal is
transmitted from the enemy radar at a larger distance than the
maximum range at which the targeted radar can detect the
targets. In SSJ, jamming equipment is carried out for self-
protection, and efficient jamming geometry between victim
radar and jammer is always maintained. Deception jamming
techniques like RGPO and VGPO are the most productive of
all the ECM techniques that generate fake targets in order to
deceive target tracking systems [4]. RGPO is a sort of ECM
that intercepts radar signals and retransmits a deception signal
with a progressive time delay, pulling the range gate of the
radar target tracker further away from the actual target over
time [5]. On the other hand, VGPO is employed by injecting
a frequency-shifted replica of the received radar signal; the
frequency of the false return is slowly altered to interfere
with the true Doppler shift [6]. Digital radio frequency
memory (DRFM) devices are generally used to store and
regenerate captured radar signals to confuse hostile radars [7].
In addition, because of advances in computing capability
and hardware architecture, the DRFM can simultaneously
processmultiple captured signals, allowing amodern repeater
to deploy deception jamming on multiple-radar devices [7].
The DRFM is utilized to gradually delay the deception signal,
thereby ‘‘walking’’ the range gate away from the true target.
The RGPO deception jamming produced by the DRFM sys-
tem is highly coherent to the radar transmitted signal, which
makes the detection of the deception jamming difficult [8].

Electronic Counter Countermeasure (ECCM) are broadly
classified into signal analysis and target tracking. In signal
processing, most radar systems are provided with ECCM
capabilities to combat deception jamming in recent years.
The ECCM techniques such as pulse diversity, polarization
character, motion function, DRFM quantization error, and
target detection system in the presence of interference ensure
that no single radar is tricked [7], [9]–[13]. In [14], an effi-
cient ECCM approach for countering the very high-power
ECM using an orthogonal frequency division multiplex-
ing (OFDM) radar is presented and analyzed. Here, the phase
codes of the sub-carriers belonging to the OFDM pulses are
tuned to limit the jamming strength to suppress range decep-
tion and combined range-velocity deception jamming [14].

Most of the sensors may not be aware of the ECM
techniques; however, they are resolved using efficient target
tracking. The effect of RGPO on radar target tracking with
benchmark targets is studied in [15] and [16]. In partic-
ular, controlling the beam pointing of phased array radar
for benchmark target tracking problems in the existence of
RGPO and false alarms is investigated in [15], [16]. The
impacts of target amplitude variations, beam shape, missed
detections, false alarms, finite resolution, target motions,
and track loss were all included in the test-bed simulation
described in [15]. Further, in [17] the solution for the second
Benchmark problem of tracking a maneuvering target in the

existence of RGPO using variable state dimension Kalman
filter is presented. Authors in [17], have deployed adaptive
waveform selection and dwell revisit time selection meth-
ods and track filter coasting for handling the uncertainties
introduced by false alarms, missed detection, maneuvers,
and RGPO. Further, for tracking highly maneuvering targets,
a comprehensive framework is presented in [3] in the pres-
ence of false alarms, SOJ, and RGPO. Mainly, the algorithms
for track generation and maintenance, adaptive target revisit
interval selection, waveform selection, and detection thresh-
old; and neutralizing ECM approaches were discussed in
depth in [3]. The interacting multiple model (IMM) estimator
in combination with the probabilistic data association (PDA)
technique is utilized for tracking the targets in [3]. Addition-
ally, authors in [18] have suggested the solution to the bench-
mark target tracking, which addresses the efficient resource
allocation in the presence of ECM. The resource allocation
problem is solved using interacting multiple model/multiple
hypothesis tracking (IMM/MHT) tracker along with target
tracking [18].

In [19], to counter RGPO and Range Gate Pull-In (RGPI)
jamming, an ECCM approach based on loss of balance in
the range tracking loop is presented and analyzed. Further,
using adaptively updated bias weight in every range tracking
interval according to the error signal, which balances the
energy of the early and late gates concerning the target and
continues to track the target with insignificant track loss is
presented in [19]. Furthermore, memory tracking and narrow
gate monitoring were used to propose and assess a novel
ECCM approach against deception jamming in [20]. In addi-
tion, authors in [20] have concluded that the proposedmethod
provides significant efficacy while countering all types of
RGPO. In [21], the spatial filtering technique using trilinear
decomposition to overcome the effect of deception jamming
is presented and analyzed. Further, authors in [22] have pro-
posed a composite approach to estimate the location of the
target and deception range for distinguishing between false
targets and true targets. The data fusion-based approaches are
proposed to distinguish false targets using data correlation
algorithms and local radar measurements (range, angle, and
Doppler information). On the other hand, signal fusion-based
techniques explore the ECCM abilities of multiple-radar sys-
tems by utilizing amplitude and phase information of the
target echoes to provide efficient countermeasures [23]. The
most generic and systematic approach for mitigating the
effect of RGPO on target tracking is Decomposition and
Fusion (DF) where, the deception measurements have vir-
tually the same angles like that of true measurements [24],
[25]. The fundamental steps involved in the DF technique are
decomposition of validated measurements using hypothesis
testing, track filtering for range deception measurements,
conventional filtering, and performing a fusion of these
estimates.

Considering the above review of the literature, most of
the existing contributions have been addressed the effect of
RGPO in either signal or target tracking perspective. Here,
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we have assumed two cases. Case-1: Inadequate signal pro-
cessing based ECCM techniques have been deployed and
yet few RGPO ECM corrupted measurements are arriving
for data processing (target tracking) and a simple target
tracking algorithm is working. Case-2: There are no signal
processing based ECCM techniques have been deployed and
measurements are completely corrupted by RGPO ECM and
a simple target tracking algorithm is working. Hence, in either
case the tracks being reported by the tracker are falsified
due to RGPO ECM. Further, there are insignificant research
works that focus on countermeasures to ECM in a networked
radar from a target tracking and fusion perspective. Hence,
in this paper, we consider an NRS and all the radars contain
a local tracker to estimate the updated state and covariance of
targets. These local tracks are available at the fusion center
and performed a T2TA to detect the RGPO ECM attack.
It is noted that the detection lone is inadequate unless the
mitigation measures are provided. Hence, this motivated us to
carry out this investigation to estimate the deception param-
eter of each local track. To construct equivalent measure-
ments of the deceived track, one requires a Kalman gain,
which is unavailable from the local tracker. Hence, a tracklet
based framework is considered to re-create a Kalman gain
followed by pseudo-measurements and pseudo-measurement
covariance. Similarly, all the available local tracks except the
deceived track are compensated with the estimated deception
parameter and generated a reference measurement using a
sequential fusion algorithm. The pseudo-measurements and
reference measurement are then used in the recursive least
squares framework to estimate the deception parameter of the
deceived track. The following are the major contributions of
the paper are:
• We propose to estimate the deception parameter at the
fusion center in an NRS to provide an efficient counter-
measure to the RGPO ECM technique.

• We employed inverse Kalman filter-based tracklets to
construct the pseudo-measurement from the available
updated state and covariance.

• The reference measurement is created by compensation
and sequential fusion of all the available tracks except
the deceived track.

