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ABSTRACT Heart disease is the leading cause of death worldwide. A Machine Learning (ML) system
can detect heart disease in the early stages to mitigate mortality rates based on clinical data. However, the
class imbalance and high dimensionality issues have been a persistent challenge in ML, preventing accurate
predictive data analysis in many real-world applications, including heart disease detection. In this regard, this
work proposes a new method to address these issues and improve the predict the presence of heart disease
and patients’ survival, including supervised infinite feature selection (Inf-FSs) to find the most significant
features and ImprovedWeighted Random Forest (IWRF) to predict heart disease, and Bayesian optimization
to tune the new hyperparameters for IWRF. Two public datasets, including Statlog and heart disease clinical
records, were used to develop and validate the proposed model. The proposed model is compared with other
hybrid models to show its superiority using performance metrics like accuracy and f-measure to evaluate the
models’ performance. The results have shown that the proposed Inf-FSs-IWRF achieved better results than
other models in attaining higher accuracy and F-measure on both datasets. Additionally, a comparative study
has been performed to compare with previous studies, where the proposed model outperformed the others
by an accuracy improvement of 2.4% and 4.6% on both datasets, respectively.

INDEX TERMS CVD detection, heart disease classification, feature selection, random forest, imbalance,
Bayesian optimization.

I. INTRODUCTION
Cardiovascular disease (CVD), often known as heart disease,
is the leading cause of mortality worldwide. According to
recent research conducted by theWorld Heart Federation, one
in every three deaths is caused by cardiovascular disease [1].
By 2030, the World Health Organization (WHO) estimates
that over 23.6 million people will die from CVD, primarily
heart failure and strokes [2]. Preventing CVD at an early
stage is the only approach to halt this kind of mortality
and reduce the overall death count. It is relatively difficult
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to diagnose CVD due to many contributing variables such
as high cholesterol, high blood pressure, smoking, diabetes,
overweight and obesity, and many other factors. Researchers
have been testing various strategies to detect CVD. However,
disease prediction at an early stage is difficult due to multiple
constraints, including but not limited to method complexity,
feature selection, and execution time [3]. As a result, devel-
oping effective detection and prediction methods may save
countless lives.

Clinical decision-making based on hybrid machine learn-
ing (ML) models is used in the medical field to achieve
good results. However, the clinical datasets have some chal-
lenges, mainly due to the high dimensionality and the class
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imbalance. As a result, applying ML without addressing
these issues affects the approaches’ accuracy [4]. Therefore,
various ML-based predicting methods for CVD detection
and survival have been proposed in the literature. Earlier
studies used different ML algorithms to detect CVD, focus-
ing on feature selection (FS). Including rough sets (RS) to
select the most significant features and feed them to the
chaos firefly algorithm [5] and backpropagation neural net-
work (BPNN) [6] to predict heart disease (HD). In addition,
Amin et al. and Chicco detect CVD by employing vote with
Naive Bayes (NB) and logistic regression (LR) on selected
features to predict HD presence and patients’ survival [7],
[8]. The authors in [9] conducted a comparative analysis
study. The authors employed different classifiers on various
datasets. They concluded that the conditional inference tree
forest (cforest) surpassed the other classifiers.

Haq et al. conducted a comparative analysis on a hybrid
model constructed using various feature selection strategies
and machine learning models. Their research established that
reducing features affected the models’ performance. Accord-
ing to the study, a combination of Relief-LR delivers max-
imum accuracy [10]. Gupta et al. created a framework for
machine intelligence that includes factor analysis of mixed
data (FAMD) and random forest (RF). The FAMD was used
to identify significant characteristics, and the RF was used to
predict CVD [11]. Khan and Algarni [12] developed an Inter-
net of Medical Things (IoMT) to predict HD. The developed
model used Modified Slap Swarm Optimization (MSSO) to
optimize the adaptive neuro-fuzzy inference system (ANFIS)
parameters.

Also, Ali et al. proposed two stacked SVMs predicting
CVD presence. The first SVM removed the non-significant
attributes, while the second SVM was utilized to indicate
CVD presence and absence of the model tuned using a
hybrid grid search algorithm [13]. Tama et al. [14] devel-
oped a two-tier ensemble model to detect CVD. The model
stacked architecture is intended to combine the CVD fore-
cast of the selected ensemble learners XGBoost, RF, and
gradient boosting machine (GBM). In addition, the authors
employed particle swarm optimization to choose the most
significant features. The authors in [15], [16] developed an
IoT framework to evaluate the CVD status. The developed
model employed a modified deep convolution neural net-
work (MDCNN) to predict the patient’s status based on data
received from the sensor. However, since the clinical datasets
are imbalanced, the above studies have some limitations in
detecting CVD through the mentioned methods.

