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ABSTRACT Solving time-varying linear equation and inequality (TVLEI) problem has attracted extensive
attention in numerous scientific and engineered fields. In this article, it is basically considered that the
commonly used dynamics neural network in the virtual environment is inevitably interfered with by
the variable measurement noises while dealing with the TVLEI problem. An adaptive enhanced and
noise-suppressing zeroing neural network (AENSZNN) model is proposed as an improved algorithm for
solving the TVLEI problem. An adaptive scale factor based on the residual error norm is designed to make
the proposed AENSZNN model converge to the theoretical solution faster. Furthermore, the momentum
enhancement terms added to themodel enables theAENSZNNmodel to effectively solve the TVLEI problem
in real-time under the obstruction of different measurement noises. Besides, theoretical results and numerical
experiments indicate that the AENSZNN model has advantages in convergence accuracy and robustness to
noises compared with the existing algorithms. Note that, the proposed AENSZNN model is successfully
exploited for the estimation of mobile object localization.

INDEX TERMS Time-varying linear equation and inequality, noises perturbance, zeroing neural network
(ZNN), adaption factor, dynamic positioning.

I. INTRODUCTION
The problem of linear equation and inequality (LEI) generally
exists in many fields of science and industry, such as
control system [1], stability analysis [2], [3], data han-
dling [4], information retrieval [5], etc. Many engineering
and theoretical problems can be simplified as the inherent
LEI system. For example, the robot control is modeled by
a system of linear equations [6], [7]. In the redundancy
robotic manipulators solution, the avoidance characteristics
of joint physical constraints corresponds to a linear inequality
system [8], [9]. By combining and solving the relevant
combined linear equation and inequality system, robots can
be successfully controlled without joint physical constraints
or environmental obstacles [10]. The LEI problem can be
described as the situation that if and only if the solution of
CEx = Eb and the solution of DEx ≤ Ed exist at the same time
and the intersection of their solutions is non-empty. Solving
such a LEI problem is essentially finding simultaneous
solutions that satisfy equation and inequality. Obviously,
the LEI problem has a great importance in the variant
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application, it becomes necessary and meaningful to develop
an effective unified solution scheme [11]–[13]. Currently,
a lot of studies have been proposed which aim at solving the
LEI problem. In paper [14], Gol et al. study regularization
and find the normal solutions of the linear equations and
inequalities systems. Moreover, Li et al. analyze and study
interval linear equations and inequalities, and demonstrate
the feasibility and solvability of the problem in [15]. Besides,
Zhou [16] construct an optimal control method for Lyapunov
inequality for linear elliptic equation. In paper [17], two
kinds of discrete-time neural networks with fast convergence
speed are proposed to solve the LEI problem by using the
scaling techniques. Furthermore, Liang and Tso [18] utilize
the discrete-time zeroing neural network to solve the LEI
problem and give the corresponding improved upper limit of
the step size parameters. However, it is worth noting that the
abovementioned methods are essentially presented to solve
the time-invariant LEI problem, which leads to falling into
low solution accuracy problem or even system collapse due
to the lagging error.

In [19], a special kind of recurrent neural network termed
zeroing neural network (ZNN) model is presented as an
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effective scheme to solve varieties of time-varying problems.
By making full use of the time derivative information
of time-varying parameters, the theoretical solution to the
time-varying problems is tracked by the evolution formula.
Taking advantage of the method of ZNN [20]–[22], the
objective of effectively solving time-varying problems is
achieved. Specifically, Xu et al. [23] furnish a ZNN
model for ensuring the solution of the TVLEI problem,
which takes full advantage of the ZNN model as well
as the time-derivative information about the time-varying
coefficients involved in the time-varying problems. Due to
the sensitivity of the model to noises. Specifically, noises will
lead to performance degradation, or even lead to the solving
system collapse [24]. In view of the lack of convergence
speed and poor anti-noise performance of ZNN models,
many studies have presented [25], [26]. In [27], a dynamics
zeroing neural network with intrinsic noises tolerance aims
to suppress additive noises by adding an integral term so that
it can converge globally to the theoretical solution precisely.
Besides, Xiao et al. [28] present a unified ZNN, which
simultaneously has both remarkable finite time convergence
performance and inherent noises tolerance. In [29], a unified
predefined-time convergent and robust ZNN model is put
forward to obtain an exact solution in a specified finite
time and accuracy can not be affected in the face of
high amplitude perturbations. Moreover, by using special
activation functions including the well-known sign-bi-power
function in ZNN, Xiao et al. [30] recommend a finite-time
Zhang neural network to make the convergence performance
have a remarkable improvement. Despite the design and
analysis of the accelerated ZNN models to find the optimum
solution having acquired some achievements, the current
research has not solved the existing problems. For instance,
the learning speed of the model needs to be repeatedly and
carefully adjusted. At this time, the model cannot make full
use of the residual information in the solution system, which
eventually leads to truncation errors or even crash the solution
system.

