
Received 1 May 2022, accepted 6 June 2022, date of publication 21 June 2022, date of current version 30 June 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3184291

IGWO-SS: Improved Grey Wolf Optimization
Based on Synaptic Saliency for Fast Neural
Architecture Search in Computer Vision
SHIFAT E. ARMAN AND SHAMIM AHMED DEOWAN
Department of Robotics and Mechatronics Engineering, University of Dhaka, Dhaka 1000, Bangladesh

Corresponding author: Shamim Ahmed Deowan (shamimdeowan.rme@du.ac.bd)

This work was supported by the University of Dhaka, Dhaka, Bangladesh.

ABSTRACT Neural Architecture Search (NAS) is the process of automating the design of neural network
architectures for a given task. Although NAS automates the process of finding suitable neural network
architectures for a specific task, the existing NAS algorithms are immensely time-consuming. The main
bottleneck in NAS algorithms is the training time for each architecture. This study proposes an Improved
Grey Wolf Optimization based on Synaptic Saliency (IGWO-SS), which is much faster than the existing
NAS algorithms and provides better final performance. The IGWO-SS algorithm skips training the less
promising architectures by creating a relative rank between the architectures based on synaptic saliency.
The architectures that are lower in rank are considered less promising than those that are higher in rank.
Since the calculation of synaptic saliency is a very fast process, a significant amount of time is saved
by skipping training of less promising architectures. This study involves extensive experiments assessing
synaptic saliency’s effectiveness in improving NAS. The experimental results indicate that the synaptic
saliency of an untrained neural network positively correlates with its final accuracy. Hence, it can be used
to identify untrained promising neural networks. The experimental results also suggest that the IGWO-SS
algorithm is almost 10x faster and achieves better final performance than five other bio-inspired algorithms.
The IGWO-SS algorithm achieves higher mean accuracy than state-of-the-art NAS algorithms, including
- REA, RS, RL, BOHB, DARTSV1, DARTSV2, GDAS, SETN, and ENAS. We hope our work will make
NASmore accessible and useful to researchers by reducing the time and resources required to perform NAS.

INDEX TERMS Neural architecture search, NAS, grey wolf optimization, GWO, AutoML, deep learning.

I. INTRODUCTION
Artificial Intelligence (AI) has experienced a paradigm shift
with the emergence of deep learning. Before the emergence
of deep learning, researchers used handcrafted features to
build classifiers. This manual extraction of features was
time-consuming, inefficient, and tedious. Since deep learning
emerged, it was no longer necessary to manually extract
features from data, as these networks possess the incredible
ability to extract significant features on their own without
human intervention. The transition from manual to automatic
feature extraction was a significant step forward for the entire
community. Unfortunately, although the problem of manual
feature extraction was solved, a new challenge arose: the
manual design of neural network architectures.

The associate editor coordinating the review of this manuscript and

approving it for publication was Hualong Yu .

Although various powerful architectures like VGG [1],
Inception [2], Xception [3],Mobilenets [4], Shufflenet [5],
ResNext [6], Polynet [7], Fractalnet [8] were designed manu-
ally, the manual design of neural networks is very inefficient
and expensive. Moreover, the same neural network architec-
ture does not work well for all tasks. With the change in tasks,
the architecture also needs to be changed. With the increase
in the task’s difficulty, finding the best architecture suitable
for the task becomes extremely difficult. To mitigate this
difficulty, themachine learning community tried to developed
algorithms that can automatically find the best architecture.
It gave rise to a new field of research - Neural Architecture
Search or, in short, NAS.

Neural Architecture Search (NAS) is a field of research
associated with automating neural network architecture
design using different optimization algorithms. According
to Elsken et al. [9], NAS methods have three dimensions -
search space, search strategy, and performance estimation

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 67851

https://orcid.org/0000-0002-3636-1444
https://orcid.org/0000-0003-1453-9843
https://orcid.org/0000-0001-9621-4158

S. E. Arman, S. A. Deowan: IGWO-SS for Fast Neural Architecture Search in Computer Vision

strategy. Search space is the space in which the architecture
will be searched. The search space consists of all possible
architecture candidates. The searching procedure is done fol-
lowing a specific search strategy. The search strategy aims
to find the best neural network architecture for a particu-
lar task, from a predefined search space, within a specific
time or resource budget. The performance estimation strategy
determines how the performance of a neural network will be
estimated. The most straightforward performance estimation
strategy is to calculate the validation performance after full
training of a neural network. A less accurate performance
estimation is also possible from a partially trained neural
network.

The field of neural architecture search exploded when
Zoph & Le [10] achieved state-of-the-art results on the
CIFAR-10 [11], and the Penn Treebank [12] dataset by using
Reinforcement Learning (RL). Despite having tremendous
success in terms of predictive performance, the NAS algo-
rithm proposed by Zoph & Le was extremely slow. It took
them 28 days and 800 GPUs to find an architecture that
achieved state-of-the-art results on the CIFAR-10 dataset.
Such a vast amount of time and resources is only available
to a few research groups. Independent researchers and small
research groups do not have access to enough resources,
which will seriously hamper the democratization of AI.

Various techniques were subsequently introduced to accel-
erate the architecture search process. One such technique
involves learning stackable cells instead of learning the entire
network. The idea was to learn cells for CIFAR-10 and then
use these learned cells to build a large network for ImageNet
classification. However, the proposed technique still required
four days on 500 GPUs [13]. Naturally, the question arises:
Why are these NAS methods so slow? The main reason why
the NAS methods are slow is that, during the optimization
process, numerous neural networks have to be trained to
find the right architecture, and training each of these neural
networks takes a considerable amount of time. However,
when the search space is very large, most neural network
architectures are less promising or less likely to performwell.
In order to identify these less promising architectures, sev-
eral techniques were introduced [14]–[17]. However, these
techniques mostly require partial training of numerous neural
networks. From the information of partially trained neural
networks, these methods try to predict the final performance
of the neural network.

Existing works on NAS mainly focus on Reinforcement
Learning (RL) [10], [13], [18], [19], Sequential Model Based
Optimization (SMBO) [20], [21], or Gradient Optimization
(GO) [22]–[24] based strategies. The use of metaheuristic
algorithms to perform NAS is largely unexplored, although
these algorithms are known to provide good solutions within
a short period. This study explored the use of meta-heuristic
algorithms for NAS. We proposed an Improved Grey Wolf
Optimization based on Synaptic Saliency (IGWO-SS) to
perform fast and efficient NAS. The IGWO-SS algorithm
leverages the idea of synaptic saliency to identify promising

neural networks from a set of untrained neural networks. The
algorithm skips training of less promising neural networks,
thereby reducing the enormous computational cost of NAS.

The main contributions of this paper are as follows:
1) Efficacy of Synaptic Saliency to Improve NAS: We

performed several experiments evaluating the efficacy
of synaptic saliency to improve NAS. The experimental
results suggest that synaptic saliency of untrained neu-
ral networks positively correlates with accuracy, model
size, and FLOPS of the networks. Hence, it can be used
to identify untrained promising neural networks that
will make it an effective tool to improve NAS.

2) Identification of a Limitation of Synaptic Saliency
to Improve NAS:We identified one specific limitation
of using synaptic saliency - synaptic saliency of larger
networks tends to be bigger. Hence, during the identi-
fication of promising architectures from a larger set of
architectures, architectures that are larger in size, are
most likely to be preferred.

3) Improved GreyWolf Optimization based on Synap-
tic Saliency (IGWO-SS) for Fast NAS: This study
presents an ImprovedGreyWolf Optimization based on
Synaptic Saliency (IGWO-SS) for fast Neural Archi-
tecture Search. The IGWO-SS algorithm leverages
synaptic saliency to identify promising neural network
architectures and skip training of less promising neural
network architectures. It provides better final perfor-
mance than the state-of-the-art NAS algorithms and
several metaheuristic algorithms. Moreover, it requires
training almost 20x fewer models than the standard
GWO algorithm and 10x fewer models than other
metaheuristics algorithms to achieve similar or better
performance.

The rest of the paper is organized as follows: The related
works are described in Section II. In Section III, the Improved
GreyWolf Optimization based on Synaptic Saliency (IGWO-
SS) is presented. The experimental results and discussions are
provided in Section IV and Section V. Finally, the paper is
concluded in Section VI.

II. RELATED WORKS
Earlier works of neural architecture search can be dated
back to 1990s neuroevolution [25], [26]. Neuroevolution
is the idea of creating artificial neural networks using an
evolutionary algorithm. In 2002, a software called rapid
miner was developed that could do a grid search for entire
chains of operators [27]. In 2009, Particle Swarm Model
Selection (PSMS) was proposed that used Particle Swarm
Optimization (PSO) for Full Model Selection (FMS) for clas-
sification tasks [28]. Bayesian optimization became popular
after 2010 with the introduction of Sequential Model-Based
Algorithm Configuration (SMAC) [29], Spearmint [29]
and Tree Parzen Estimator (TPE) [30]. Various Bayesian
optimization-based automated machine learning frameworks
like Auto-WEKA [31], Auto-sklearn [32]–[34] and hyperopt-
sklearn [35], [36] were introduced, which made the use of

67852 VOLUME 10, 2022

S. E. Arman, S. A. Deowan: IGWO-SS for Fast Neural Architecture Search in Computer Vision

Bayesian optimization easier. In 2013, James Bergstra [37]
achieved the state-of-the-art performance on three com-
puter vision problems datasets - Labeled Faces in the Wild
(LFW) [38], Pubfig83 [39], and CIFAR-10 [11] using TPE.
In 2016, Tree-Based Pipeline Optimization Tool (TPOT) was
introduced that could make model selection based on an
evolutionary algorithm [40], [41]. In 2016, AutoNet became
the first AutoML tool to win a competition dataset against
human experts [42].