Some studies have developed reliable CVD detection and
patient survival models to address this issue. For example,
Ishaq et al. applied the syntheticminority over-sampling tech-
nique (SMOTE) to balance data distribution and extremely
randomized trees (ET) on selected attributes using random
forest importance ranking to predict the patients’ survival
[17]. In addition, Fitriyani et al. developed a hybrid method
to detect HD consisting of density-based spatial clustering
applications with noise (DBSCAN) to detect and remove

outliers instances applied to the features selected from infor-
mation gain. Then, hybrid SMOTE-ENN was employed to
balance the dataset and extreme gradient boosting (XGBoost)
for CVD detection [18]. Recently, Waqar et al. proposed
SMOTE-based deep learning to predict heart disease. The
authors applied SMOTE technique to balance the dataset
without the need for feature selection [19]. However, the bal-
ancing method SMOTE has limitations, including blindness
of neighbour selection, instance overlapping, small disjuncts,
and noise interference [20]–[22]. The related work is sum-
marized in Table 1 regarding the method utilized, feature
selection, data balancing, validation method and the datasets
used.

Based on prior research, there is still a lack of a model
to address the imbalance issue on an algorithm level instead
of a data level to improve the accuracy of CVD detection
and survival. Therefore, we proposed an Improved Weighted
Random Forest (IWRF) to address the imbalanced dataset
classification based on cost-sensitive learning to cope with
those limitations. Moreover, we integrate the proposed IWRF
with supervised infinite feature selection (Inf-FSs) for feature
ranking and selection and Bayesian Optimization (BO) to
optimize the IWRF weighting coefficient. Prior studies have
reported that the model prediction performance significantly
improved by integrating Inf-FS [23]–[25] and optimizing the
ML model using BO [26], [27]. However, to the best of our
knowledge, no studies integrated Inf-FSs and BO with IWRF
to predict the presence and survival of CVD.

Therefore, we propose an effective method to predict CVD
and patients’ survival: Inf-FSs to rank the features by impor-
tance and select the best features, IWRF to predict CVD,
and BO to find the best weighting coefficient. Two public
datasets were chosen to develop the model and test the model,
the Statlog dataset [28] to detect the absence and presence
of CVD and the heart failure clinical record dataset [29] to
predict the patients’ survival. So, we set out to develop ML
algorithms to diagnose CVD and patient survival to assist
healthcare professionals. As a result, early treatment might be
implemented to avoid the deaths caused by late CVD detec-
tion. The main contributions of this study can be summarized
as follows:
• An ImprovedWeighted RandomForest (IWRF) is devel-
oped to deal with class imbalance.

• Decision support (Inf-FSs-BO-IWRF) is proposed to
predict the presence of CVD and patients’ survival.

• The evaluation of the proposed IWRF model in compar-
ison to other ML models such as SVM, kNN, XGBoost,
and SMOTE-RF highlights the superiority of the pro-
posed model

• Identify the most important attributes in the dataset that
impact the machine learning system performance.

• The effectiveness of the proposed Inf-FSs-BO-IWRF is
evaluated on two binary public datasets.

The rest of the paper is structured as follows: Section 2
presents the related studies. Section 3 is the proposed
methodology. Section 4 describes the performance evaluation
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metrics, results and discussion for the conducted experiments,
and the state-of-art comparison. Finally, the conclusion and
future work are presented in section 5.

II. RELATED STUDIES
Weighted ensembles have been the subject of a wide range
of research investigations. Pham et al. developed a weighted
approach for generalizing bootstrap-aggregated ensemble
learning to a weighted vote by evaluating various averag-
ing methods [30]. Later, Pham et al. proposed a Cesaro
average-based to enhance the RF for the binary classifica-
tion issue. This strategy is driven by the inherent instability
of tree-based prediction averaging [31]. Next, Chen et al.
introduced the weighted random forest (WRF), incorporat-
ing cost-sensitive learning. It weights both the majority and
minority instances in a training set, with a higher weight
for minority instances. Also, Chen pioneered the balanced
random forest (BRF) approach, which involves sampling.
BRF was developed to account for the likelihood that some
bootstrap samples generatedwill include fewer or nominority
cases. The core concept of BRF is to generate bootstrap
samples through systematic under-sampling of the majority
class [32].