Therefore, this paper proposes an adaptive enhanced
and noise-suppressing zeroing neural network (AENSZNN)
model which can get the utmost out of the residual error infor-
mation and momentum information of the solution system.
By combining the residual error and the adaption scale factor,
the AENSZNN model achieves a faster convergence rate
and higher robustness than the previously proposed solution
system. That is, this model can not only maintain high
robustness under the various measurement noises disturbance
but also speed up the convergence of the solving system.
A good deal of various algorithms and neural network models
have been put forward and applied in solving the TVLEI
problem, the specific performance comparison results among
them are exhibited in Table 1.

The remainder of this paper is segmented into the following
five parts. Section II introduces the preliminary knowledge
of the solution of the TVLEI problem. Further, the detailed
description of the norm-based adaption factor design method

and the AENSZNN model construction method to solve the
TVLEI problem is settled in Section III. Next, Section IV
strictly analyzes the global convergence and robustness of
the AENSZNN model. Besides, an illustrative simulation
example 1 (V-A) and the dynamic positioning simulative
experiments based on the angle of arrival (AOA) positioning
algorithm are provided to verify the effectiveness and
superiority of the proposed AENSZNN model in Section V.
Finally, Section VI concludes this article with concluding
remarks. The main contributions of this paper are as follows:
• As far as we know, this paper is the first work to
investigate the time-varying linear equation system
based on the norm-based adaption scale factor design
framework at present. Furthermore, the proposed model
achieves a better performance in convergence speed of
the solving system and anti-noise ability over the state-
of-the-art methods.

• This paper proposes a new AENSZNN model based on
a novel design formula for a real-time-varying linear
equation under various noises environment. It is worth
mentioning that there is currently no real-time-varying
matrix inversion neural network model with noises
suppression capability.

• Qualitative and quantitative experiments are designed
and executed. The results show that the proposed
AENSZNN model is superior to the most advanced
neural network methods in terms of accuracy and
convergence speed, and can generate noise-suppressing
results against various measurement noises.

• Comparedwith the operational schemes, the AENSZNN
model has achieved remarkable advantages in both
aspects of robust performance and convergence speed
in the actual two-dimensional dynamic positioning
application based on the AOA algorithm.

II. PROBLEM FOURMULATION AND PRELIMINARIES
The specific representation of the TVLEI problem can be
depicted as {

C(t)Ex(t) = Eb(t),
D(t)Ex(t) ≤ Ed(t),

(1)

where the time-varying matrices C(t) ∈ Rm×n and
D(t) ∈ Rp×n, the time-varying smooth vectors Eb(t) ∈ Rm,
Ed(t) ∈ Rp, and the vector Ex(t) ∈ Rn denotes the theoretical
solution of the TVLEI problem (1) which needs to be solved.
A nonnegative relaxation variable E3·2(t) ∈ Rp is imported to
further solving the TVLEI problem (1) [31]:{

C(t)Ex(t) = Eb(t),
D(t)Ex(t)+ E3·2(t) = Ed(t),

(2)

where superscript ·2 denotes the square of each element
of E3·2(t) ∈ Rp. When solving the equation (2) in
this paper, E3·2(t) ∈ Rp is also an unknown vector to
be obtained, by defining the diagonal matrix H (t) =
diag{y1(t), . . . , yp(t)} ∈ Rp×p, E3·2(t) is adapted as
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TABLE 1. Comparsions of the results on solving the TVLEI problem (1) by using different itreated algorithms or neural network models.

TABLE 2. The definition of notation.

FIGURE 1. From the perspective of the feedback control system, the
AENSZNN model (11) for solving the TVLEI problem (1). The structure
diagram with the AENSZNN model (11) as the controller.

E3·2 = H (t) E3(t). Finally, the TVLEI problem (1) is
transformed as below:

W (t)Ey(t) = Eu(t), (3)

where the matrix W (t) ∈ R(m+p)×(n+p) and vector
Eu(t) ∈ R(m+p) are arranged as

W (t) =
[

C(t) E0
D(t) H (t)

]
, Eu(t) =

[
Eb(t)
Ed(t)

]
, (4)

the augmented vector Ey(t) = [ExT(t), E3T(t)]T ∈ Rn+p, with
the superscript T denotes the transpose of a matrix or a vector.