• The RLSE framework is used to estimate the decep-
tion parameter of the deceived track by using
pseudo-measurement and reference measurement. Fur-
ther, innovation test, confidence interval, and normal-
ized estimation error squared (NEES) test to validate
the effectiveness of the proposed deception parameter
estimation algorithm.

The paper is structurally organized as follows: Section II out-
lines the problem formulation, section III describes the dis-
tributed target tracking using local trackers and track to track
association. Further, section IV presents the proposed decep-
tion parameter estimation algorithm. In addition, section V
proposes various tests like innovation test, NEES test and
confidence interval test to validate the proposed method.
Besides, section VI presents the results and discussions and

FIGURE 1. DFRM block diagram.

the paper is concluded with the concluding remarks and
future work in section VII.

II. PROBLEM FORMULATION
A. DFRM RGPO MODEL
DRFM systems digitize the received signals and store them
into the memory. Thereafter, alter the stored signals and
re-transmit them towards the radar to create an illusion that
true target is present. DRFM consists of receivers, analog-
to-digital converters (ADC), electronic attack (EA) control
system, digital-to-analog Converters (DAC), and transmit-
ters [26]. The basic structure of a traditional DRFM is
depicted in Fig. 1.

For deceiving a radar using a DRFM system the radar sig-
nals are captured and stored in the memory. These stored sig-
nals can be used to synthesize single or multiple false targets
to intentionally misguide the radar. The input radio frequency
(RF in) signal is often down-converted in frequency before
being sampled with a high-speed ADC in a DRFM system.
The stored samples are first altered in terms of amplitude, fre-
quency, and phase, then processed by a DAC, up-converted,
and sent back (RF out) to the victim radar so as to generate
the false targets [27]. Further, a DRFM system can modify
the signature of the target by altering its apparent radar cross
section, range, velocity, and angle before re-transmitting the
signal. There are several key DRFM based ECM techniques:
1. Generation of multiple false targets, 2. RGPO and VGPO,
3. Inverse gain and 4. Bin masking. Among these techniques,
the deception jamming performed in range domain, to deceive
the radar is known as RGPO. Accordingly, in this paper,
we have considered countering RGPO ECM at measurement
level processing using the sequential fusion based algorithm
in a networked radar framework. The established RGPOmea-
surement model presented in [28] and is represented as,

rd (k) =

{
r(k), tk ≤ t0 + Tca
r(k)+1r(k), tk > t0 + Tca

(1)

where, rd (k) is the deceived false range of the target from
the radar, r(k) is the actual range, and 1r(k) = c1tk

2 is the
deviation in the range owing to RGPO ECM. Here, 1tk is
the time delay due to ECM delay line as presented in [28].
Further, t0 is the start time of the range deception, c is the
speed of light and, Tca represents the length of the false target
evolving time.

B. RGPO IN NETWORKED RADAR SYSTEM
Consider a surveillance area beingmonitoring byNRS,where
the number of radars is greater than two. Assume that all
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FIGURE 2. Scenario illustrating networked radars, RGPO jammer, and
target.

the radars are synchronized and provides the measurements
pertaining to the targets. The measurement space of the radar
is range and azimuth. A deception jammer is placed in the
same surveillance region and sending spurious signals to
mislead either one or more radars in the given surveillance.
The measurement at the one or more radars are corrupted by
range gate pull off (RGPO) ECM technique. The scenario of
NRS in which one of the radar is deceived by a single RGPO
jammer as shown in Fig. 2. In the first case, a single radar
sensor as shown in Fig. 2, is assumed to be affected by the
RGPO jamming and results in deceived track as shown in
Fig. 3a. Whereas, in the second case, multiple radar sensors
are considered to be affected by ECM and leads to multiple
deceived tracks as shown in Fig. 3b.

The target state model is represented as,

x(k + 1) = Fx(k)+ 0xv(k), (2)

where x(k) is mx dimensional state vector consisting of posi-
tion and velocity of the target at the discrete time instant k .
F is the state transitionmatrixwhich follows constant velocity
(CV), constant turn (CT), and constant acceleration (CA)
depending on the state dynamics. 0x is noise gain matrix [29]
and v(k) is the process noise that follows Gaussian PDF with
covariance,

Qx = E[v(k)v(k)T ]. (3)

Here E[.] and [.]T represents the expectation and transposi-
tion operator respectively.

The measurement model without the influence of ECM is
given by,

zi(k) =
[
ri(k)+ wri (k)
θi(k)+ wθi(k)

]
; i = 1, . . . .N , (4)

where zi(k) is the measurement vector of mz dimension
(which contains range (ri) and azimuth (θi) corresponding to

the target). wri (k) and wθi(k) follows Gaussian PDF with zero
mean and standard deviation σ 2

ri and σ
2
θi
respectively.

The equivalent representation of (4) is,

zi(k) = Hxi(k)+ wi(k); i = 1, . . . .N . (5)

where H is the mz × mx measurement transition matrix and
wi(k) follows Gaussian PDF with zero mean and covariance
Rz which can be represented as,

Rz = E[wi(k)wi(k)T ] (6)

As shown in Fig. 2, in the presence of ECM the above
measurement model is as given in [2],

zi(k) =
[
ri(k)+1ri(k)+ wri (k)

θi(k)+ wθi(k)

]
; i = 1, . . . .N . (7)

The above (7) is equivalent to (1). Where, it is assumed that
the target range information deceived by the jammer and as a
result ith radar true range is displaced by a value due to RGPO
deception 1ri(k). The measurement in the presence of ECM
can be modelled as,

zi(k)=
[
ri(k)
θi(k)

]
+ci(k)1ri(k)+

[
wri (k)
wθi(k)

]
; i = 1, . . . .N ,

(8)

where, ci(k)
1
=
[
1 0
]T
. The polar measurements are con-

verted to Cartesian since most trackers work in Cartesian
coordinates. It is also assumed that the conversion will not
introduce any bias.

For Unbiasedness, the following condition (9) should be
satisfied

riσ 2
θi

σ 2
ri

� 0.4. (9)

Then, ith radar has the measurements

zi(k) = H(k)xi(k)+ Bi(k)ci(k)1ri(k)+ wi(k), (10)

where, the state vector x(k) = [x(k) ẋ(k) y(k) ẏ(k)]T and

H(k) =
[
1 0 0 0
0 0 1 0

]
1
= H. (11)

The matrixBi(k) is a nonlinear function with the true range
and azimuth. Using the the measured azimuth θmi (k) and
range rmi (k) from radar i,Bi(k) can be written as given in [13],

Bi(k) =
[
cos θmi (k) −rmi sin θmi (k)
sin θmi (k) rmi cos θmi (k)

]
. (12)

In the above, superscript m represents measured value.
Finally, the new covariance matrix of the measurements in
Cartesian coordinates (omitting index k in the measurements
for clarity) can be written as,

Rzi

=

(
r2i σ

2
θi
sin2 θi + σ 2

ri cos
2 θi (σ 2

ri − r
2
i σ

2
θi
) sin θi cos θi

(σ 2
ri − r

2
i σ

2
θi
) sin θi cos θi r2i σ

2
θi
cos2 θi + σ 2

ri sin
2 θi

)
.