The field of neural architecture search exploded when
Zoph & Le [10] achieved state-of-the-art results on the
CIFAR-10 [11] and the Penn Treebank [12] dataset by using
reinforcement learning to performNAS. However, the overall
architecture search process took 28 days, and 800 GPUs
were used throughout the entire period. Later on, various
techniques were proposed to speed up the architecture search
process. The authors in [13] proposed learning of stackable
cells instead of learning entire networks, which will make the
overall architecture search process much faster. In the same
year, Pham et al. [43] used weight sharing between candidate
networks so that joint training can be done. It reduced the
time required to perform neural architecture search to half a
day on a single GPU.

In order to make NAS faster, several performance esti-
mation strategies were introduced. These strategies can be
divided into two groups: performance estimation during train-
ing and before training. Performance prediction during train-
ing is done by performing a reduced-computation training.
The idea is to reduce the amount of computation and time
by reducing the number of epochs, using a mini-batch of
data instead of the whole dataset, or reducing the input’s
resolution. Several works tried to extrapolate the final perfor-
mance of neural networks from partially trained neural net-
works and then stop or completely discard training of the less
promising neural networks based on the extrapolated final
performance [14]–[17]. Zhou et al. [44] found that, while
performing reduced computation training, more samples and
fewer epochs is better than fewer samples and more epochs.
They also found that reducing the channel of the neural
network is much more reliable than reducing the resolution of
the input. Based on these observations, they proposed an algo-
rithm called Economical evolutionary-basedNAS (EcoNAS),
which is 400 times faster than evolutionary-based algo-
rithms [45]. In 2017, Deng et al. [46] proposed an approach
called peephole that predicts the performance of the model
before training based on the model architecture. However, the
major drawback of peephole is that - for a new dataset, many
architectures had to be trained before peephole can make a
prediction. Unlike peephole, TAPAS [47] not only considers
model architectures but also uses Dataset Characterization
Number (DCN), which is used to rank datasets based on
difficulty. It performs better than both peephole [46] and
LCE [15] in terms of mean squared error (MSE), Kendall’s
Tau (Tau) and coefficient of determination (R2). In neu-
ral network pruning, weights can be pruned using synaptic

saliency. Three notable synaptic saliency found in the liter-
ature are - Single-Shot Network Pruning (SNIP) [48], Gra-
dient Signal Preservation (GRASP) [49], and Synaptic Flow
Pruning (SYNFLOW) [50]. Abdelfatteh et al. [51] used dif-
ferent zero-cost proxies, including synaptic saliency, to per-
form lightweight NAS. They were able to achieve better
predictive performance faster using these zero-cost proxies.
Mellor et al. [52] proposed an algorithm that performs NAS
by looking at the correlation matrices of the Jacobian of the
data when it is passed through the network before training.
The data is passed through the network, and the Jacobian is
calculated. If it is very correlated, then the network is bad.
If it is uncorrelated, then the network is good.

This study proposed an Improved Grey Wolf Optimiza-
tion based on Synaptic Saliency (IGWO-SS). The synap-
tic saliency is used to rank neural networks based on how
promising they seem before training. Only the more promis-
ing neural networks are trained while the rest are discarded,
saving up time and drastically improving performance.

III. METHODOLOGY
This section presents our proposed NAS algorithm, Improved
GreyWolf Optimization based on Synaptic Saliency (IGWO-
SS), for fast and efficient NAS. At first, we discuss the
search space - mainly the macro skeleton of each architec-
ture candidate and the cells, which are the building blocks
of the macro skeleton. Then we discuss the datasets and
training pipeline. Finally, we present the IGWO-SS algo-
rithm that leverages synaptic saliency to identify promising
neural network architectures from a large set of candidate
architectures.

A. MODULAR SEARCH SPACE
In order to avoid the challenges associated with a global
search space, a modular search space is used in this exper-
iments. We used the NAS-Bench-201 [53] search space. The
NAS-Bench-201 extends the NAS-Bench-101 [54] with mul-
tiple datasets, a different search space, and more informa-
tion. The search space is essentially a fixed cell-based one
with 15,625 possible architectures. The training pipelines
while training these architectures were kept the same. The
loss and accuracy of the neural networks on train, vali-
dation, and test set for CIFAR-10 [11], CIFAR-100 [11],
and ImageNet-16-120 [55] after training are stored in this
benchmark.

1) MACRO SKELETON OF ARCHITECTURE CANDIDATES
The macro skeleton of each architecture in NAS-Bench-201
is shown in Figure 1. An image is taken as input by the neural
network architecture. It then goes through a 3 × 3 convo-
lution layer followed by a batch normalization layer. Each
architecture’s macro skeleton comprises three groups of cells
linked by residual blocks. The cells are stacked N times
each. The structure of the cell varies from architecture to
architecture, however, the macro skeleton is kept the same.

VOLUME 10, 2022 67853

S. E. Arman, S. A. Deowan: IGWO-SS for Fast Neural Architecture Search in Computer Vision

FIGURE 1. Macro-skeleton of architecture candidates.

FIGURE 2. Example of two unique cells.

The residual blocks have a stride of two, which downsamples
the feature map. A global average pooling layer is used to
transform the feature map into a feature vector. The final pre-
diction is made using a fully connected layer having softmax
activation.

2) CELLS: BUILDING BLOCKS OF THE MACRO-SKELETON
Each cell in the macro-skeleton comprises V = 4 nodes.
Examples of two unique cells are shown in Figure 2. The
nodes are connected by edges, where each edge represents
a specific operation. There are 6 edges in total in a cell.
The list of operations is predefined. There are five operations
L = 5. These operations are: 1) 1 × 1 convolution, 2) 3 ×
3 convolution, 3) 3× 3 average pooling, 4) Skip connection,
and 5) Zeroize. The zeroize operation indicates that the edge
is dropped. Changing these operations allows the creation
of different unique cells, giving rise to unique architecture
candidates. There are 56 = 15, 625 possible architecture
candidates in total.

3) DECISION SPACE
The decision space consists of all possible neural network
architectures on NAS-Bench-201. Before starting the opti-
mization process, the operations are encoded into integers.
Each operation and their encoded integer values are shown
in Table 1. There are 6 edges in a cell of each archi-
tecture candidate. Each of these edges can take one spe-
cific operation. A cell can be represented as a vector of
length 6. Each entry in the vector represents a distinct
edge, and the value of that entry represents the operation
performed at that edge. Any architecture configuration of
the NAS-Bench-201 search space can be created using this
vector.

TABLE 1. Operation encoding.

B. DATASET
The three most commonly used vision datasets are used
throughout the experiments to check the efficacy of the algo-
rithms. These datasets are - CIFAR-10 [11], CIFAR-100 [11],
and ImageNet-16-120 [55]. The datasets are split into a train,
validation, and test set.

1) CIFAR-10
The CIFAR-10 dataset comprises images of 10 classes. The
total number of images in the dataset is 60K, where each
image is of resolution 32× 32. The training set contains 50K
images of these 10 classes, with 5K images per class. The test
set contains 10K images, with 1K images per class.

2) CIFAR-100
Unlike CIFAR-10, CIFAR-100 comprises images of
100 classes. The training set contains 50K images, whereas
the test set contains 10K images.

3) ImageNet-16-120
The ImageNet-16-120 is a downsampled version of the orig-
inal ImageNet dataset. According to [56], the downsampling
of ImageNet reduces computational cost but provides similar

67854 VOLUME 10, 2022

S. E. Arman, S. A. Deowan: IGWO-SS for Fast Neural Architecture Search in Computer Vision

results. The ImageNet-16-120 dataset comprises 151.7K, 3K,
and 3K images on training, validation, and test sets. The
resolution of each downsampled image in ImageNet-16-120
is 16× 16. In total, there are 120 classes in the dataset.

C. TRAINING PIPELINE
The training pipeline used in NAS-Bench-201 is similar
to [13], [57], [57]. Nesterov momentum Stochastic gradient
descent (SGD) is used as an optimizer during the training
process, which has better convergence than normal SGD.
To calculate loss, a categorical cross-entropy loss function is
used. Each architecture is trained for 200 epochs. The weight
decay was set to 0.0005, and cosine annealing [57] was
used to decay the learning rate from 0.1 to 0. Random crop,
random flip, and normalization were used as augmentation
strategies.