III. AN ADAPTIVE ENHANCED AND NOISE
SUPPRESSING ZNN MODEL
According to the equation (3) mentioned in Section 5, the
corresponding error function is constructed as

Eδ(t) = W (t)Ey(t)− Eu(t). (5)

Based on the following OZNN model construction frame-
work to make every element of Eδ(t) converge to zero, the

following equation can be obtained:

Ėδ(t) = −γ η(Eδ(t)), (6)

where γ > 0 ∈ R denotes the scale coefficient and η(·) :
Rn×n represents the activation function. Thus, applying the
OZNNmodel to solve the TVLEI problem (1) can be derived
as

W (t)Ėy(t) = −Ẇ (t)Ey(t)− γ (W (t)Ey(t)− Eu(t))+ Ėu(t). (7)

However, there will inevitably exist noises interference to
the system in practical applications. Concretely speaking,
parameter errors, calculation errors, external interference,
and modeling errors can all be regarded as noises. Even
the rounding error and truncation error in the numerical
calculation can be also regarded as noises. Thus, to solve the
TVLEI problem (1) in the case of online noises interference,
the AENSZNN model is proposed and its evolution formula
can be derived as follows:

Ėδ(t) = −G(Eδ(t))Eδ(t)− β
∫ t

0
Eδ(τ )dτ, (8)

where theG(·) > 0 : Rn×n
→ R represents the adaptive scale

factor and the parameter β > 0. There are several schemes
that can be applied to construct the G(·):
• Exponential adaption scale factor scheme:

G(Eδ(t)) = ||Eδ(t)||σ2 + ϕ, (9)

where the parameters σ > 0 and ϕ > 1.
• Power adaption scale factor scheme:

G(Eδ(t)) = ω||Eδ(t)||2 + ||(Eδ(t)||2, (10)

where the parameter ω > 0.
Through combining the equation (8) and the equation (3),
we can obtained:

W (t)Ėy(t) = −G(Eδ(t))(W (t)Ey(t)− Eu(t))− Ẇ (t)Ey(t)

+Ėu(t)− β
∫ t

0
(W (τ )Ey(τ )− Eu(τ ))dτ. (11)

By observing the structure diagram of the AENSZNN
model (11) in Fig. 1, we can view the AENSZNN
model (11) as a broadly proportional-integral-derivative
(PID) controller, which is differential, proportional, and
integral control input section respectively as −Ẇ (t)Ey(t) +
Ėu(t), −G(Eδ(t))(W (t)Ey(t)− Eu(t)), −β

∫ t
0 (W (τ )Ey(τ )− Eu(τ ))dτ .

The global convergence performance of the proposed AEN-
SZNN model (11) is a significant criterion. To further
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analyze the convergence performance of the AENSZNN
model (11) in the case of noises-free. The following theorem
is given:
Theorem 1: Given an any solvable TVLEI problem (1),

the solution obtained by the AENSZNN model (11) always
globally converges to the exact solution. That is to say,
the residual error ||Eδ(t)||2 of the AENSZNN model (11)
synthesized by the error function (5) converges to zero within
a finite time.

Proof: The ith subsystem of the AENSZNN model (11)
is written as δ̇i(t) = −G(Eδ(t))δi(t) − β

∫ t
0 δi(τ )dτ . For

further investigation, the following Lyapnuov candidate
function [32] is formulated:

li(t) = δ2i (t)+ (β(
∫ t

0
δi(τ )dτ )2)/2 ≥ 0. (12)

Combining the equation (12) and G(·) > 0, the following
conclusions can be drawn:

G(δi(t))δi(t) =

{
> 0, δi(t) > 0 or δi(t) < 0,
= 0, δi(t) = 0,

(13)

which indicate that when δi(t) 6= 0 or
∫ t
0 δi(τ )dτ 6= 0,

the Lyapnuov candidate function li(t) > 0. If and only if
δi(t) =

∫ t
0 δi(τ )dτ = 0. Therefore, the Lyapunov function

candidate δi(t) is positive definite. The derivative form of the
function (12) can be expressed as

l̇i(t) =
dli(t)
dt
= δi(t)δ̇i(t)+ βδi(t)

∫ t

0
δi(τ )dτ

= δi(t)(δ̇i(t)+ β
∫ t

0
δi(τ )dτ )

= −G(Eδ(t))δ2i (t) ≤ 0.