However, one can use the observed range and azimuth as well.
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C. NOISE JAMMING
The jamming to signal ratio can be obtained as derived
in [30]: The received power at the radar can be expressed as,

Prx =
PtxGtxGrxλ2xσx
(4π )3R4xLs

(13)

where, Ptx is the peak transmitted power in watts, Gtx is the
gain of the transmit antenna, Grx is the gain of the receive
antenna, λx is the carrier wavelength in meters, σx is the
radar cross section of the target in square meters, Rx is the
range from the radar to the target in meters, and Ls is the total
receiver system losses.

The total power received at the radar from the jammer is
given by,

Pjr =
PjxGjxGjrλ2x
(4π )2R2j Ljr

(14)

where, Pjx is the peak transmitted jammer power in watts,
Gjx is the gain of the jammer antenna, Gjr is the gain of the
radar antenna in the direction of the jammer, λx is the carrier
wavelength inmeters,Rj is the range from jammer to the radar
in meters, and Ljr is the total jammer related losses.

Considering the ratio of jammer power (Pjr ) to radar
received power (Prx), the jamming to signal ratio (JSR) can
be written as,

JSR = 4π ∗
PjxGjxGjrR4xLs

PtxGtxGrxσxR2j Ljr
(15)

The received noise power at the radar under noise jamming
is given by,

σ 2
np = kT0Bn + Pjr (16)

where, kT0Bn is the thermal noise of the radar receiver and
Pjr is the received jammer power which can be computed
using (14). Here, k is the Boltzmann’s constant (1.3803 ×
1023J/K ), T0 is the absolute temperature in Kelvin, and Bn
is the noise bandwidth. The increased level in the received
jamming power at the radar receiver results in the raise of
the noise floor and subsequently leads to the missed detec-
tions [28]. When noise power of the jammer is sufficiently
higher, it yields false measurements which can be written as,

Zk =
[
zfa1k , z

fa2
k , . . . , z

faM
k

]
(17)

where, M indicates the number of false alarms. Each false
alarm’s range value is determined by the range bin at which
noise power exceeds the threshold provides false detection.
Effective signal processing techniques such as space time
adaptive processing [31], [32], adaptive beam-forming [33],
waveform matching [34] and other advanced filtering tech-
niques [35] are proposed in the literature for the detection and
suppression of the noise jamming. In this work, it is assumed
that noise jamming is suppressed at signal processing
level and measurements are corrupted by RGPO deception
jamming only.

Generally, the jamming power will be higher compared to
the radar signal power, which helps the jammer to deceive
the radar. Few signal processing based techniques like wave-
form diversity method and singular spectrum analysis for
countering the RGPO ECM are presented in [36], [37]. This
work aimed at estimating the range deception parameter in
a networked radar scenario by using sequential fusion based
approach and correct the local tracks by providing feedback
information from the fusion center. Instead of detecting the
attack, this work aimed to estimate the true target tracks from
the falsified track information.

D. OBSERVATIONS
We can clearly see that the range measurement of radar-i is
deceived. This deception results in a false track, as shown
in Fig. 3a, after performing the distributed tracking. The
objectives of the proposed research work are:

1) The measurements are being processed by the local
tracker and provide the local estimates (estimated state
and covariance). At the fusion center, only local esti-
mates are available, and no other data is available from
the radar or tracker. Hence, we need to recreate the
measurements at the fusion center by using the local
tracks. This recreation of measurements is possible by
evaluating the tracklets [38].

2) One needs to formulate a method to associate the local
tracks pertaining to the same target so that those tracks
can be utilized as a reference to estimate the deception
occurrence in other tracks. This association can be
formulated as a track-to-track association and can be
solved using S-Dimensional (S-D) assignment [39].

3) The deception parameter of the RGPO ECM track is to
be estimated by using un-corrupted local tracks. These
uncorrupted local tracks can be fused to generate a
reference measurement.

III. DISTRIBUTED TRACKING AND TRACK-TO-TRACK
ASSOCIATION
A. DISTRIBUTED TRACKING
All radars are deployed with local trackers as shown in
Fig. 2. The radar is ignorant about the measurement per-
taining to the target, whether it is a true measurement or
false measurements due to ECM. The tracker works with the
converted measurements. For the acquired measurement, the
local tracker provides the local estimates (estimated state and
covariance). Given the previous state estimate x̂i(k|k), the KF
state prediction for i = 1, . . . .N radars is written as,

x̂i(k + 1|k) = Fx̂i(k|k), (18)

where k is the discrete time instant and F is a state transition
matrix. Similar to the state prediction, for the given covari-
ance P(k|k) at the k th instant, the predicted covariance at the
k + 1th instant is represented as,

Pi(k + 1|k) = FPi(k|k)FT + 0xQx0
T
x , (19)
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FIGURE 3. The local tracks affected by ECM.

where Qx is the process noise covariance and 0 is the noise
gain matrix as given in [40].

The measurement prediction is,

ẑi(k + 1) = H(k + 1)x̂i(k + 1|k) (20)

The innovation of the filter is,

νiz(k + 1) = zi(k + 1)−H(k + 1)x̂i(k + 1|k) (21)

The updated state is designated as,

x̂i(k + 1|k + 1) = x̂i(k + 1|k)+Wi(k + 1)νiz(k + 1),

(22)

where, Wi(k + 1) is the Kalman gain and is computed as,

Wi(k + 1) = Pi(k + 1|k)H(k + 1)TSi(k + 1)−1, (23)

where, Si is the innovation covariance and is represented as,

Si(k + 1) = H(k + 1)Pi(k + 1|k)H(k + 1)T + Ri
z. (24)

Here Rz is the measurement covariance matrix. Finally, the
updated covariance matrix is given by,

Pi(k + 1|k + 1) = Pi(k + 1|k)−Wi(k + 1)Si(k + 1)

×Wi(k + 1)T . (25)

In a single RGPO ECM case, out of all the local tracks,
only one track (local track-i) is falsified by the RGPO ECM
as illustrated in Fig. 3a. Here, we can see that the local track
corresponding to local track-i is deviated by 1ri from its
true position as comprehensively derived in [41]. One has to
perform track-to-track association to all local tracks, and it
should report that all local tracks correspond to same-origin
except ith track. In another case, ifN jammers are employed to
deceive all the local tracks, the local tracks appear as Fig. 3b.
In this case, one should report that all the tracks are from a
different origin. The track-to-track association is presented in
the subsequent section to address this issue.