D. IMPROVED GREY WOLF OPTIMIZATION BASED ON
SYNAPTIC SALIENCY (IGWO-SS)
This section of the paper presents the IGWO-SS algorithm for
NAS. Unlike the Standard GWO algorithm, in the IGWO-SS
algorithm, both the initialization and new population gener-
ation are done by leveraging synaptic saliency. The synaptic
saliency is used to create a rank between the architectures.
The architectures that are higher in rank are considered more
promising, and those that are lower in rank are considered
less promising. The IGWO-SS algorithm only focuses on the
more promising architectures. It trains the more promising
architectures and discards the rest. Since the calculation of
synaptic saliency is a very fast process, the ranking can be
done in a very short amount of time. Overall, the algorithm
requires training much fewer models to achieve similar or
even better result than other algorithms, making it extremely
fast. Before going deeper into the algorithm, the method of
identifying promising neural network architectures by lever-
aging synaptic saliency will be discussed. After that, the
proposed IGWO-SS algorithm and how it works alongside
the components of NAS will be explained.

1) RATIONALE BEHIND USING SYNAPTIC SALIENCY
The performance of an untrained neural network can be
estimated using different techniques like Multi Layer Per-
ceptron (MLP) [58], Gaussian Process (GP) [59], Sparse
GP [60], Random Forest (RF) [61], XGBoost [61], Bayesian
Optimization based techniques [62]–[64] etc. However, the
challenges with using these techniques is high initialization
time. Numerous neural networks have to be trained, and
their accuracy will have to be stored in a temporary dataset
to train these predictors to predict the performance of an
untrained model. Besides, these predictors need to be updated
in real-time to achieve more accurate performance predic-
tions. It adds further cost to the search process. Methods like
Learning Curve Extrapolation (LCE) [15], [16] require zero
initialization time but a significant amount of query time since
each neural network architecture needs to be trained partially
to be able to predict the final performance. In this study,

synaptic saliency is used, which requires no initialization
time and almost zero query time. The synaptic saliency of
an untrained neural network can be calculated just by doing a
forward and backward propagation of a mini-batch of data
through the neural network [51]. Some synaptic saliencies
can even be calculated without any data [50]. Since the query
time for synaptic saliency is negligibly short and it requires
no initialization time, it does not add extra time to the opti-
mization process.

2) CALCULATION OF SYNAPTIC SALIENCY OF A NEURAL
NETWORK
The calculation of synaptic saliency of a neural network is
performed in four stages. Each step has subtle differences
depending on which synaptic saliency is calculated. The steps
are described below in detail.

Step 1: Forward Propagate a Mini-batch of Data or
Ones Vector Through the Neural Network

The first step to calculate the synaptic saliency of a neu-
ral network is to forward propagate a mini-batch of data
or an all-ones matrix through the neural network. In order
to calculate SNIP [48] or GRASP [49] synaptic saliency,
a mini-batch of data has to be forward propagated whereas,
to calculate SYNFLOW [50] synaptic saliency, an all-ones
matrix having a dimension equal to the dimension of the
input image has to be forward propagated. The forward
propagation of a mini-batch of data yields a prediction
vector.

Step 2: Calculate Loss
Calculation of loss for calculating SYNFLOW synaptic

saliency is different from the calculation of loss for SNIP
or GRASP synaptic saliency. Loss calculation for SNIP or
GRASP synaptic saliency can be done using simple Mean
Squared Error (MSE).

J (θ) =
1
M

M∑
i=1

(
yi − ŷi

)2 (1)

Here, J (θ) is the loss function. M is the number of forward
propagated samples. yi is the true label of i-th sample, and ŷi
is the predicted label of i-th sample.

The prediction vector is obtained by:

ŷ = hθ (x) (2)

Here, hθ (x) represents the hypothesis function parameterized
by θ that maps between the inputs and the outputs of the neu-
ral network. MSE is not used when calculating SYNFLOW
synaptic saliency since during calculation of SYNFLOW,
a mini-batch of data is not forward propagated; rather, an all-
ones matrix is forward propagated. Instead of calculating
MSE, a new type of loss called synaptic loss is calculated.
Synaptic loss is calculated by multiplying the absolute value
of all the parameters of a neural network.

RSF = 1
T

(
L∏
l=1

∣∣∣θ [l]∣∣∣)1 (3)

VOLUME 10, 2022 67855

S. E. Arman, S. A. Deowan: IGWO-SS for Fast Neural Architecture Search in Computer Vision

FIGURE 3. Forward propagation.

FIGURE 4. Calculation of loss.

Here,RSF is the synaptic loss, 1 is the all-ones matrix, θ [l]

is a vector containing the parameters or weights of layer l.
Step 3: Backpropagation of Loss to Calculate Synaptic

Saliency of Each Parameter in the Network
While training a neural network, backpropagation is done

to update the parameters of the neural network. It is also
called gradient update since each parameter is updated using

the gradient of the loss with respect to that parameter.

θj←− θj − α
∂

∂θj
J (θ) (4)

Here, θj is the weight of j-th parameter, α is the learning rate,
J (θ) is the loss, and ∂

∂θj
J (θ) is the gradient of loss with respect

to θj.

67856 VOLUME 10, 2022

S. E. Arman, S. A. Deowan: IGWO-SS for Fast Neural Architecture Search in Computer Vision

FIGURE 5. Backpropagation of loss to calculate synaptic saliency of each parameter in the Network.

Unlike standard backpropagation, weight is not updated
while calculating synaptic saliency. Instead of updating the
weight, the gradient of each weight is used to calculate the
synaptic saliency for that weight. SNIP [48] synaptic saliency
for a parameter is calculated by taking the Hadamard product
of the absolute value of the gradient of the loss with respect
to that parameter and the parameter itself.

snip : S(θj) =

∣∣∣∣δJ (θ)δθj

∣∣∣∣� θj (5)

Here, J (θ) is the loss, δJ (θ)
δθj

is the gradient of loss with respect
to the parameter θj.
GRASP [49] synaptic saliency of a parameter is calculated

by taking the hadamard product of the gradient of the loss and
Hessian with the parameter itself.

grasp : S(θj) = −
(
H
δJ (θ)
δθj

)
� θj (6)

Here, H represents the Hessian matrix that captures the
dependencies between different weights of the neural net-
work.

The SYNFLOW [50] synaptic saliency of a parameter is
calculated by taking hadamard product of the gradient of the
synaptic loss and the parameter itself.

synflow : S(θj) =
∂RSF

∂θj
� θj (7)

Here, RSF is the synaptic loss, ∂RSF
∂θ

is the gradient of the
synaptic loss.

The visualization of the overall process of calculation of
synaptic saliency for each parameter of a neural network is
shown in Figure 3, Figure 4, and Figure 5.

Step 4: Synaptic Saliency of an Entire Neural Network
After calculating synaptic saliency for each network

parameter, they are summed to calculate the synaptic saliency

VOLUME 10, 2022 67857

S. E. Arman, S. A. Deowan: IGWO-SS for Fast Neural Architecture Search in Computer Vision

of the entire neural network [51].

Snet =
N∑
j

S(θj) (8)

Here, Snet represents the synaptic saliency of a neural net-
work, N is the number of parameters in the neural network,
and θj is the j-th parameter of the neural network.

3) IDENTIFICATION OF PROMISING NEURAL NETWORK
ARCHITECTURES LEVERAGING SYNAPTIC SALIENCY
This section will discuss how synaptic saliency can be used
to identify promising architectures. The IGWO-SS algorithm
uses synaptic saliency at two stages: initialization and new
population generation. Top n architectures are selected from
N random architectures during initialization by leveraging
synaptic saliency. During new population generation, top n
architectures are selected from N newly generated architec-
ture by leveraging synaptic saliency. The synaptic saliency
is used to estimate the performance of untrained neural net-
works. At first, the synaptic saliency of N neural networks
are calculated. Then the architectures are ranked based on the
magnitude of the calculated synaptic saliency. The architec-
tures that are higher in rank are considered more promising
than the architectures that are lower in rank. Only top n
architectures are selected from the rank, and the rest (N − n)
are discarded. Since the calculation time of synaptic saliency
is negligible, promising architectures are identified from a set
of untrained architectures within seconds.

A simplified example showing the process of identification
of promising architectures leveraging synaptic saliency is
shown in Figure 6. It is observed from Figure 6 that - the pro-
cess starts with a set of architectures. In the example shown
in Figure 6, the process starts with N = 5 architectures.
The architectures are either generated randomly or by the
NAS algorithm. After the generation of N = 5 architectures,
their synaptic saliency is calculated. Then the architectures
are ranked based on the calculated synaptic saliency. The
architectures with higher synaptic saliency are higher in rank,
whereas those with lower synaptic saliency are lower. After
creating the rank of N = 5 architectures, the top n = 2
architectures are identified as the promising architectures that
will go into the next step of the algorithm, and the rest of the
architectures are discarded.

The algorithm for the identification of promising archi-
tectures leveraging synaptic saliency is presented in
Algorithm 1. The algorithm takes as input the number of
neural network architectures n and N where n is equal to
the population size of the NAS algorithm and N is set
by the decision-maker. n < N since n most promising
architectures will be selected from larger a set of candidate
architecturesN . The algorithm also takes as an inputX , which
is a vector containing the configurations of N architectures
generated randomly or generated by the NAS algorithm. The
algorithm returns the configurations of top n architectures x
from the configurations of N architectures X . In line 1 of

Algorithm 1: Get-Population-Using-Synaptic-Saliency
Input: Number of neural networks n and N (n<N), Set

of neural network architectures generated
randomly or generated by the NAS algorithm, X

Output: x
1 Obtain a set of neural network architectures

X(i = 1, 2, . . . ,N)
2 Calculate synaptic saliency of N obtained neural

networks
3 Rank the neural networks based on synaptic saliency
4 Select top n neural networks from N neural networks

based on synaptic saliency as the selected population of
more promising architectures x(i = 1, 2, . . . , n)

5 return x

the algorithm, a set of neural network architectures X is
obtained randomly or from the NAS algorithm. In line 2 of
the algorithm, the synaptic saliency of each of the N neural
network architectures is calculated. The architectures are
ranked based on calculated synaptic saliency in line 3. In line
4, the top n architectures fromN neural network architectures
are selected based on the rank. The configurations of top n
architectures are returned in line 5.