In other words, the l̇i(t) is negative definite for all the
time t ∈ [0,+∞). Thus, according to the Lyapunov
theory, the residual error ||Eδ(t)||2 of the subsystem of
the AENSZNN model (11) eventually converges to zero.
It can be generalized and summarized that for each
i ∈ 1, 2, . . . n, the δi(t) globally converges to zero. Generally
speaking, the error function ||Eδ(t)||2 globally converges
to zero as time goes by. Thus, the proposed AENSZNN
model (11) globally converges to the theoretical solution to
the TVLEI problem (1) over finite time. The proof is thus
completed. �

IV. ROBUSTNESS ANALYSIS OF THE AENSZNN MODEL
UNDER VARIOUS NOISES INFLUENCE
In practical application scenarios, the AENSZNNmodel (11)
will unavoidably be influenced by various measurement
noises, which will reduce the accuracy of the solving system
or lead to the breakdown of the solving system. Therefore,
considering the influence of measurement noises on the
AENSZNN model (11) and further analyzing the various
noises influence on the AENSZNN model (11), the formula
of the AENSZNN model (11) interfered by measurement

noises [33] is given as follows:

W (t)Ėy(t) = −Ẇ (t)Ey(t)+ Ėu(t)

−G(Eδ(t))(W (t)Ey(t)− Eu(t))

−β

∫ t

0
(W (τ )Ey(τ )− Eu(τ ))dτ + E8(t). (14)

The AENSZNN model (11) under the perturbations
of constant noises, bounded random noises, and linear
time-varying noises are provided severally. The following
three theorems are given to analyze the robustness of the
AENSZNN model (11).
Remark 1: Considering that solving continuou-time model

directly is demanding. Therefore, the ‘‘ode45’’ differential
equation solver in MATLAB is employed to convert the
AENSZNN model (11) into an ordinary differential equation
problem for simulation calculation. Specifically, the ‘‘ode45’’
differential equation solver uses the Runge-Kutta method
to solve the target parameter Ey(t) in real time. After each
iteration, the target parameter Ey(t) is substituted into the error
function Eδ(t) with the objective to compute the residual error
||Eδ(t)||2. The iteration stops when the residual error accuracy
requirements are met.
Theorem 2: No matter how large amplitude of the constant

noises E8(t) = E8 ∈ Rm+p perturbed AENSZNN model (11),
E8(t) can always globally converge to the theoretical solution
of the TVLEI problem (1). Moreover, the ith subelement of
Ex(t) in (11) globally converges to the theoretical solution of
TVLEI problem (1).

Proof: By the definition of the Laplace transforma-
tion [34], the AENSZNN model (11) perturbed by constant
noises E8(t) = E8 ∈ Rm+p and 8i(t) = 8i ∈ R can be
expressed as

sδi(s)− δi(0) = −G(δi(s))δi(s)−
β

s
δi(s)+

8̄i

s
, (15)

According to the Laplace transformation [34] and the
equation (15), we have:

δi(s) =
s(δi(0)+ 8̄i/s)

s2 + sG(δi(s))+ β
. (16)

As t → ∞, lim
t→∞

G(δi(t)) = lim
s→0

G(δi(s)) = ψ > 0 is blue

and the singularities of the transfer function s/(s2 + sψ + β)
are s1 = (−ψ +

√
ψ2 − 4β)/2 and s2 = (−ψ −√

ψ2 − 4β)/2, respectively. In addition, the singularities of
the transfer function is located on the left half of the plane
due to ψ > 0 and β > 0. That is to say, the system
satisfies the applicable condition of the Laplace final value
theory [34]. Substituting the Laplace final value theory into
equation (16):

lim
t→∞

δi(t) = lim
s→0

sδi(s) = lim
s→0

s(δi(0)+ 8̄i/s)
s2 + G(δi(s))+ β

= lim
s→0

s(δi(0)+ 8̄i/s)
s2 + sψ + β

= 0.
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Obviously, the error function Eδ(t) of the AENSZNN
model (11) converges to zero. The proof is thus
completed. �
Theorem 3: The residual error ||Eδ(t)||2 of the proposed

AENSZNN model (11) globally converges to a certain range
under the interference term of the linear time-varying noises
E8(t) = 8t ∈ Rm+p. Besides, 8i(t) = 8it ∈ R represents
the ith subelement of the E8(t). More precisely, ||8||2/β is the
upper bound of the residual error ||Eδ(t)||2, it can successfully
derive that when lim

t→∞
||Eδ(t)||2 = 0 as the parameter

β →+∞.
Proof:On the basis of the definition of the Laplace trans-

formation, the ith subelement of the mentioned AENSZNN
model (11) can be written as

sδi(s)− δi(0) = −G(δi(s))δi(s)−
β

s
δi(s)+

8̄i

s2
, (17)

where the parameter 8̄i/s2 represents the Laplace transfor-
mation of the linear time-varying noises 8̄it term. In terms
of lim

t→∞
G(δi(t)) = lim

s→0
G(δi(s)) = ψ > 0. Therefore,

equation (17) can be further summarized:

δi(s) =
s(δi(0)+ 8̄i/s2)
s2 + sψ + β

. (18)

Taking the definition of Laplace final value theory and the
Theorem 2 into account, we can obtain:

lim
t→∞

δi(t) = lim
s→0

sδi(s) = lim
s→0

s(δi(0)+ 8̄i/s)
s2 + G(δi(s))+ β

= lim
s→0

s(δi(0)+ 8̄i/s)
s2 + sψ + β

=
||8̄||2

β
.