B. TRACK-TO-TRACK ASSOCIATION (T2TA)
The fusion of target tracks from multiple sensors is an essen-
tial block in the sensor fusion field. The information from
multiple sensors has the potential to significantly improve
tracking accuracy and target acquisition rates. Out of all the
variants of track-to-track associations [42], the hypothesis
based track-to-track association is popular and can provide
improved tracking accuracy even with less target detection
probability and high false alarm rates. The N radars will have
their own number of tracks in the form of target estimate
x̂ini with their errors distributed as zero-mean Gaussian with
covariance Pini . The i = 1, 2, . . . ,N , represents radar number
and ni = 1, 2, . . . ,T represents number of tracks that the
each radar generates. To find out the tracks that represents
the same target, it is required to perform the likelihood ratio
test, given by

χ (H1
n1,n2,...,nN : H

0
n1,n2,...,nN ) =

3(H1
n1,n2,...,nN )

3(H0
n1,n2,...,nN )

, (26)

where,3(H1
n1,n2,...,nN ) represents the likelihood hypothesis of

tracks having the common origin, 3(H0
n1,n2,...,nN ) represents

the likelihood hypothesis of tracks coming from the different
origin.

Calculating the likelihood hypothesis of tracks having a
common origin is as follows:

3(H1
n1,n2,...,nN ) = p(x̂NnN , . . . , x̂

1
n1 |H

1
n1,n2,...,nN ). (27)

The (27) can also be written conditioned on the track
estimate of the first radar, given by,

3(H1
n1,n2,...,nN ) = p(x̂NnN , . . . , x̂

2
n2 |H

1, x̂1n1 )p(x̂
1
n1 |H

1).

(28)

The p(x̂1n1 |H
1) is independent of H1

n1,n2,...,nN , hence it can
be relaxed. Also, it is assumed to follow uniform distribution,
which is a valid assumption in the presence of lack of infor-
mation. i.e.,

p(x̂1n1 |H
1
n1,n2,...,nN ) = p(x̂1n1 ) =

1
C
. (29)

Substituting, (29) into (28) results in

3(H1
n1,n2,...,nN ) =

1
C
p(x̂NnN , . . . , x̂

2
n2 |H

1, x̂1n1 ). (30)
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Consider the two radar (i, j) case having two tracks (ni, nj)
as common target origin. Under the Gaussian assumption,
if the tracks x̂ini and x̂jnj at radar i and radar j results from the
same target, the likelihood function of the two tracks is given
by,

3(Hn1,n2 ) =
1
C
N (x̂ini − x̂jnj; 0,P

i
ni + P

j
nj − P

i,j
ni,nj

− (Pi,jni,nj )
T ), (31)

where,N (x; x̄,P) represents Gaussian distribution of variable
x has mean and covariance as x̄, P, respectively.
Similar to (31), the generalized likelihood function of all the
common tracks (zero error tracks) n1, n2, . . . , nN for all N
radars is given by

3(H1
n1,n2,...,nN ) =

1
C
N (x̂, 0,P). (32)

Here,

x̂ =
[
x̃21, x̃31, . . . , x̃N1

]T
, (33)

where, x̃ij represents the difference of the estimates resulted
from the same target at ith and jth radar, given by

x̃ij = x̂ini − x̂jnj . (34)

The diagonal elements of P is given by,

Pi−1,i−1 = E[x̃i1x̃i1
′

|H1
n1,n2,...,nN ],

= P1
n1 + Pini − P1,i

n1,ni − (P1,i
n1,ni )

′ i = 2, . . . ,N

(35)

where x̃ij is defined in (34).
The diagonal elements of P is given by,

Pi−1,j−1 = E[x̃i1x̃j1
′

|H1
n1,n2,...,nN ],

= P1
n1 − P1,j

n1,nj − (P1,i
n1,ni )

′
+ Pi,jni,nj ,

i, j = 2, . . . ,N (36)

Similar to (32), the likelihood hypothesis of tracks coming
from different origins follows the same procedure as above,
given by

3(H0
n1,n2,...,nN ) = p(x̂NnN , . . . , x̂

2
n2 |H

0, x̂1n1 )p(x̂
1
n1 |H

0)

=

N∏
i=2

p(x̂ini |H
0, x̂1n1 )p(x̂

1
n1 |H

0) (37)

Similar to (29), the p(x̂1n1 |H
0
n1,n2,...,nN ) is assumed as diffuse

prior given by,

p(x̂1n1 |H
0
n1,n2,...,nN ) = p(x̂1n1 ) =

1
C
, (38)

whereas, p(x̂NnN , . . . , x̂
2
n2 |H

0, x̂1n1 ) is assumed to follow Pois-
son distribution in the state space having the spatial density
λ. Therefore, substituting (38) into (37) yields

3(H0
n1,n2,...,nN ) =

1
C
λN−1. (39)

Finally, from (26), (32), (39), the likelihood ratio test is
given by,

χ (H1
n1,n2,...,nN : H

0
n1,n2,...,nN ) =

1
CN (x̂, 0,P)

1
C λ

N−1
=
N (x̂, 0,P)
λN−1

,

(40)

For T2TA, let us define the track-to-track assignment algo-
rithm of assigning the Ni tracks resulted from N radars repre-
senting the same target. For that, define the binary assignment
variable

ψi1,i2,...,iN =

{
1; tracks i1, i2, . . . , iN from same target
0; from different target

The multidimensional (S-D) track to track assignment
algorithm of finding the most likely hypothesis is the result
of the constrained optimization problem given below

min
ψi1,i2,...,iN

T1∑
i1=0

T2∑
i2=0

. . .

TN∑
iN=0

ci1,i2,...,iNψi1,i2,...,iN

subject to
T2∑
i2=0

. . .

TN∑
iN=0

ψj,i2,...,iN =1, j=1, 2, . . . ,T1

T1∑
i1=0

T3∑
i3=0

. . .

TN∑
iN=0

ψi1,j,i3,...,iN = 1,

j = 1, 2, . . . ,T2
...
T1∑
i1=0

. . .

TN−1∑
iN−1=0

ψi1,...,iN−1 = 1,

j = 1, 2, . . . ,TN (41)

and

ψi1,...,iN ∈ {0, 1},

i1 = 0, 1, . . . ,T1,
...

iN = 0, 1, . . . ,TN

The cost function ci1,i2,...,iN in (41) can be calculated as

ci1,i2,...,iN = − lnχ (H1
: H0). (42)

where, χ (H1
: H0) is the likelihood ratio given in (40)

C. OBSERVATIONS
After performing the Track to Track Association (T2TA), two
cases are possible:

1) In the first case, out of all N local tracks, M local
tracks are affected by the ECM as shown in Fig. 3a,
where N − M ≥ 2. That means at least two local
tracks are uninfluenced by the ECM. In this case, the
unaffected local tracks are fused to form a reference
track. This reference track can be further used to esti-
mate the deception parameter of other radars. However,
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FIGURE 4. The block diagram representation of overall flow of the
proposed algorithm.

this solution is sub-optimal since there is a constrain
on the number of local tracks that are deceiving, and
fusion is limited to N −M local tracks. By considering
only N − M local tracks, we are losing the valuable
information being available in M local tracks.

2) In the second case, all the local tracks are affected by
RGPO ECM, as shown in Fig. 3b. All the reported local
tracks are different, and none of them are associated.
In this case, the tracks are first compensated by the
previously estimated deception parameter and fused
to form a reference track. Thereafter, the deception
parameter of other local tracks is calculated. This algo-
rithm provides a generalized solution irrespective of the
number of RGPO jammers.