4) STEPS IN THE IGWO-SS ALGORITHM
This section of the paper presents the IGWO-SS algorithm for
NAS. Unlike the Standard GWO algorithm, in the IGWO-SS
algorithm, both the initialization and new population gener-
ation are done by leveraging synaptic saliency. The synaptic
saliency is used to create a rank between the architectures.
Architectures that are higher in rank are considered more
promising than those lower in rank. The IGWO-SS algorithm
only focuses on the more promising architectures. It trains
the more promising architectures and discards the rest. Since
the calculation of synaptic saliency is a speedy process, the
ranking can be done in a short period. Overall, the algorithm
requires training much fewer models to achieve similar or
even better accuracy than other algorithms, making it fast and
reliable.

The flowchart for the IGWO-SS algorithm is presented in
Figure 7. Each step of the IGWO-SS algorithm is described
in detail below.

Initialization using Synaptic Saliency
During initialization, the positions of N grey wolves are

initialized randomly. Each grey wolf corresponds to a specific
neural network architecture. n grey wolves are selected from
the N grey wolves using the following 3 steps -

1) Calculate synaptic saliency of N grey wolves or neural
networks.

2) Rank the grey wolves or neural networks based on
calculated synaptic saliency.

3) Select top n grey wolves based on synaptic saliency as
the initial population of grey wolves.

67858 VOLUME 10, 2022

S. E. Arman, S. A. Deowan: IGWO-SS for Fast Neural Architecture Search in Computer Vision

FIGURE 6. Identification of promising architectures leveraging synaptic saliency.

FIGURE 7. Flowchart for Improved Grey Wolf Optimization Algorithm Using Synaptic Saliency (IGWO-SS).

This n grey wolves act as the initial population of the IGWO-
SS algorithm.

Alpha, Beta and Delta Wolf Identification from the
Initial Population

After obtaining the initial population using synaptic
saliency, the simulation parameters a,A, andC are initialized.
The following equations are used to calculate A and C:

A = 2a · r1 − a (9)

VOLUME 10, 2022 67859

S. E. Arman, S. A. Deowan: IGWO-SS for Fast Neural Architecture Search in Computer Vision

C = 2 · r2 (10)

Here, r1 and r2 are two vectors that can take any random
values between 0 and 1. a is a vector whose components
decrease linearly from 2 to 0 during iterations.

Then the fitness of the initial population of grey wolves is
calculated to identify the α, β, and δ wolves. The fitness can
be the loss or accuracy of the neural network. In the search
process, the α, β, and δ wolves guide the search process by
guiding all other wolves. After each iteration, the wolf that is
closest to the prey is set to be the α wolf, the wolf that is the
second closest to the prey is set to be the β wolf and the wolf
that is the third closest to the prey is set to be the δ wolf. If the
loss is used as fitness, the grey wolf or neural network having
the lowest loss is the α wolf, the grey wolf or neural network
having the second-lowest loss is the β wolf, and the grey wolf
or neural network having the third-lowest loss is the δ wolf.
These α, β, and δ wolves will guide the search process.
New Population Generation using Synaptic Saliency
In order to generate positions of new wolves, at first,

the distance of the current wolf from α, β, and δ wolf are
calculated.

Dα = |C1 · Xα − X |

Dβ =
∣∣C2 · Xβ − X

∣∣
Dδ = |C3 · Xδ − X |

 (11)

Here,Dα is the distance of the current wolf from theαwolf,
Dβ is the distance of the current wolf from the β wolf, andDδ
is the distance of the current wolf from the δ wolf.

Using these distances, three new positions can be obtained
for each wolf, which are then averaged to get the new position
for the next iteration.

X1 = Xα − A1 · (Dα)

X2 = Xβ − A2 ·
(
Dβ
)

X3 = Xδ − A3 · (Dδ)

 (12)

X(t + 1) =
X1 + X2 + X3

3
(13)

During the generation of new grey wolves, instead of gen-
erating only n numbers of grey wolves, N numbers of grey
wolves are generated (n < N). Then n promising grey wolves
are selected from these N grey wolves using the following
3 steps -

1) Calculate synaptic saliency forN grey wolves or neural
networks.

2) Rank the grey wolves or neural networks based on
calculated synaptic saliency.

3) Select top n grey wolves from N grey wolves based on
synaptic saliency as the newly generated population.

Alpha, Beta andDeltaWolf Identification from theNew
Generated Population

After obtaining the newly generated population of grey
wolves or neural networks using synaptic saliency, simulation

parameters a, A, and C are updated. Then the α, β, and δ
wolves are identified again by calculating the fitness of each
grey wolf.

Termination Condition
The algorithm continues to run until the maximum number

of iterations is reached. When the maximum number of iter-
ations is reached, the position and fitness value of the α wolf
is returned.

Algorithm 2: Improved Grey Wolf Optimization based
on Synaptic Saliency (IGWO-SS)
Input: Number of grey wolves n and N (n<N),

Maximum number of iterations T
Output: Xα , fitness(Xα)

1 Initialize N grey wolves population X
2 X = GET-POPULATION-USING-SYNAPTIC-

SALIENCY(n,N ,X)
3 Initialize a, A and C
4 Calculate the fitness of each grey wolf
5 Xα = position of the best grey wolf
6 Xβ = position of the second-best grey wolf
7 Xδ = position of the third-best grey wolf
8 while t ≤ T do
9 Update the positions of N grey wolves X

10 X = GET-POPULATION-USING-SYNAPTIC-
SALIENCY(n,N ,X)

11 Update a, A and C
12 Calculate the fitness of each grey wolf
13 Update Xα , Xβ , Xδ
14 t = t + 1

15 return Xα , fitness(Xα)

5) THE IGWO-SS ALGORITHM
The IGWO-SS algorithm is presented in Algorithm 2. The
algorithm takes as input the number of grey wolves n and
N . The N number of grey wolves act as the proxy agents
from which n the number of grey wolves are selected. The
algorithm also takes the maximum number of iterations T as
input. The algorithm returns as output the position of the α
wolf, Xα and the fitness of the α wolf, fitness(Xα).
In line 1 of the algorithm, a population of N grey

wolves is initialized. In line 2 of the algorithm, the GET-
POPULATION-USING-SYNAPTIC-SALIENCY (n,N ,X)
algorithm is called to obtain the configuration of n promising
neural networks from the configuration ofN neural networks.
The simulation parameters a, A, and C are initialized in
line 3. The fitnesses of the wolves are calculated by training
n neural networks in line 4. From line 5-7, α, β, and δ
wolves are identified. A while loop starts in line 8, which
runs till the maximum number of iterations T is reached.
As seen in line 9, the positions of N grey wolves are updated
during each iteration. Then theGET-POPULATION-USING-
SYNAPTIC-SALIENCY(n,N ,X) algorithm is again called
to obtain the configurations of n promising neural networks

67860 VOLUME 10, 2022

S. E. Arman, S. A. Deowan: IGWO-SS for Fast Neural Architecture Search in Computer Vision

from the configurations of N neural networks. The sim-
ulation parameters a, A, and C are initialized in line 11.
In line 12, the fitness of each grey wolf is calculated, and
in line 13, the α, β, and δ wolves are identified. After T
iterations, the position (configuration) of the α wolf and the
fitness value (accuracy) is returned.

6) COMPONENTS OF NAS FOR THE IGWO-SS ALGORITHM
The flowchart of this study is presented in Figure 8. Accord-
ing to Elsken et al. [9], NAS methods have three components
- search space, search strategy, and performance estimation
strategy. In our experiments, the NAS-Bench-201 search
space [53] is used as the search space and the IGWO-SS algo-
rithm is used as the search strategy to perform NAS. Three
datasets are used to validate the performance of the IGWO-SS
algorithm - CIFAR-10, CIFAR-100, and ImageNet-16-120.
To estimate the performance of the neural networks, the per-
formance data fromNAS-Bench-201 obtained by full training
of the neural networks and the relative ranking of neural net-
work architectures based on synaptic saliency are used. The
performance of the IGWO-SS algorithm is compared with
several bioinspired algorithm that includes - Particle Swarm
Optimization (PSO) [65], Bat Algorithm (BA) [66], Whale
Optimization Algorithm (WOA) [67], Differential evolution
(DE) [68], and Genetic Algorithm (GA) [69] and the state-of-
the-art algorithms for NAS that includes - REA [45], RS [70],
RL [71], BOHB [72], DARTSV1 [73], DARTSV2 [73],
GDAS [74], SETN [75], and ENAS [43].

IV. EXPERIMENTAL RESULTS
The experimental results section is divided into two parts.
In the first part, the result of different experiments performed
to evaluate the efficacy of synaptic saliency to improve NAS
are presented. In the second part, different experiments to
evaluate the effectiveness of the IGWO-SS algorithm are
presented.