And we get that when the parameter β → +∞ for
lim
t→∞
||Eδ(t)||2 = 0. The proof is completed. �

When studying the AENSZNN model (11) for solving
the TVLEI (1) problem with bounded random noises E8(t)
perturbation and analyzing the robustness of the AENSZNN
model (11), the following theorem is proposed.
Theorem 4: For the AENSZNN model (11) disturbed

by bounded random noises E8(t) = Eυ(t) ∈ Rm+p,
the upper bound of the steady-state residual error |Eδ(t)||2
of the AENSZNN model (11) is 2πn/

√
ψ2 − 4β when

ψ2 > 4β, the upper bound of the residual error
||Eδ(t)||2 is 4ψπn/(ψ

√
ψ2 − 4β) for ψ2 < 4β. Where the

lim
t→∞

G(δi(t)) = lim
s→0

G(δi(s)) = ψ > 0. The parameter π

expresses the max1≤i≤n2{max0≤τ≤t |υi(τ )|} and the parameter
υi(t) signifies the ith subelement of the random noises
term Eυ(t). That is to say, lim

t→∞
||Eδ(t)||2 is approximately

inversely proportional to the adaptive scale factor G(·). It is
worth noting that the maximum steady-state residual error
converges to zero finally when the appropriate parameter is
given and the adaptive scale factor G(·) is large enough.

Proof: Under the perturbation of bounded random
noises Eυ(t), the AENSZNN model (11) is expressed as

Ėδ(t) = −G(Eδ(t))Eδ(t)− β
∫ t

0
Eδ(τ )dτ + Eυ(t),

where the ith subelement of Ėδ(t) is

δ̇i(t) = −G(δi(t))δi(t)− β
∫ t

0
δi(τ )dτ + υi(t). (19)

Thus, the upper steady-state residual error will be influ-
enced by the values of ψ and β, where the parameter
lim
t→∞

G(δi(t)) = ψ > 0. For further decomposition and

proof, let χ (t) =
∫ t
0
Eδ(τ )dτ and χi(t) =

∫ t
0 δi(τ )dτ . So when

t →∞, equation (19) is rewritten as

χ̈i(t)+ ψχ̇i(t)+ βχi(t) = υi(t). (20)

In addition, we define the parameters ε1 = (−ψ +√
ψ2 − 4β)/2 and ε2 = (−ψ +

√
ψ2 − 4β)/2, and then

discuss the proof in detail in the following three cases.

1) IN THE CASE OF ψ2 > 4β
Based on the method for solving second-order differential
equations, equation (19) can be converted into:

δi(t)

=
δi(0)(ε1exp(ε1t)− ε2exp(ε2t))

ε1 − ε2

+
( ∫ t

0
(ε1exp(ε1(t − τ )))− ε2exp(ε2(t − τ ))× υi(τ )dτ

)
×

1
ε1 − ε2

.

By the definition of the triangle inequality [35]:

|δi(t)| ≤
|δi(0)(ε1exp(ε1t)− ε2exp(ε2t))|

ε1 − ε2

+
2

ε1 − ε2
max|υi(t)|

=
|δi(0)(ε1exp(ε1t)− ε2exp(ε2t))|

ε1 − ε2

+
2√

ψ2 − 4β
max|υi(t)|.

In short, the following inequality can be obtained:

lim
t→∞

sup||Eδ(t)||2 ≤
2πn√
ψ2 − 4β

, (21)

where sup(·) represents the upper bound of the parameter.

2) IN THE CASE OF ψ2
= 4β

Similar to the steps in ψ2 > 4β, in this case, equation (19)
can be written as

δi(t) = δi(0)tε1expε1t + δi(0)exp(ε1t)

+

∫ t

0
((t − τ )ε1exp(ε1(t − τ )))υi(τ )dτ

+

∫ t

0
exp(ε1(t − τ ))υi(τ )dτ. (22)
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FIGURE 2. Property of the residual error ||Eδ(t)||2 comparing the OZNN model (7), NCZNN model (27), PTCZNN model (28), and the proposed
AENSZNN model (11) with three kinds of measurement noises, where the initial value Ex(t) ∈ [−1,1]3 is randomly generated. Making the
initial value of the parameter of the proposed AENSZNN model (11) G(t) = ||Eδ(t)||22 + µ and the other three models are
G(t) = ||Eδ(t)||22 + 10, β = 10 and γ = 5, respectively. (a) and (d) Show the residual error ||Eδ(t)||2 of models disturbed by bounded constant
noises 8(t) = 8 = [2]3. (b) and (e) Depict the residual error ||Eδ(t)||2 of models propulted by linear time-varying noises
8(t) = 8̄t = [(2/5)× t ]3. (c) and (f) Denote the residual error ||Eδ(t)||2 of models propulted by bounded random noises 8(t) ∈ [0.5,2]3.