IV. DECEPTION PARAMETER ESTIMATION ALGORITHM
The block diagram for the overall flow of the proposed
algorithm is as shown in Fig. 4. As observed in the previous
section, in case of all the local tracks are deceived, there is no
availability of local tracks to fuse and form a reference track.
In the first step of the algorithm, measurement recreation
is carried out for deceived track in the tracklets framework.
On the other hand, the tracklets are computed for the rest of
the tracks. These tracklets are compensated using previously
estimated deception parameters (In the Fig. 4 the feedback
of previous estimates is shown in dotted lines). Next, the
sequential update algorithm is applied to the compensated
local tracks to obtain the fused states and covariance. Using
the fused states, the fused measurement (reference measure-
ment) is recreated. Further, perform RLSE by utilizing the
recreated measurement of deceived track and the reference
measurement.

A. MEASUREMENT RECREATION OF DECEIVING TRACK
The local tracker provides the updated states and covari-
ances. However, the measurements are being corrupted by

the deception parameter. Hence, one needs to recreate the
measurements. Once the measurement covariance is known
or estimated (i.e. R̂z), we can rewrite the Kalman gain (23)
as,

Ŵ(k + 1)

= P(k + 1|k)H(k + 1)

· [R̂z(k + 1)+H(k + 1)P(k + 1|k)H(k + 1)T ]−1.

(43)

The (23) can be rewritten as,

x(k + 1|k + 1)− Fx(k|k) = Ŵ[y(k + 1)−HFx̂(k|k)],

(44)

where, y(k + 1) is the recreated measurement. Here on the
right hand side, gain matrix should be taken to the left side
and perform the pseudo inversion as,

Ŵ(k + 1)−1 = (Ŵ(k + 1)T Ŵ(k + 1))−1Ŵ(k + 1)T ,

(45)

Upon rearranging, the recreatedmeasurement can be found
as,

y(k + 1) = W(k + 1)−1[x̂(k + 1)− (I −W(k)H(k))

×F(k)T x̂(k)] (46)

At this stage, to successfully recreate the measurements,
we need R̂z. To estimate the R̂z, we are using Tracklets
framework [43]. This method constructs the approximately
uncorrelated equivalent measurements and the associated
covariance matrices from the local tracks. The inverse
Kalman filter-based tracklet method from [44] is used. Based
on this method, the equivalent measurement vector u(k+1, k)
and measurement covariance U(k + 1, k) can be found using
Algorithm-1,

Algorithm 1 Measurement Recreation Using Tracklets
1: inputs:x(k|k),P(k|k), x(k + 1|k + 1),P(k + 1|k + 1)
2: At time k
3: Compute Predictions

x(k + 1|k) = Fx(k|k)

P(k + 1|k) = FP(k|k)FT +Qx

4: Compute

A(k + 1, k) = P(k + 1|k)[P(k + 1|k)

−P(k + 1|k + 1)]−1

5: Compute pseudo-measurement

u(k + 1, k) = x̂(k + 1|k)+ A(k + 1|k)[x̂(k + 1|k + 1)

− x̂(k + 1|k)],

6: Compute pseudo-measurement covariance

U(k + 1, k) = [A(k + 1, k)− I ]P(k + 1|k).
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The detailed derivation of the tracklets is presented in
the [45] and [46]. We constructed equivalent measurement
vector u(k+1, k) and its error covariance matrixU(k+1, k).
Note that, in order to calculate u(k + 1, k) using x̂f (k + 1|k)
and Pf (k + 1|k), one needs the estimated target state x̂(k|k)
and its covariance matrix P(k|k).

B. CORRECTION OF DECEPTION PARAMETER AMONG
ALL TRACKS
Consider a case, whereN RGPOECM jammers are employed
to perform RGPO ECM to all the N local tracks and results
in N deceived local tracks. Here, all tracks gets altered due
to RGPO ECM and the deception parameter for each track
has to be estimated. In this case, the track-to-track association
reports all the tracks are unique and they are not from the same
origin. Therefore, each track is to be first compensated with
the estimated range deception parameter (1ri) obtained in the
previous scans and fuse the compensated tracks to get a fused
state and covariance.
The equivalent measurement is û = [x̂, ŷ]. Since the equiv-
alent measurement is in Cartesian, one can get the mea-
surement in polar by applying transformation. Therefore,
compensate the range in the converted equivalent measure-
ment as

rc(k + 1) =
√(

x̂(k + 1)
)2
+
(
ŷ(k + 1)

)2
−1r(k)

(47)

Here, 1r(k) is the previous estimate and c indicates the
corrected measurement.

θc(k + 1) = arctan
(
ŷ(k + 1)
x̂(k + 1)

)
(48)

These corrected polar measurements can be again trans-
formed to Cartesian by standard coordinate conversion with-
out bias as

xm(k + 1) = b−1rc(k + 1) cos(θc(k + 1))

ym(k + 1) = b−1rc(k + 1) sin(θc(k + 1))

where, b , e−σ
2
θc
/2. Now these xm and ym serve as the

local tracker information without being effected by the ECM.
Hence in this case, to find the deception of track-i, all
the tracks are compensated except ith track. Therefore, the
sequential fusion runs for N − 1 tracks.

C. CONSTRUCTING THE REFERENCE MEASUREMENT
Now the goal is to create reference measurement by fusing
N − 1 tracks, which are compensated by the previously
estimated deception parameters. The sequential update algo-
rithm is performed in the fusion step. Although it is not
an optimal approach for fusing the local tracks, it is com-
putationally inexpensive than parallel update method [47].
In addition, it is independent of previous equivalent measure-
ments at time instant k . Therefore, the index for sequential
fusion is j = 1, . . . .N − 1/i. Which means j runs for
all tracks rather than effected track i. After calculating the

Algorithm 2 Sequential Update Algorithm

1: inputs:
{
x̂j(k|k),Pj(k|k)

}N−1
j=1

2: At time k
3: Compute x̂f (k + 1|k) and P̂f (k + 1|k) using

x̂f (k + 1|k) = Fx̂f (k|k)

P̂f (k + 1|k) = FP̂f (k|k)FT +Qx

4: Initialize

x̂0(k + 1|k + 1) , x̂jf (k + 1|k)

P0(k + 1|k + 1) , Pjf (k + 1|k)

5: for j=1:N-1 do
6: The state update is given by,

x̂j(k + 1|k + 1) = x̂j−1(k + 1|k + 1)+Wj(k)xj(k + 1)

−Hj(k + 1)x̂j−1(k + 1|k + 1)

7: The gain is given by,

Wj(k + 1) = Pj−1(k + 1|k + 1)Hj(k + 1)T [Hj(k + 1)

×Pj−1(k + 1|k + 1)Hj(k + 1)T

+Rj
z(k + 1)]−1

8: The covariance is given by,

Pj(k + 1|k + 1) = Pj−1(k + 1|k + 1)−Wj(k + 1)

×Sj(k + 1)Wj(k + 1)T

9: end for
10: The final updated state estimate and covariance values

are

x̂f (k + 1|k + 1) = x̂N−1(k + 1|k + 1)