A. EXPERIMENTS EVALUATING THE EFFICACY OF
SYNAPTIC SALIENCY TO IMPROVE NAS
In this section, the results of different experiments that were
performed to evaluate the efficacy of synaptic saliency to
improve NAS are presented. In order to calculate the corre-
lations, 15,625 neural network architectures from the NAS-
Bench-201 were used.

1) CORRELATION BETWEEN SYNAPTIC SALIENCY AND
ACCURACY
The correlation between synaptic saliency and accuracy of
neural networks is presented in Table 2. Kendall’s Tau,
Pearson, and Spearman correlation coefficients for SNIP,
GRASP, and SYNFLOW synaptic saliency with accuracy
for CIFAR-10, CIFAR-100, and ImageNet16-120 are calcu-
lated. It is observed from the table that SYNFLOW synaptic
saliency is more correlated with accuracy compared to SNIP
andGRASP on all three datasets. Hence, it is more reasonable

TABLE 2. Correlation between synaptic saliency and accuracy.

TABLE 3. Correlation between synaptic saliency and model size.

TABLE 4. Correlation between synaptic saliency and FLOPS.

to use SYNFLOW synaptic saliency to identify untrained
promising neural networks.

2) CORRELATION BETWEEN SYNAPTIC SALIENCY AND
MODEL SIZE
In order to find out if there is any relationship between
synaptic saliency and the size of the neural network or model
size, the correlation between synaptic saliency andmodel size
is also calculated. Table 3 confirms that there is a correlation
between synaptic saliency and model size. The models which
are larger have high synaptic saliency. As a result, while
ranking models based on synaptic saliency, the larger models
might be preferred over the smaller ones.

3) CORRELATION BETWEEN SYNAPTIC SALIENCY AND
FLOPS
The correlation between synaptic saliency and FLOPS is
presented in Table 4. It is observed from Table 4 that the

VOLUME 10, 2022 67861

S. E. Arman, S. A. Deowan: IGWO-SS for Fast Neural Architecture Search in Computer Vision

FIGURE 8. Flowchart of this study.

correlations between synaptic saliency and FLOPS are sim-
ilar to the correlation between synaptic saliency and model
size. It indicates a correlation between model size and
FLOPS.

4) COMPARISON OF SYNAPTIC SALIENCY WITH OTHER
PERFORMANCE PREDICTORS
Spearman correlation coefficient with accuracy of three
synaptic saliency along with some other performance pre-
dictors from the literatures that includes Fisher [51], [76],
Jacob covariance [52], Grad norm [51] on NAS-Bench-201
are shown in Figure 9. The result achieved is similar to [51].
It is observed from the figure that SYNFLOW has the highest
correlation with accuracy. Jacob covariance has the second-
highest correlation. The correlation of SNIP and Grad norm
is quite similar. Fisher has the lowest correlation.

B. EXPERIMENTS EVALUATING THE PERFORMANCE OF
THE IGWO-SS ALGORITHM FOR NAS
In this section, different experiments that are performed to
evaluate the performance of the proposed IGWO-SS algo-
rithm for NAS are presented. The experimental setting, the
comparison of standard GWO algorithm and IGWO-SS algo-
rithm with different synaptic saliency, the comparison of
IGWO-SS algorithmwith other bio-inspired and state-of-the-
art NAS algorithms are presented in this section of the paper.

1) EXPERIMENTAL SETUP
The simulation parameters for the IGWO-SS algorithm are
presented in Table 5. During the experiments, the number of
search agents (n) varied between 10, 20, and 30. Based on
the number of search agents, 100, 200, or 300 models were
trained. The number of proxy agents (N) was set to 1000.
Each search agent and proxy agent represents an architecture.
The number of proxy agents is higher than the number of

TABLE 5. Simulation parameters for experiments.

search agents (N > n). Instead of training N neural networks
during the optimization, n neural networks are trained. These
n neural networks are selected from N neural networks based
on synaptic saliency. The maximum number of iterations
for each algorithm was set to 10. Each algorithm was run
50 times, and a graph is plotted, which shows the mean and
standard deviation of the best test accuracy obtained after
training a certain number ofmodels for all runs. Themean and
standard deviation of the best neural network model for each
algorithm in 50 runs are also presented in different tables.

2) IGWO-SS ALGORITHM WITH DIFFERENT SYNAPTIC
SALIENCY
In this section of the paper, the performance of the
IGWO-SS algorithm with three different synaptic saliency -
SNIP, GRASP, and SYNFLOW are presented. The synaptic
saliency are used to rank between N neural network architec-
tures based on how promising they seem. Based on this rank,
the top n architectures are selected for training, and the rest
are discarded. The performances of the IGWO-SS algorithm
with different synaptic saliency are shown in Figure 10.

The number of search agents (n) was set to 10, 20, or 30.
Based on the number of search agents, the maximum number
of trained models was 100, 200, or 300. The average best
test accuracy vs. the number of models trained are plotted in

67862 VOLUME 10, 2022

S. E. Arman, S. A. Deowan: IGWO-SS for Fast Neural Architecture Search in Computer Vision

FIGURE 9. Comparison of synaptic saliency with other performance predictors.

FIGURE 10. IGWO-SS algorithm with different synaptic saliency.

the graph. It is observed from the graph that, for any number
of search agents and all datasets, the IGWO-SS algorithm
with SYNFLOW outperforms the IGWO-SS algorithm with

SNIP or GRASP synaptic saliency. It is also observed from
the figure that, initially, the curve for IGWO-SS with SYN-
FLOW is very steep, which means the algorithm achieves

VOLUME 10, 2022 67863

S. E. Arman, S. A. Deowan: IGWO-SS for Fast Neural Architecture Search in Computer Vision

TABLE 6. Mean and standard deviation of test accuracy for IGWO-SS
algorithm with different synaptic saliency for different numbers of search
agents.

high accuracy very fast by training only a few models. The
final converged curve for IGWO-SS with SYNFLOW is also
higher compared to the other two, which means, after the
search process is finished, the IGWO-SS with SYNFLOW
found architecture with better performance compared to the
other two.

The mean and standard deviation of accuracy for the
IGWO-SS algorithm with different synaptic saliency for dif-
ferent numbers of search agents are presented in Table 6.

It is observed from the table that when the number of search
agents (n) is 10 or 20, IGWO-SS with SNIP performs better
than IGWO-SS with GRASP in terms of mean accuracy in
all three datasets. When the number of search agents (n) is
30, IGWO-SS with GRASP performs better than IGWO-SS
with SNIP. With the increase in the number of search agents,
IGWO-SS with GRASP begins to perform better, however,
the IGWO-SS with SYNFLOW outperforms the other two
for any number of search agents.

3) ABLATION STUDY: COMPARISON OF PERFORMANCE OF
THE IGWO-SS WITH STANDARD GWO
In this section, the performance of the IGWO-SS algorithm
is compared with the performance of the Standard GWO
algorithm. Unlike the Standard GWO algorithm, which trains
all neural networks, the IGWO-SS algorithm uses synaptic
saliency to identify the more promising neural networks and
only trains those neural networks. It speeds up the overall
search process as the training of numerous less promising
neural networks is skipped.

In Figure 11, the comparison between IGWO-SS with
SYNFLOW and Standard GWO algorithm is presented in
terms of the average best test accuracy obtained after training
a certain number of models for 10, 20, and 30 search agents.
It is observed from the figure that the IGWO-SS algorithm
achieves better final average best test accuracy compared
to the Standard GWO algorithm for any number of search
agents. The IGWO-SS algorithm also achieves higher aver-
age best test accuracy by training fewer models than the
Standard GWO algorithm. As the model’s training is the
most expensive part, and the IGWO-SS algorithm requires
training much fewer models than the GWO algorithm to

TABLE 7. Mean and standard deviation of test accuracy for Standard
GWO and IGWO-SS algorithm with different numbers of search agents.

achieve similar or even better performance, it is, therefore,
much faster. It is observed from Figure 11 that -

• When the number of models trained is 100, the
IGWO-SS algorithm only requires training about 5 neu-
ral networks to achieve better accuracy than the Standard
GWO algorithm after training 100 neural networks for
CIFAR-10, CIFAR-100, and ImageNet16-120 dataset.

• When the number of models trained is 200, the
IGWO-SS algorithm only requires training about
10 neural networks to achieve better accuracy than the
Standard GWO algorithm after training 200 neural net-
works for CIFAR-10, CIFAR-100, and ImageNet16-120
dataset.

• When the number of models trained is 300, the
IGWO-SS algorithm only requires training about
15 neural networks to achieve better accuracy than the
GWO algorithm after training 300 neural networks for
CIFAR-10, CIFAR-100, and ImageNet16-120 dataset.

The IGWO-SS algorithm is almost 20X faster compared to
the Standard GWO algorithm, considering the fact that the
calculation of synaptic saliency is very fast and assuming that
all models require the same amount of time to train.