TABLE 3. Comparison results of OZNN model (7), NCZNN model (27), PTCZNN model (28), and the proposed AENSZNN model (11) in the three vital
indicators: maximum steady state residual (MSSRE), average steady state residual (ASSRE), and convergent time to solve the TVLEI problem (1) when the
parameters G(t) = ||Eδ(t)||22 + β, β = 10 and γ = 5.

It is worth noting that when ψ2
= 4β the parameter

ε1 = −ψ/2. Theorem 1 in paper [36] proves the existence
of the constants ω > 0 and ι > 0 that satisfy the following
inequality:

|ε1|t exp(ε1t) ≤ ω exp(−ιt). (23)

And then, in combination with the definition of the triangle
inequality and inequality (23), equation (22) can be trans-
formed renewedly into:

|δi(t)| ≤ |δi(0)(ε1exp(ε1t)− ε2exp(ε2t))|

+

∫ t

0
|ωexp(−ι(t − τ ))||υi(t)|dτ

+

∫ t

0
|exp(ε1(t − τ ))||υi(t)|dτ.

The above inequality is simplified and rearanged to obtain:

|δi(t)| ≤ |δi(0)(ε1exp(ε1t)− ε2exp(ε2t))| + (
ω

ι
−

1
ε1

)π.

On the basis of the above facts we can reach the following
conclusion:

lim
t→∞

sup||Eδ(t)||2 ≤
(ω
ι
−

1
ε1

)
πn. (24)

3) IN THE CASE OF ψ2 < 4β
Similar to the previous case of ψ2 > 4β and ψ2

= 4β, when
ψ2 < 4β, the following equation is satisfied:

lim
t→∞

sup||Eδ(t)||2 ≤
2πβn

ψ
√
4β − ψ2

. (25)

It can draw a conclusion that the proposed AENSZNN
model (11) not only uses a competitive adaption scale
factor to increase the convergence speed of the model, but
also maintains excellent robustness under various noises
disturbance by using the momentum information. Moreover,
it is possible to solve the TVLEI problem (1) without being
affected by the lagging error due to the consideration of the
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AENSZNN model (11) which utilizes the derivative term of
the system. The proof is thus completed. �

V. SIMULATION EXPERIMENTS AND COMPARISONS
In this section, the effectiveness and superiority of the
proposed AENSZNN model (11) for the solving TVLEI
problem (1) are proved through comparative numerical
experiments. The simulations are carried out on a digital
computer with Intel Core i7-8565U@1.80 GHz CPU, 16 GB
memory, and Windows 10 operating system using MATLAB
R2016b.

A. EXAMPLE 1
Based on formula (1), take the following time-varying
matrices and vectors as a typical example of simulation
experiments:

C(t) =

 sin(t)+ 2
cos(t)+ 3
−sin(t)+ 4

T

, Eb(t) =
[
sin(2t)+ cos(2t)

]

D(t) =

 sin(3t) −cos(3t)
cos(3t) sin(3t)
−sin(3t) cos(3t)

T

, Ed(t) =
[
sin(4t)
cos(4t)

]
.

The adaptive scale factor G(·) and parameter γ of the
proposed AENSZNNmodel (11) are set asG(t) = ||Eδ(t)||22+
10, β = 10 and γ = 5. On the basis of the above theoretical
analysis, such a TVLEI problem (1) can be transformed into a
time-varying matrix-vector equation (2). The corresponding
simulation results are shown in Figs. 2 and 4. Among them,
when solving example 1 (V-A), the residual error ||Eδ(t)||2 of
the AENSZNNmodel (11) globally converges from the initial
state to the theoretical solution. In addition, the following
models are utilized to solve the TVLEI problem (1) and their
specific evolution formula are as follows:
• OZNN model.

W (t)Ėy(t) = −Ẇ (t)Ey(t)− γ (W (t)Ey(t)− Eu(t))+ Ėu(t).

(26)

• NCZNN model in [20].

W (t)Ėy(t) = −Ẇ (t)Ey(t)− γ2(W (t)Ey(t)− Eu(t))+ Ėu(t),

(27)

where the 2(·) denotes the non-convex and bounded activa-
tion function.
• PTCZNN model in [29].