Pf (k + 1|k + 1) = PN−1(k + 1|k + 1)

equivalent measurements for all the (N − 1) local tracks,
we get

{
u(k + 1)j,U(k + 1)j

}N−1
j=1 . This tracklet computa-

tion using Algorithm-1. It is assumed that fused state and
covariance at k th instant is available as x̂f (k|k) and P̂f (k|k)
respectively. The sequential updation algorithm is presented
in Algorithm-2. In the algorithm, all N − 1 local tracks
are sequentially updated to provide xf (k + 1|k + 1) and
Pf (k+1|k+1). One of the advantages of this sequential fusion
approach is that in each ‘‘for loop’’ (step-5 in Algorithm-
2) only a low dimensional Kalman filter that is independent
of the size of the stacked RGPO vector and number of the
sensors is needed. Furthermore, the fusion of local tracks
can be accomplished by adding one sequential update for the
latest corrected measurement of sensor j to the previously
fused track. In the sequential fusion algorithm, it is also
important to note that, there is no constraint on the rate at
which local tracks are being received from the individual
sensors.
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D. DECEPTION PARAMETER ESTIMATION ALGORITHM
The algorithm for estimating the deception parameter is pre-
sented in Algorithm-3. Also, the block diagram representa-
tion of deception parameter estimation is shown in Fig. 4.

Algorithm 3 Deception Parameter Estimation Algorithm
1: for i = 1 : N do
2: Recreate measurements: The tracklets for the

deceived track are computed and then recreate the mea-
surements corresponding to local tracks-i using (45),we
obtain yi as

yi(k + 1) = Wi(k + 1)−1[x̂i(k + 1|k + 1)

− (I −Wi(k + 1)H(k + 1))FT x̂i(k|k)]

3: Fused state and covariance: Compute the tracklets
forN−1 tracks using Algorithm-1 and compensate them
using Subsection-IV-B. For the compensated tracks, per-
form sequential update using Algorithm-2, to get fused
state x̂f (k+1|k+1) and fused covariance P̂f (k+1|k+1).

4: Fused measurement covariance:

Rf (k + 1) = H(k + 1)

N−1∑
j=1

(Uj(k + 1, k))−1

−1
×H(k + 1)T

5: Calculate the fused weight as

Wf (k + 1) = Pf (k + 1|k)H(k + 1)T[H(k + 1)

×Pf (k+1|k)H(k+1)T + Rf (k + 1)]−1.

6: Reference measurement Therefore, by providing
the fused covariance in (49), we get yi∗ as

yi∗(k + 1) = Wfk (k + 1)−1[x̂f (k + 1|k + 1)

− (I −Wf (k + 1)H(k + 1))FT x̂f (k|k)]

7: Compute RLSE: The newmeasurement using refer-
ence measurement and re-created track is

y(k) = yi(k)− yi∗(k)

= Hi(k)xi(k)+ Bi(k)ci(k)1ri(k)

+wi(k)−Hi∗(k)xi∗(k)− wi∗(k)

= H(k)1r(k)+ wi(k)− wi∗(k)

= H(k)1r + w̃(k)

recursively solve using the last updates in recursive least
squares estimation (RLSE) framework [47].

8: end for

V. PERFORMANCE EVALUATION
A. INNOVATION TEST
Innovation test is used for testing the efficiency of RLS
estimator. The measurement is given by,

y(k) = H(k)1r(k)+ w̃(k) (49)

where,H(k) measurement transition matrix and the measure-
ment noise covariance is R(k) = Ri(k)+ Ri∗(k).
The innovation covariance is represented as,

S(k) = H(K )6(k)H(k)T + R(k) (50)

The gain and the residual is calculated as

G(k) = 6(k)H(k)T [H(k)6(k)H(k)T + R(k)]−1 (51)

0(k) = y(k)−H(k)1r̂(k) (52)

The range gate estimate and its covariance are,

1r̂ i(k) = 1r̂ i(k − 1)+G(k)0(k) (53)

6(k) = 6(k − 1)−6(k)H(k)T (54)

· [H(k)6(k)H(k)T + R(k)]−1

·H(k)6(k)

The innovation test [48] is given as,

0(k)S(k)−10(k) ≤ ξ2nr (1− q) (55)

where, ξ2nr (1 − q) is the chi square value with nr degree of
freedom and tail probability of q.

B. CRAMER RAO LOWER BOUND
The Cramer Rao Lower Bound (CRLB) on the mean square
error of unbiased estimator is a frequently used metric for
determining the correctness of parameter estimate based on
a set of data [49]. The CRLB of the algorithm provides the
criterion to know the minimum value of error, that can be
achieved by the algorithm.

From the measurement equation of the RLS estimator,

yi(k) = H(k)1ri(k)+ w̃i(k) (56)

where1ri(k) is the range gate vector to be estimated and the
measurement noise covariance of wi(k) is given as Ri(k) =
Ri(k) + R∗i (k) where Ri(k) is the measurement noise of ith

local track and R∗i (k) is the measurement noise obtained by
fusing rest of the local tracks.
The covariance matrix of an unbiased estimator is bounded

as below [29] and [50]:

E
{(
1r̂i(k)−1ri

) (
1r̂i(k)−1ri

)′}
≥ Jz(k)−1 (57)

Here, E is the estimation operator and Jz is the Fisher
Information Matrix(FIM) and is given as

Jz(k) = E
{
[∇ ln p(y(k) | 1r(k))]

× [∇ ln p(ȳ(k) | 1r(k))]′
}
1r(k)=1rt

(58)

where, 1rt is the true value of the range gate parameter
and ∇ is the gradient operator. Also, p(y(k) | 1r(k)) is the
likelihood function, which is given as below:

p(y(k) | 1r(k))

=
1

√
2π |R(k)|

· exp
{
−1
2

[y(k)−H(k)1r(k)]′

× R(k)−1[y(k)−H(k)1r(k)]
}

(59)
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Substituting λy = − ln p(z(k) | 1r(k)),

λy = C+
−1
2

[y(k)−H(k)1r(k)]′R(k)−1

× [y(k)−H(k)1r(k)] (60)

Upon further simplification,

∇1rλy = H(k)′R(k)−1(y(k)−H1r(k)) (61)

which gives,

Jz(k) = H(k)′R(k)−1H(k) (62)

The FIM at K is also the recursive form of CRLB is
represented as,

Jz(K ) =
K∑
k=1

Jz(k) (63)

C. NEES TEST AND CONFIDENCE INTERVAL TEST
In simulation frameworks, the normalised estimation error
squared (NEES) test can be used to determine if the estimator
is efficient, that is, whether the error matches the covariance
provided by the CRLB [51]. The error matrix provided by
the CRLB is Jz. For an estimated deception parameter1r̂(k),
there exist a ground truth r(k). The estimation error is given
by,

1r̃(k) = 1r(k)−1r̂(k) (64)

The NEES value for the parameter 1r is written as,

1r̃T (k)Jz(k)1r̃(k) ≤ ξ2nr (1− q) (65)

The confidence interval of a deception parameter is eval-
uated for 1r(k). The squared norm of the error should be
constrained by the estimate if the estimator is efficient [52].