The mean and standard deviation of the accuracy of the
best model found using the Standard GWO algorithm and the
IGWO-SS algorithm on three datasets - CIFAR-10, CIFAR-
100, and ImageNet16-120 are shown in Table 7. Each algo-
rithm was run 50 times. The test accuracy of the best neural
network is stored during each run. Then the mean and stan-
dard deviation of accuracy of the 50 best neural networkmod-
els found during 50 runs of each algorithm is calculated. From
Table 7 it is observed that themean accuracy of the best model
obtained by IGWO-SS with SYNFLOW synaptic saliency is
more on all three datasets compared to the Standard GWO
algorithm. In the case of the Standard GWO algorithm, the
mean accuracy increases with the increase of the number of
trained models for all three datasets. However, in the case
of the IGWO-SS algorithm, the mean accuracy increases for
the CIFAR-10 and ImageNet16-120 datasets. For the CIFAR-
100 dataset, the mean accuracy decreases first and then
increases again. It is also observed that with the increase of
search agents or the number of models trained, the difference
betweenmean accuracies for the IGWO-SS algorithm and the
GWO algorithm decreases, however, the IGWO-SS still out-

67864 VOLUME 10, 2022

S. E. Arman, S. A. Deowan: IGWO-SS for Fast Neural Architecture Search in Computer Vision

FIGURE 11. Comparison between IGWO-SS algorithm with Standard GWO algorithm.

performs the GWO algorithm. As more and more models are
trained, the difference will further decrease as more regions
of the search space will be explored. Nevertheless, training
numerous models is very expensive and time-consuming.
The IGWO-SS algorithm achieves performance similar to
the Standard GWO algorithm after training 300 models by
training only a few models. Hence, it is much faster.

4) COMPARISON OF THE IGWO-SS ALGORITHM WITH
OTHER BIO-INSPIRED ALGORITHMS
In this section of the paper, the comparison of the IGWO-SS
algorithm with other bio-inspired algorithms is presented.
The IGWO-SS algorithm is compared with five bio-inspired
algorithms - PSO, BA, WOA, DE, and GA. The algorithms
are compared on three datasets - CIFAR-10, CIFAR-100,
ImageNet16-120. Each algorithm used the same number of
search agents - 10, 20, or 30. The maximum number of
trained models for each algorithm was - 100, 200, or 300.
The algorithms were run 50 times.

Figure 12 presents the average best test accuracy obtained
by the algorithms after training a certain number of models.
It is observed from Figure 12 that the IGWO-SS algorithm
outperforms the other algorithms in all three datasets. The
IGWO-SS algorithm requires training much fewer models
than other algorithms to achieve a similar or even better result.
When the number of search agents is less, the IGWO-SS
algorithm outperforms the other algorithms by a significant
margin. With the increase of search agents, the other algo-
rithms perform slightly better, however the IGWO-SS algo-
rithm still outperforms those. Among the other algorithms,
PSO performswell when the number of search agents ismore.
However, when the number of search agents is less, it does
not perform well. GA works well when the number of search
agents is less. However, when the number of search agents is
more, the other algorithms outperform GA.

The main takeaway from these graphs is how efficient the
IGWO-SS algorithm is compared to the other algorithms.
The algorithmmanages to find a very well-performing neural
network, even before training 20 neural networks. It requires

VOLUME 10, 2022 67865

S. E. Arman, S. A. Deowan: IGWO-SS for Fast Neural Architecture Search in Computer Vision

FIGURE 12. Comparison of IGWO-SS algorithm with other bioinspired algorithms.

training about 10x fewer models to achieve a similar or better
performing neural network than the other algorithms.

Themean and standard deviation of test accuracy for differ-
ent bioinspired algorithms with different numbers of search
agents are presented in Table 8. The table shows that the
mean accuracy of the final neural network model obtained
using IGWO-SS algorithm is higher than the other algorithms
in all three datasets for any number of search agents. For
different numbers of agents and different datasets, GA and
PSO interchangeably came in second.
• When the number of search agents is 10, GA
achieves the second-highest final mean accuracy for
all three datasets. The mean accuracies achieved
by the IGWO-SS algorithm are 0.21%, 1.03%, and
0.47% more than the mean accuracies achieved by the
GA for CIFAR-10, CIFAR-100, and ImageNet16-120,
respectively.

• When the number of search agents is 20, PSO
achieves the second-highest final mean accuracy for
all three datasets. The mean accuracies achieved
by the IGWO-SS algorithm are 0.2%, 0.61%, and

0.48% more than PSO for CIFAR-10, CIFAR-100, and
ImageNet16-120, respectively.

• When the number of search agents is 30, GA achieves
the second-highest mean accuracy for CIFAR-10 and
ImageNet16-120, and PSO achieves the second-highest
mean accuracy for the CIFAR-100 dataset. The mean
accuracies achieved by the IGWO-SS algorithm are
0.19% and 0.46% more than the mean accuracies
achieved by GA for the CIFAR-10 and ImageNet16-120
datasets and 0.39% more than the mean accuracies
achieved by PSO for the CIFAR-100 dataset.

Themean accuracies achieved by the BA,DE, andWOAwere
always less than the mean accuracies achieved by IGWO-
SS, PSO, and GA. The IGWO-SS algorithm outperformed
all other algorithms and required training 10x fewer models
compared to the other algorithms.

5) COMPARISON OF IGWO-SS ALGORITHM WITH OTHER
STATE-OF-THE-ART NAS ALGORITHMS
The IGWO-SS algorithm is compared to state-of-the-art NAS
algorithms that includes - RL [71], RS [70], BOHB [72],

67866 VOLUME 10, 2022

S. E. Arman, S. A. Deowan: IGWO-SS for Fast Neural Architecture Search in Computer Vision

TABLE 8. Mean and standard deviation of test accuracy for different
bio-inspired algorithms with different numbers of search agents.

TABLE 9. Comparison with the state-of-the-art algorithms.

GDAS [74], DARTSV1 [73], DARTSV2 [73], SETN [75],
REA [45], ENAS [43]. These algorithms are used as bench-
mark on NAS-Bench-201 [53]. The mean and standard devi-
ation of test accuracy of these algorithms are obtained from
[53]. The comparison of presented in Table 9. The algorithms
were run multiple times, and the mean and standard deviation
of test accuracy were calculated after completing the search.
It is observed from the table that the IGWO-SS algorithm
achieves higher predictive performance compared to these
algorithms.

V. DISCUSSION
In this paper, we presented our proposed IGWO-SS algorithm
for NAS. The IGWO-SS algorithm leverages the concept of
synaptic saliency to explore the more promising parts of the
search space instead of focusing on the less promising part,
making the algorithm more efficient and fast.

We performed several experiments to determine the
efficacy of synaptic saliency in improving NAS. The exper-
imental results indicate that synaptic saliency positively

correlates with accuracy, model size, and FLOPS. The pos-
itive correlation with neural network or model size is a draw-
back of synaptic saliency. However, it can still be effective
in identifying promising neural network architectures from
a set of untrained neural network architectures, since it posi-
tively correlates with predictive performance or accuracy. The
SYNFLOW synaptic saliency has the highest correlation with
accuracy, suggesting it might be better than the other two in
identifying more promising architectures.

Our experimental results indicate that the IGWO-SS
with SYNFLOW synaptic saliency works better than the
IGWO-SS algorithm with SNIP or GRASP synaptic saliency.
The IGWO-SS with SYNFLOW finds better neural network
architectures by training fewer neural networks than the
IGWO-SS with SNIP or GRASP. The IGWO-SS algorithm
also works better and faster compared to the Standard GWO
algorithm. The reason is that, in the Standard GWO algo-
rithm, many less promising neural networks are needed to
be trained. However, in the IGWO-SS algorithm, synaptic
saliency is used to identify the more promising neural net-
works, and only those neural networks are trained, and the
rest are discarded. As a result, the search process becomes
faster, and better neural network architectures are found more
quickly. The IGWO-SS algorithm was also compared with
five bioinspired algorithms - PSO [65], BA [66], WOA [67],
DE [68], and GA [77]. The experimental results suggest that
the IGWO-SS algorithm requires training 10x fewer models
and provides better final performance compared to these
algorithms. The IGWO-SS algorithm was also compared
with several state-of-the-art NAS algorithms that include -
RL [71], RS [70], BOHB [72], GDAS [74], DARTSV1 [73],
DARTSV2 [73], SETN [75], REA [45], ENAS [43]. The
results indicate that the IGWO-SS algorithm achieves higher
predictive performance compared to these algorithms.

VI. CONCLUSION
Although NAS can automatically find suitable neural net-
work architectures for a specific task, the existing NAS
algorithms are incredibly time-consuming. This study pro-
posed an IGWO-SS algorithm for NAS, much faster than the
existing NAS algorithms. The IGWO-SS algorithm leverages
the idea of synaptic saliency to rank neural network archi-
tectures based on how promising they are. The algorithm
only trains the more promising architectures and discards
the rest based on this rank. It saves a significant amount of
time since the training of many less promising architectures
is skipped, and the search is more focused on the more
promising part of the search space. The IGWO-SS algorithm
requires training almost 10x fewer models than other bio-
inspired algorithms, including Standard GWO, PSO, GA,
DE, WOA, and DE, to achieve similar or even better results.
The final performance of the IGWO-SS algorithm is also
much better compared to these algorithms. The IGWO-SS
algorithm also achieves better performance than the state-of-
the-art NAS algorithms, including RL, RS, BOHB, GDAS,
DARTSV1, DARTSV2, SETN, REA ENAS. The IGWO-SS

VOLUME 10, 2022 67867

S. E. Arman, S. A. Deowan: IGWO-SS for Fast Neural Architecture Search in Computer Vision

algorithm can perform NAS on a single GPU to get a very
good architecture within a short period, making it suitable
for anyone with time or resource constraints. One limitation
of synaptic saliency used in the IGWO-SS algorithm is its
positive correlation with model size. The future work should
include developing a multi-objective framework for NAS
leveraging synaptic saliency that addresses the limitation of
synaptic saliency. Future work should also include identify-
ing the efficacy of the IGWO-SS algorithm in other tasks,
e.g., Natural Language Processing (NLP), Automatic Speech
Recognition (ASR), etc. In this work, we mainly focused on
using synaptic saliency from the pruning literature to improve
the GWO algorithm. Future work may include other perfor-
mance estimation techniques outside of pruning literature to
improve different NAS algorithms.