W (t)Ėy(t) = −Ẇ (t)Ey(t)+ Ėu(t)− γϒ(W (t)Ey(t)− Eu(t)),

(28)

where the ϒ(·) represents the odd monotonically increasing
activation function arrary.

B. NOISES FREE CONDITION
Specifically, Fig. 4 illustrates the simulation results of
Example 1 (V-A) solved by the AENSZNN model (11) with
noises free condition. In addition, it is worth stating briefly in

FIGURE 3. The convergence performance of the AENSZNN model (11) with
adaptive scale parameter (9) and (10), respectively. (a) Represents the
residual error ||Eδ(t)||2. (b) Denotes the logarithmic residual error ||Eδ(t)||2.

FIGURE 4. Residual error ||Eδ(t)||2 of the OZNN model (7), NCZNN
model (27), PTCZNN model (28), and the AENSZNN model (11).
(a) Represents the residual error ||Eδ(t)||2. (b) Denotes the logarithmic
residual error ||Eδ(t)||2.

advance that maximal steady-state residual error (MSSRE)
is defined as lim

t→∞
sup||Eδ(tm)||2, tm ∈ [ts, tmax] and average

steady-state residual error (ASSRE) is calculatated by∫ tmax
ts
||Eδ(τ )||2dτ/(tmax − ts). There are thirty random initial

states are set at the beginning of the experiment, and the
simulation results synthesized by the AENSZNN model (11)
based on the norm adaptive factor G(·) gradually approached
the theoretical solution of the problem, the trajectory shape
of the simulation result is exhibited in Fig. 4 (a) and (d).
Among them, when solving example 1 (V-A), the AENSZNN
model (11) globally converges from the initial state to the
theoretical solution. What needs to be explained here is
that the t(s) in all figures represents the length of time in
seconds. From the Fig. 4 (b), it shows that the order of the
residual ||Eδ(t)||2 (11) generated by the AENSZNN model
is 10−6, while other models converge to 10−4. Therefore,
compared with the OZNN model (7), NCZNN model (27),
and PTCZNN model (28), the AENSZNN model (11)
proposed in dealing with the TVLEI problem (1) achieves
higher computational accuracy. It is worth mentioning that
because theAENSZNNmodel (11) integrates the norm-based
adaption factor G(·), the expected experimental results can
be obtained without repeated adjustment of the convergence
coefficient.

C. NOISES CONDITION
Fig. 2 (a) and (b) illustrate the simulation results of the OZNN
model (7), NCZNN model (27), and PTCZNN model (28)
used to solve the TVLEI problem (1) in the case of the
constant noises. In order to study and verify the global
convergence and robustness of the AENSZNN model (11)
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FIGURE 5. The comparative experimental results of the Pseudo-inverse method, OZNN model (7), and the proposed AENSZNN
model (11) to solve the dynamic 2-D positioning problem. Among them, (a)–(c) Display the actual trajectory of the pseudo-inverse
method, OZNN model (7), and AENSZNN model (11) and the resulting estimation trace fitting diagrams one by one.

TABLE 4. AOA algorithm arithmetic form meaning.

in the case of constant noises, set the constant noises to
8(t) = 8 = [2]3, and proceed with corresponding numerical
simulation experiments are carried out. Specifically, the
residual error ||Eδ(t)||2 of the AENSZNNmodel (11) proposed
in this paper converges to 10−3 within 2s in the disturbance
environment of constant noises. By comparison, the residual
errors of the OZNN model (7), NCZNN model (27), and
PTCZNN model (28) are still at the value of 1 with the
parameter γ = 5.

For the sake of the robustness of theAENSZNNmodel (11)
can be further studied under the disturbance of linear
time-varying noises 8(t) = 8̄t = [(2/5) × t]3 and bounded
random noises 8(t) ∈ [0.5, 2]3. As can be seen from
Fig. 2 (c)–(f) that the residual error ||Eδ(t)||2 of the AENSZNN
model (11) converges to of order 10−1 and of order 10−2

under the disturbance of linear noises and bounded random
noises. In other words, even if the AENSZNN model (11)
is interfered with by linear time-varying noises and bounded
random noises, it still maintains high accuracy. At the
same time, it can be seen that the residual error ||Eδ(t)||2
obtained from the OZNNmodel (7), NCZNNmodel (27), and
PTCZNN model (28) are relatively large. Therefore, when
solving Example 1 (V-A) by the AENSZNN model (11) that
uses norm-based adaption coefficient to regulate the conver-
gence coefficient, the AENSZNN model (11) still maintains
strong robustness despite constant noises disturbance.

D. AOA ALGORITHM
The angle of arrival (AOA) [37] dynamic positioning
algorithm is a positioning scheme that relies on the angle of
arrival between the measurement target and the sensor node.
Specifically, the intersection of two rays passing through the
target with the sensor node as the starting point is the site of
the target. Moreover, Table 4 shows the arithmetic notations
of the following problem descriptions.