The confidence for the parameter 1r(k) is,

1r̃T (k)6−1(k)1r̃(k) ≤ ξ2nr (1− q) (66)

which follows chi square distribution with degree of freedom
equal to nr .

VI. RESULTS
A. SINGLE RADAR SENSOR JAMMING
In this case, a single radar effected by jamming (RGPO
ECM) is considered among the three radars present in the
surveillance region. All the radars are static and synchronous
in time with ts = 1s. The radars are located at rs and θ s with
reference to the origin. The range and azimuth measurements
are corrupted with the noise with a standard deviation of
σr and σθ , respectively. A single target is considered in the
surveillance region, and all the radars are comprises of the
local tracker to provide local estimates about the target. A sin-
gle jammer is considered in this simulation, and it influences
the single radar equipped with local tracker-1. Since the local
track-1 generated from the tracker-1 is deceived with the
RGPO ECM measurements, this yields a range displacement
of 1r1. The positions, measurement standard deviation, and

FIGURE 5. Scenario of the static radars and target.

TABLE 1. Radar parameters for single radar jamming case.

deception parameters are tabulated in the Table-I. Moreover,
the scenario is depicted in Fig. 5. The target is located at a
range of 3000m and the azimuth of 1.5 rad from the origin.
The target moves with a speed of 40m/s, and 80 deg heading
throughout the simulation time of 1000s. The target follows
a constant velocity model, and the state transition matrix is
represented as,

F =


1 ts 0 0
0 1 0 0
0 0 1 ts
0 0 0 1

.

1) TRACKING ACCURACY
A GNN association based EKF filter is used for target track-
ing. Two-point initialization method [53] is used to initialize
the filter. The range-azimuth measurements r(0) and θ (0) at
zero instant are considered to form a converted measurements
as x(0) and y(0). Similarly, the first instant measurements are
used to form the converted measurements as x(1) and y(1).
Hence, the two-point initialization is given by,

x =
[
x(1)

x(1)− x(0)
ts

y(1)
y(1)− y(0)

ts

]
The measurement conversion follows the unbiased conver-

sion by using,

x(1) = λ−1r(1) cos(θ (1))

y(1) = λ−1r(1) sin(θ (1))

Here λ = exp
(
−
σ 2θ
2

)
. This unbiased conversion is valid

for initialization, since it follows the necessary criteria of
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rσ 2θ
σr
� 0.4. The covariance is initialized using,

P(1 | 1) =



Rxx(1)
Rxx(1)
ts

0 0

Rxx(1)
ts

2Rxx(1)
t2s

0 0

0 0 Ryy(1)
Ryy(1)
ts

0 0
Ryy(1)
ts

2Ryy(1)
t2s


where,

Rxx = (λ−2 − 2) (r(1))2 cos2(θ (1))

+

(
(r(1))2 + σ 2

r
)

2

(
1+ λ4 cos 2θ (1)

)
Ryy = (λ−2 − 2) (r(1))2 sin2(θ (1))

+

(
(r(1))2 + σ 2

r
)

2

(
1− λ4 cos 2θ (1)

)
The tracking is performed with the help of an extended
Kalman filter (EKF). The tunable parameters like process
noise covariance and measurement noise covariances as Qx
and Rz, respectively are represented as,

Qx = 0.08



1
3
∗ (t3s )

1
2
∗ (t2s ) 0 0

1
2
∗ (t2s ) ts 0 0

0 0
1
3
∗ (t3s )

1
2
∗ (t2s )

0 0
1
2
∗ (t2s ) ts


and

Rz =
[
Rxx Rxy
Ryx Ryy

]
where,

Rxy = Ryx =
[
λ−2(r)2

2
+

((r)2 + σ 2
r )λ

4

2
− ((r)2

]
sin 2θ.

The tracking performance is evaluated using the PRMSE. The
tracking performance of all the local trackers is depicted in
Figs. 6a-6c.

It is observed from Fig. 6a that the local track-1 PRMSE is
around 1000± 8m because of the range deception of 1000m
affected by the RGPO ECM jamming. Moreover, the PRMSE
of the local track-2 and local track-3 are also depicted in
the Fig. 6b and Fig. 6c. The PRMSE of local track-2 and
local track-3 is lesser than the local track-1; this is because
the RGPO jamming is un-influencing local track-2 and local
track-3. This tracking performance can be directly reflected
in the fusion module.

2) SEQUENTIAL FUSION PERFORMANCE
The sequential fusion is performed on the compensated
equivalent measurements. The correction is performed at k in
the polar coordinates with the help of the estimated deception
parameter at k − 1 time instant. For the time stamp of k = 1,

since there are no previously fused estimates are available,
the local track’s updated state is considered as the fused state
estimate i.e., xf (k|k) = x(k|k) and Pf (k|k) = P(k|k) at
k = 1. It can be seen from the Figs. 6d-6f that, the PRMSE of
local track-1 fused estimate is equal to the PRMSE of local
track-1 for the initial scan. After that, the deception parameter
estimation converges over time and improves the PRMSE
of the sequential fusion block. Therefore, we observed that,
the local track-1 fusion PRMSE decreases over time, and
the similar procedure holds true for local track-2 and local
track-3 performance. Since the deception parameter is kept
at 1000m for local track-1, the sequential fusion PRMSE
starts at 1000m and finally diminishes to 10 m accuracy. The
sequential fusion provides sub-optimal solution, but it is a
significant technique importance due to its reduced compu-
tational requirement. It is also worth noting that the sequen-
tial fusion is only dependent on the compensated equivalent
measurements to compute the fused state and covariance
estimates at a given scan.

3) DECEPTION PARAMETER EVALUATION
The deception parameter is calculated in the RLSE frame-
work. In this framework, measurement i corresponds to the
deceived local track i. whereas, the reference measurement
is generated by the compensation and fusion of all local
tracks except i. That is the sequential fusion block runs for
i∗ ∈ 1, · · ·N/i. The initial state and covariance of the RLSE
is 1r(0|0) = 0 and 6(0|0) = 10002. There is no prior infor-
mation regarding the deception parameter and its associated
covariance at k = 0. The deception parameter of the deceived
local track-1 is estimated, and its corresponding PRMSE is
plotted in Fig. 7. Initially, the deception is considered as zero,
and hence PRMSE at initial state is equal to 1000 m which
is the deception created by the RGPO ECM. Along with
the estimated deception parameter, we also plotted the Batch
CRLB (

√
B− CRLB), Recursive CRLB (

√
R− CRLB) and

the diagonal of the covariance estimate (
√
6). From Fig. 7,

it can be observed that the estimator is working effectively,
and the estimated deception parameter is coming closer the
CRLB value. We have plotted on logy scale for better visu-
alization, keeping the deception parameter changing from
103 to unity.