ACKNOWLEDGMENT
The authors would like to express their gratitude to the Uni-
versity of Dhaka for funding the project.

REFERENCES
[1] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for

large-scale image recognition,’’ 2014, arXiv:1409.1556.
[2] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, ‘‘Inception-v4,

inception-ResNet and the impact of residual connections on learning,’’ in
Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 1–7.

[3] F. Chollet, ‘‘Xception: Deep learning with depthwise separable convo-
lutions,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 1251–1258.

[4] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neural
networks for mobile vision applications,’’ 2017, arXiv:1704.04861.

[5] X. Zhang, X. Zhou, M. Lin, and J. Sun, ‘‘ShuffleNet: An extremely
efficient convolutional neural network for mobile devices,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 6848–6856.

[6] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, ‘‘Aggregated residual
transformations for deep neural networks,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 1492–1500.

[7] X. Zhang, Z. Li, C. C. Loy, and D. Lin, ‘‘PolyNet: A pursuit of structural
diversity in very deep networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 718–726.

[8] G. Larsson, M. Maire, and G. Shakhnarovich, ‘‘FractalNet: Ultra-deep
neural networks without residuals,’’ 2016, arXiv:1605.07648.

[9] T. Elsken, J. H. Metzen, and F. Hutter, ‘‘Neural architecture search: A
survey,’’ J. Mach. Learn. Res., vol. 20, no. 55, pp. 1–21, 2019.

[10] B. Zoph and Q. V. Le, ‘‘Neural architecture search with reinforcement
learning,’’ 2016, arXiv:1611.01578.

[11] A. Krizhevsky and G. Hinton, ‘‘Learning multiple layers of features from
tiny images,’’ Univ. Toronto, Toronto, ON, Canada, Tech. Rep. TR-2009,
2009.

[12] M. Marcus, B. Santorini, and M. A. Marcinkiewicz, ‘‘Building a large
annotated corpus of English: The Penn treebank,’’ in Special Issue onUsing
Large Corpora: II (Computational Linguistics), vol. 19, no. 2. Cambridge,
MA, USA: MIT Press, Jun. 1993.

[13] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, ‘‘Learning transferable
architectures for scalable image recognition,’’ inProc. IEEEConf. Comput.
Vis. Pattern Recognit., Jun. 2018, pp. 8697–8710.

[14] K. Swersky, J. Snoek, and R. P. Adams, ‘‘Freeze-thaw Bayesian optimiza-
tion,’’ 2014, arXiv:1406.3896.

[15] T. Domhan, J. T. Springenberg, and F. Hutter, ‘‘Speeding up automatic
hyperparameter optimization of deep neural networks by extrapolation of
learning curves,’’ in Proc. 24th Int. joint Conf. Artif. Intell., 2015, pp. 1–9.

[16] A. Klein, S. Falkner, J. T. Springenberg, and F. Hutter, ‘‘Learning curve
prediction with Bayesian neural networks,’’ in Proc. ICLR, Toulon, France,
2017.

[17] B. Baker, O. Gupta, R. Raskar, and N. Naik, ‘‘Accelerating neural archi-
tecture search using performance prediction,’’ 2017, arXiv:1705.10823.

[18] B. Baker, O. Gupta, N. Naik, and R. Raskar, ‘‘Designing neural network
architectures using reinforcement learning,’’ 2016, arXiv:1611.02167.

[19] H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang, ‘‘Efficient architecture
search by network transformation,’’ in Proc. AAAI Conf. Artif. Intell.,
vol. 32, no. 1, 2018, pp. 1–8.

[20] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy, ‘‘Progressive neural architecture
search,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 19–34.

[21] J.-D. Dong, A.-C. Cheng, D.-C. Juan, W. Wei, and M. Sun, ‘‘DPP-Net:
Device-aware progressive search for Pareto-optimal neural architectures,’’
in Proc. Eur. Conf. Comput. Vis. (ECCV), Sep. 2018, pp. 517–531.

[22] S. Xie, H. Zheng, C. Liu, and L. Lin, ‘‘SNAS: Stochastic neural architec-
ture search,’’ 2018, arXiv:1812.09926.

[23] Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei, and J. Sun, ‘‘Single
path one-shot neural architecture search with uniform sampling,’’ in Proc.
Eur. Conf. Comput. Vis. Cham, Switzerland: Springer, 2020, pp. 544–560.

[24] D. Wang, C. Gong, M. Li, Q. Liu, and V. Chandra, ‘‘AlphaNet: Improved
training of supernets with alpha-divergence,’’ 2021, arXiv:2102.07954.

[25] N. Richards, D. E. Moriarty, and R. Miikkulainen, ‘‘Evolving neural
networks to play go,’’ Applied Intelligence, vol. 8, no. 1, pp. 85–96, 1998.

[26] D. E. Moriarty and R. Miikkulainen, ‘‘Forming neural networks through
efficient and adaptive coevolution,’’ Evol. Comput., vol. 5, no. 4,
pp. 373–399, 1997.

[27] O. Rittho, R. Klinkenberg, S. Fischer, I. Mierswa, and S. Felske, ‘‘Yale:
Yet another learning environment,’’ in Proc. LLWA Tagungsband der
GI-Workshop-Woche Lernen-Lehren-Wissen-Adaptivität, no. 76, 2001,
pp. 84–92.

[28] H. J. Escalante, M. Montes, and L. E. Sucar, ‘‘Particle swarm model
selection,’’ J. Mach. Learn. Res., vol. 10, no. 2, pp. 1–36, 2009.

[29] F. Hutter, H. H. Hoos, and K. Leyton-Brown, ‘‘Sequential model-based
optimization for general algorithm configuration,’’ in Proc. Int. Conf.
Learn. Intell. Optim. Berlin, Germany: Springer, 2011, pp. 507–523.

[30] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, ‘‘Algorithms for hyper-
parameter optimization,’’ in Proc. 25th Annu. Conf. Neural Inf. Process.
Syst. (NIPS), vol. 24, 2011, pp. 1–9.

[31] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, ‘‘Auto-WEKA:
Combined selection and hyperparameter optimization of classification
algorithms,’’ in Proc. 19th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining. Cham, Switzerland: Springer, Aug. 2013, pp. 847–855.

[32] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and
F. Hutter, ‘‘Auto-sklearn: Efficient and robust automated machine learning,
part of the springer series on challenges in machine learning book series
(SSCML),’’ Tech. Rep., 2019.

[33] M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum,
and F. Hutter, ‘‘Auto-sklearn: Efficient and robust automated machine
learning,’’ in Automated Machine Learning, vol. 28. Cham, Switzerland:
Springer, May 2019, pp. 113–134.

[34] M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and
F. Hutter, ‘‘Auto-sklearn 2.0: Hands-free AutoML via meta-learning,’’
2020, arXiv:2007.04074.

[35] B. Komer, J. Bergstra, and C. Eliasmith, ‘‘Hyperopt-sklearn: Automatic
hyperparameter configuration for scikit-learn,’’ in Proc. ICML workshop
AutoML, vol. 9, 2014, p. 50.

[36] J. Bergstra, B. Komer, C. Eliasmith, D. Yamins, and D. D. Cox, ‘‘Hyperopt:
A Python library for model selection and hyperparameter optimization,’’
Comput. Sci. Discovery, vol. 8, no. 1, p. 014008, 2015.

[37] J. Bergstra, D. Yamins, and D. Cox, ‘‘Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision archi-
tectures,’’ in Proc. Int. Conf. Mach. Learn., 2013, pp. 115–123.

[38] G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller, ‘‘Labeled faces
in the wild: A database forstudying face recognition in unconstrained
environments,’’ in Proc. Workshop Faces Real-Life Images, Detection,
Alignment, Recognit., 2008, pp. 1–15.

[39] D. Cox and N. Pinto, ‘‘Beyond simple features: A large-scale feature
search approach to unconstrained face recognition,’’ in Proc. Face Gesture,
Mar. 2011, pp. 8–15.

[40] R. S. Olson, R. J. Urbanowicz, P. C. Andrews, N. A. Lavender, L. C. Kidd,
and J. H. Moore, ‘‘Automating biomedical data science through tree-based
pipeline optimization,’’ in Proc. Eur. Conf. Appl. Evol. Comput. Cham,
Switzerland: Springer, 2016, pp. 123–137.