FIGURE 6. Outline map based on AOA dynamic positioning programme.

The AOA dynamic positioning algorithm is a positioning
scheme that relies on the angle of arrival between the mea-
surement target and the sensor node. Specifically, as shown
in the schematic diagram of Fig. 6, the intersection of the
two rays e1(x1, y1) and e2(x2, y2) passing through the target
with the sensor node as the starting point is the position
q(x, y) where the dynamic target is located. In addition, for the
convenience of notation and description, the Table 4 shows
the arithmetic symbols described in the following problem.

For the convenience of research, the incident angle can be
expressed as

tan(αi(t)) =
y(t)− yi
x(t)− xi

.

By further derivating, the following equation can be obtained
y1 − x1(t)tanα1
y2 − x2(t)tanα2

...

yn − xn(t)tanαn

 =

−tanα1 1
−tanα2 1
...

−tanαn 1


[
x(t)
y(t)

]
. (29)

For further discussion, the equation (29) is expressed in the
following form:

Q(t)Ee(t) = Ea(t), (30)

where the Q(t) ∈ Rn×2, Ee(t) = [x(t), y(t)]T and Ea(t) ∈ Rn.
Moreover, to more intuitively observe the superiority of

the proposed AENSZNN model (11) compared to different
models, the visual simulation results of the AENSZNN
model (11) and the OZNN model (7) while calculating the
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FIGURE 7. (a) and (b) Manifest the 2-D position errors compounded by
the OZNN model (7), and proposed AENSZNN model (11) severally.

FIGURE 8. Comparison between OZNN model (7) and AENSZNN
model (11) in the application of 2-D dynamic positioning estimation.
(a) Tracking residual error ||Eδ(t)||2 of AENSZNN model (11), (b) Tracking
residual error ||Eδ(t)||2 of OZNN model (7).

FIGURE 9. Verification results of the AENSZNN model (11) in the
application of dynamic mobile target localization estimation. (a) The
actual trajectory and estimated trajectory fitting result of the mobile
positioning target synthesized by the AENSZNN model (11), (b) The 2-D
positioning error generated by the AENSZNN model (11).

pseudoinverse ofW (t) are shown in Fig. 8. It can be obviously
seen that compared with the OZNN model (7), the proposed
AENSZNN model (11) achieves better robust performance
and obtains higher solution accuracy. Furthermore, in order
to more intuitively observe the superiority of the proposed
AENSZNN model (11) relative to different models, the
AENSZNN model (11) is compared with the classic OZNN
model (7) and the pseudo-inverse iterative solution method
for solving the time-varying problems while calculating the
pseudoinverse of W (t). Fig. 5 (a)–(c) respectively show
the actual trajectory and estimation trace fitting diagrams
and steady-state residual error ||Eδ(t)||2 convergent curves
obtained by using the pseudo-inverse method, the OZNN
model (7), and the AENSZNN model (11) proposed in
this article as several solutions for solving two-dimensional
dynamic positioning problem. It can be obviously seen that
compared with the OZNN model (7) and the pseudo-inverse
solution method, the proposed AENSZNN model (11)

achieves a better robust performance and obtains a higher
solution accuracy in Fig. 8. Carefully observe the comparison
result image, it is obvious that when the constant noises
ϑ(t) is set as 5, the estimation trajectory obtained by the
pseudo-inverse method deviates from the actual trajectory to
a large extent; the forecast result of the OZNN model (7)
deviates from the actual trajectory to a small extent. However,
the AENSZNN model (11) can still obtain almost the same
estimation trajectory results as the actual trajectory even
under the interference of noises, and steady-state residual
error ||Eδ(t)||2 can converge faster.

VI. CONCLUSION AND FUTURE WORK
In this paper, we propose an adaptive enhanced and
noise-suppressing zeroing neural network termed the AEN-
SZNN model for solving the TVLEI problem (1) in the field
of practical engineering. Furthermore, to study and confirm
the reliability of applying the adaption scale factor to the
ZNN model for the first time, the residual error ||Eδ(t)||2 of
exponential adaption scale factor (9) and power adaption
scale factor (10) is shown in Fig. 3 (a) and (b). Specifically,
the AENSZNN model adopts exponential adaption scale
factor (9) and power adaption scale factor (10) accurately
converge to 10−6, within 5 seconds. As a follow-up to
this article, we will further optimize the adaptive scale
factor to improve the convergence and robustness of the
AENSZNN model. Besides, we will explore and give rein
to the superiority of the AENSZNN model in response to
TVLEI problem encountered in other practical application
scenarios.
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