4) ESTIMATOR PERFORMANCE EVALUATION
The performance of the proposed algorithm is validated using
the NEES test, innovation test, and confidence interval test.
In all three tests, we have considered chi-square distribution
as χ2

b (1 − q) where q is tail probability. We have taken q
as 1% and 5% and is plotted in the Fig. 8. It is evident
from the results that the NEES values are falling within the
chi-square distribution with a tail probability of 5% which
infers that the proposed estimator is efficient. The NEES for
the estimator along with the chi-square distribution is shown
in Fig. 8a. Further, it can be observed from Fig. 8b that the
innovation test is inbound with the Raleigh distribution, and it
is falling within the 95% confidence interval of the chi-square
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FIGURE 6. (a-c) Tracking performance, (d-f) Sequential fusion performance.

FIGURE 7. Deception parameter of local track-1.

distribution with a degrees of freedom equal to two. Further,
we examined the confidence area of the parameter to associ-
ated confidence interval, which intuitively specifies whether
the estimated parameter and the estimated parameter covari-
ance are agreeing with each other. From Fig. 8c it is evident
that the confidence region of the estimated parameter is well
within the specified range. That is the estimated covariance
and R-CRLB are almost equal. Therefore, we can state that
the proposed estimator neither optimistic nor pessimistic.

B. MULTI-SENSOR JAMMING
In this scenario, we considered three radars present in the
surveillance region and all are affected by RGPO ECM. All

TABLE 2. Sensor parameters for multiple sensor jamming case.

the three radars are assumed to be static and synchronous in
time. The radars are located at rsi and θ

s with respect to origin.
The range and azimuth measurements are corrupted with
white Gaussian noise with zero mean and standard deviations
of σri and σθi respectively. A single target is considered, and
all local trackers provide updated state and covariance to the
fusion center. Unlike the single jammer three jammers are
considered, and this yields a range displacement of 1ri to
each local track. The locations, standard deviation of mea-
surements, and deception parameters of each of the local track
are tabulated in Table-II.

1) TRACKING ACCURACY
A two-point initialization method is adapted to initialize the
filter, the extended Kalman filter is used to filter the mea-
surements. The tracking PRMSE of all the three local tracks
is depicted in Figs. 9a-9c. Since all the three local tracks are
affected by the jamming, we can observe that the local track-1
PRMSE is around 1000m; this is as a result of range deception
parameter of 1000m effected to the local track. Similarly, the
PRMSE of local track-2 and local track-3 are 1500m and
2000m, respectively. Corresponding to its RGPO, since all
the tracks are deceived; this results in hypothesisH1 in T2TA.
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FIGURE 8. Performance evaluation of the proposed algorithm for single sensor ECM scenario.

FIGURE 9. (a-c) Tracking performance, (d-f) Sequential fusion performance.

Meaning that, the T2TA model reports that all the tracks are
of separate origin, despite all the tracks belonging to the same
origin.

2) SEQUENTIAL FUSION PERFORMANCE
Each track is compensatedwith the estimated range deception
parameter 1ri, and then the sequential fusion is performed.
Similar to the single jammer case, the initialization of the
fused track is performed by using local tracks. That is,
xf (k|k) = x(k|k) and Pf (k|k) = P(k|k) at k = 1. It can
be seen from Figs. 9d-9f that, for all the local tracks fused
estimate is equal to the tracking PRMSE of the initial scan
at k = 1. Similar to the single jammer case, we observed
that all the local track’s fusion PRMSE decreases over time.
This indicates that, the deception parameter compensation
followed by sequential fusion brings all the fused tracks
together. Since the deception parameter is 1000m for local

track-1, 1500m for local track-2, and 2000m for local track-3,
the sequential fusion PRMSE starts around the same value
and finally reduces to minimum value. Henceforth, one can
visualize that the local tracks converges to a single track over
time, after performing the deception parameter compensa-
tion.

3) DECEPTION PARAMETER EVALUATION
The deception parameter of all the local tracks is estimated,
and its corresponding PRMSE is plotted in Fig. 10. Initially,
the deception parameter is zero, and hence PRMSE at k =
1 is higher and equal to the value of the deception param-
eter. Along with the estimated deception parameter, we also
plotted the

√
B− CRLB,

√
R− CRLB and

√
6. Here, we can

observe that the estimator is working effectively, and the
estimated deception is coming closer to the CRLB value.
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FIGURE 10. Range deception parameters evaluation in multiple jammers.

FIGURE 11. (a–c) Innovation test, (d–f) NEES test, and (g–i) Confidence interval for multiple local track ECM scenario.

4) ESTIMATOR PERFORMANCE EVALUATION
To evaluate the performance of the estimator we have con-
sidered the similar tests as that of single jammer case.

Figs. 11a–11c provides the plots corresponding to the inno-
vation test, whereas Figs. 11d–11f depicts the NEES test,
and finally Figs. 11g–11i shows the plots corresponding to
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the confidence interval test. From the plots, it is evident that
the value of the estimated parameter falls within chi-square
distribution of 5% tail probability.

VII. CONCLUSION
This paper presents a deception parameter estimation algo-
rithm for countering RGPO ECM in a networked radar sce-
nario. The RGPO attack is detected, and the range gate
deception parameter is estimated for the deceived local track.
A track-to-track association is formulated at the fusion node
to detect the deceived tracks using all the available local
tracks. Once the attack is detected, the weight matrix, pseudo-
measurement, pseudo-measurement covariance at the fusion
center are recreated by utilizing the tracklet framework (using
updated state and updated covariance from the local tracker).
Moreover, all the local tracks except deceived track is com-
pensated and sequentially fused to create a reference mea-
surement. The deception parameter of the deceived track is
estimated by deploying a recursive least squares framework
with the help of the pseudo-measurement and reference mea-
surement. Further, the proposed algorithm was analyzed for
single and multiple RGPO ECM scenarios and is validated by
using tracker accuracy, fusion accuracy, and estimator accu-
racy. Besides, the estimated deception parameter is in agree-
ment with the achievable CRLB. Furthermore, the results are
quantifiedwith a Position RootMean Square Error (PRMSE),
CRLB, innovation test, NEES test, and confidence interval.
In addition, the simulation results demonstrate that, the pro-
posed estimator efficiency is below the 5% tail probability
of chi-square distribution. Moreover, it is evident from the
results that the proposed technique is efficient for both single
and multiple RGPO ECM cases.

The future directions of the work are as follows: 1. In net-
worked radar systems, the radars are able to exchange
information from radars and the fusion node. Therefore, once
the deception parameter is calculated at the fusion node,
that can be sent back to the respective sensor to correct the
received measurements in the following scan. 2. In RGPO
ECM, traditionally, the tracker reports this effect as a track
breakage. Therefore, one can look into the problem of asso-
ciating the tracks before RGPO ECM and after RGPO ECM
to declare the ECM attack. Moreover, the deviation in the
tracks can be further utilized to calculate the range deception.
3. In addition, to the range-azimuth measurement, one can
consider the signal attributes like received signal amplitude to
declare the ECM attack and then associate the tracks over the
period of time in an S-D assignment framework to mitigate
this effect. 4. Further, this paper considers a single target for
simplicity. Whereas, in the multiple target case, the track-
to-track association may yield the wrong association. Hence,
one should look into the appropriate solution to address this
issue.
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