[41] R. S. Olson and J. H. Moore, ‘‘TPOT: A tree-based pipeline optimization
tool for automating machine learning,’’ in Proc. Workshop Autom. Mach.
Learn., 2016, pp. 66–74.

[42] H. Mendoza, A. Klein, M. Feurer, J. T. Springenberg, and
F. Hutter, ‘‘Towards automatically-tuned neural networks,’’ in Proc.
Workshop Autom. Mach. Learn., 2016, pp. 58–65.

67868 VOLUME 10, 2022

S. E. Arman, S. A. Deowan: IGWO-SS for Fast Neural Architecture Search in Computer Vision

[43] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, ‘‘Efficient neural archi-
tecture search via parameters sharing,’’ in Proc. Int. Conf. Mach. Learn.,
2018, pp. 4095–4104.

[44] D. Zhou, X. Zhou, W. Zhang, C. C. Loy, S. Yi, X. Zhang, and W. Ouyang,
‘‘EcoNAS: Finding proxies for economical neural architecture search,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 11396–11404.

[45] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, ‘‘Regularized evolution
for image classifier architecture search,’’ in Proc. AAAI Conf. Artif. Intell.,
vol. 33, 2019, pp. 4780–4789.

[46] B. Deng, J. Yan, and D. Lin, ‘‘Peephole: Predicting network performance
before training,’’ 2017, arXiv:1712.03351.

[47] R. Istrate, F. Scheidegger, G. Mariani, D. Nikolopoulos, C. Bekas, and
A. C. I. Malossi, ‘‘Tapas: Train-less accuracy predictor for architec-
ture search,’’ in Proc. AAAI Conf. Artif. Intell., vol. 33, no. 1, 2019,
pp. 3927–3934.

[48] N. Lee, T. Ajanthan, and P. H. S. Torr, ‘‘SNIP: Single-shot network pruning
based on connection sensitivity,’’ 2018, arXiv:1810.02340.

[49] C. Wang, G. Zhang, and R. Grosse, ‘‘Picking winning tickets before
training by preserving gradient flow,’’ 2020, arXiv:2002.07376.

[50] H. Tanaka, D. Kunin, D. L. K. Yamins, and S. Ganguli, ‘‘Pruning neural
networks without any data by iteratively conserving synaptic flow,’’ 2020,
arXiv:2006.05467.

[51] M. S. Abdelfattah, A. Mehrotra, Ł. Dudziak, and N. D. Lane, ‘‘Zero-cost
proxies for lightweight NAS,’’ 2021, arXiv:2101.08134.

[52] J. Mellor, J. Turner, A. Storkey, and E. J. Crowley, ‘‘Neural architecture
search without training,’’ 2020.

[53] X. Dong and Y. Yang, ‘‘NAS-bench-201: Extending the scope of repro-
ducible neural architecture search,’’ 2020, arXiv:2001.00326.

[54] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter,
‘‘NAS-bench-101: Towards reproducible neural architecture search,’’ in
Proc. Int. Conf. Mach. Learn., 2019, pp. 7105–7114.

[55] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, and A. C. Berg, ‘‘ImageNet large
scale visual recognition challenge,’’ Int. J. Comput. Vis., vol. 115, no. 3,
pp. 211–252, Dec. 2015.

[56] P. Chrabaszcz, I. Loshchilov, and F. Hutter, ‘‘A downsampled vari-
ant of ImageNet as an alternative to the CIFAR datasets,’’ 2017,
arXiv:1707.08819.

[57] I. Loshchilov and F. Hutter, ‘‘SGDR: Stochastic gradient descent with
warm restarts,’’ 2016, arXiv:1608.03983.

[58] C. White, W. Neiswanger, and Y. Savani, ‘‘BANANAS: Bayesian opti-
mization with neural architectures for neural architecture search,’’ 2019,
arXiv:1910.11858.

[59] C. E. Rasmussen, ‘‘Gaussian processes in machine learning,’’ in Summer
School onMachine Learning. Berlin, Germany: Springer, 2003, pp. 63–71.

[60] M. Bauer, M. van der Wilk, and C. E. Rasmussen, ‘‘Understanding proba-
bilistic sparse Gaussian process approximations,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2016, pp. 1533–1541.

[61] A. Zela, J. Siems, L. Zimmer, J. Lukasik, M. Keuper, and F. Hutter,
‘‘Surrogate NAS benchmarks: Going beyond the limited search spaces of
tabular NAS benchmarks,’’ 2020, arXiv:2008.09777.

[62] C. M. Bishop and N. M. Nasrabadi, Pattern Recognition and Machine
Learning, vol. 4, no. 4. New York, NY, USA: Springer, p. 738. [Online].
Available: https://link.springer.com/book/9780387310732

[63] H. Shi, R. Pi, H. Xu, Z. Li, J. T. Kwok, and T. Zhang, ‘‘Bridging the
gap between sample-based and one-shot neural architecture search with
BONAS,’’ 2019, arXiv:1911.09336.

[64] J. T. Springenberg, A. Klein, S. Falkner, and F. Hutter, ‘‘Bayesian opti-
mization with robust Bayesian neural networks,’’ in Proc. 30th Int. Conf.
Neural Inf. Process. Syst., 2016, pp. 4141–4149.

[65] J. Kennedy and R. Eberhart, ‘‘Particle swarm optimization,’’ in Proc. IEEE
ICNN, vol. 4. Nov./Dec. 1995, pp. 1942–1948.

[66] X. S. Yang, ‘‘Bat algorithm for multi-objective optimisation,’’ Int. J. Bio-
Inspired Comput., vol. 3, no. 5, pp. 267–274, 2011.

[67] S. Mirjalili and A. Lewis, ‘‘The whale optimization algorithm,’’ Adv. Eng.
Softw., vol. 95, pp. 51–67, Feb. 2016.

[68] J. Lampinen and R. Storn, ‘‘Differential evolution,’’ in New Optimization
Techniques in Engineering. Berlin, Germany: Springer, 2004, pp. 123–166.

[69] S. Mirjalili, ‘‘Genetic algorithm,’’ in Evolutionary Algorithms and Neural
Networks. Cham, Switzerland: Springer, 2019, pp. 43–55.

[70] J. Bergstra and Y. Bengio, ‘‘Random search for hyper-parameter optimiza-
tion,’’ J. Mach. Learn. Res., vol. 13, no. 2, pp. 1–25, 2012.

[71] R. J. Williams, ‘‘Simple statistical gradient-following algorithms for
connectionist reinforcement learning,’’ Mach. Learn., vol. 8, nos. 3–4,
pp. 229–256, May 1992.

[72] S. Falkner, A. Klein, and F. Hutter, ‘‘BOHB: Robust and efficient hyper-
parameter optimization at scale,’’ in Proc. Int. Conf. Mach. Learn., 2018,
pp. 1437–1446.

[73] H. Liu, K. Simonyan, and Y. Yang, ‘‘DARTS: Differentiable architecture
search,’’ 2018, arXiv:1806.09055.

[74] X. Dong and Y. Yang, ‘‘Searching for a robust neural architecture in four
GPU hours,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 1761–1770.

[75] X. Dong and Y. Yang, ‘‘One-shot neural architecture search via self-
evaluated template network,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis.
(ICCV), Oct. 2019, pp. 3681–3690.

[76] J. Turner, E. J. Crowley, M. O’Boyle, A. Storkey, and G. Gray, ‘‘Block-
Swap: Fisher-guided block substitution for network compression on a
budget,’’ 2019, arXiv:1906.04113.

[77] J. R. Koza, ‘‘Genetic programming as a means for programming computers
by natural selection,’’ Statist. Comput., vol. 4, no. 2, pp. 87–112, Jun. 1994.

SHIFAT E. ARMAN received the B.Sc. and M.Sc.
degrees from the Department of Robotics and
Mechatronics Engineering, University of Dhaka.
He joined BRAC University, as a Faculty Mem-
ber, in 2022. Before that, he worked as a
Research Assistant at the University of Dhaka
and a Visiting Research Assistant at Bangabandhu
Sheikh Mujibur Rahman Agricultural University
(BSMRAU). His research interests include auto-
mated machine learning (AutoML), neural archi-

tecture search (NAS), computer vision (CV), Bayesian optimization (BO),
model-based, model-free, meta-heuristic optimization, medical image anal-
ysis, and artificial intelligence in finance and agriculture.

SHAMIM AHMED DEOWAN received the
bachelor’s degree in mechanical engineering from
the Islamic University of Technology (IUT),
the master’s degree in sensor systems technol-
ogy (mechatronics) from the Karlsruhe Univer-
sity of Applied Sciences, Germany, and the Ph.D.
degree in chemical and materials engineering from
the University of Calabria, Italy. He is currently
an Assistant Professor and the Chairperson of the
Department of Robotics and Mechatronics Engi-

neering, University of Dhaka. Furthermore, he has an international patent
in nanotechnology. He has 20 international journal publications, seven
books/book chapters, and 30 international conference publications. He has
done research on different topics, such as medical robotics, process engi-
neering, and control and automation. He is a member of the Alumni Associ-
ation of German Universities Bangladesh (AAGUB), European Membrane
Society (EMS), American Society of Mechanical Engineers (ASME), and
Institution of Engineers, Bangladesh (IEB).

VOLUME 10, 2022 67869