To detect credit card fraud, Xuan et al. developed Refined
Weighted RF (RWRF). The enhancement is in two areas.
They utilized all training data (both Out-of-Bag (OOB) and
In-Bag (INB) data) because they believed that evaluating the
performance of various base classifiers should be done using
the same dataset. Additionally, they utilized the gap between
the chance of correctly predicting true and false class labels to
determine how the predicted number of votes for the correct
label surpasses the anticipated number of votes for the incor-
rect label [33]. Kulkarni et al. discussed efforts to increase
the accuracy and time required for training the RF classifier.
They are based on disjoint partitioning of training datasets,
the usage of split measures or multiple feature evaluation to
generate RF base decision trees, the use of weighted voting
rather than majority voting, the usage of diversity in bootstrap
datasets to create the most diverse classifiers, and the usage
of dynamic programming method to discover the best subset
of RF [34].

A probabilistic approach for combining classifiers was pre-
sented by Kuncheva et al. The four combination approaches,
including recall combiner, majority vote, I Bayes combiner,
and weighted majority vote. It provides strict optimality
requirements (lowest classification error) for each. Both the
class-conditional independence of classifier outcomes and
the presumption of certain accuracy form the basis of the
framework [35]. Gajowniczek et al. proposed a new weight-
ing approach with tunable parameters that apply to each RF
tree [36]. The classification strategy of hybrid NB and sample
weighted RF (SWRF) used by Babu et al. for sub-acute
ischemic stroke lesion segmentation was a successful meta-
heuristic feature selection method. NB is taught and used to
estimate training sample weights in this example. To train

TABLE 1. A chronological overview of existing systems for heart disease
diagnosis and patient survival.

SWRF, a set of training samples with predicted weights is
used [37].

Recently, Utkin et al. presented a weighted Random
Survival Forest (RSF) as a way to improve the performance
of the RF. The suggested model’s core idea is to replace
the traditional averaging approach used to estimate the RSF
hazard function with weighted averaging. Each tree is given
a set of weights, which can be considered training parame-
ters. They are calculated by solving a conventional quadratic
optimization problem to maximize Harrell’s C-index [38].
Bader-El-Den et al. introducedBiased RandomForest (BRF).
Rather than boosting minority occurrences in data sets, BRF
tries to oversample the classification ensemble by expanding
the number of classifiers that represent the minority class in
the ensemble. The BRF technique uses the kNN algorithm to
determine the crucial regions within a data set. The conven-
tional RF is supplemented with additional random trees based
on the key locations [21].

III. PROPOSED METHODOLOGY
The proposed method is developed to obtain a high-
performance heart disease prediction of the presence and
patients’ survival of CVD. Figure 1 presents the flowcharts
of the proposed method.
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FIGURE 1. The proposed flowchart for heart disease detection and
patients’ survival.

A. FEATURE SELECTION USING INFINITE
FEATURE SELECTION
Feature selection is critical in ML since the performance of
ML techniques is strongly reliant on the features selected.
Various features can obscure and entangle the data’s different
explanatory components [40]. There are multiple approaches
for choosing the best attributes in the literature. We have
selected a recently developed FS approach called infinite
feature selection supervised (Inf-FSs) [41] for this study.
This approach is graph-based feature filtering that makes the
ranking by considering all the potential subsets of features
work in a supervised and unsupervised form. It is constructed
upon a fully connected weighted undirected graphG= (V, E).
The nodes V denote all features, and the edges E reflect
the pairwise relationships between them. Consider G as an
adjacency matrix A, where each of its components aij (1 ≤
I , j ≤ n) represents the degree of confidence that the nodes
Evi and Evj are both potential candidates for selection done with
the following weight function:

A (I ,j) = ϕ
(
Evi, Evj

)
(1)

where weight function ϕ is real-valued, that specifies the
value of each edge. In Inf-FSs, the weight function integrates
class labels utilizing Fisher criteria and mutual information.
Therefore, the weight function ϕ(Evi, Evj) is produced by three

factors, Fisher criteria (hi), normalized mutual information
(mi), and normalized standard deviation (σi). The following
equations calculate the factors:

hi =
|µi,1−µi,2|

2

σ 2
i,1+σ

2
i,2

(2)

mi =
∑
y∈Y

∑
z∈fi

p (z, y) log
(

p(z, y)
p (z) p(y)

)
(3)

where σi,g, and µi,g represent the standard deviation and
mean for ith attributes considering the instances of gth class.
The ith feature is less redundant the closer hi is to 1 since it
doesn’t overlapwith the other domain.While Y and p(z, y) are
the class labels and joint probability distribution, respectively.
In practice, mi is a measure of how much a feature vector’s
knowledge reduces the level of uncertainty about each class.
Also, the normalized standard deviation (σi) is normalized to
a range of [0, 1] by the maximum std over the set features (F).
Finally, the three-element are weighted linearly.

si = hiα1 + miα2 + σiα3 (4)

The parameters αk is the mixing coefficients where αk
belongs to a range of [0,1],

∑
k αk = 1. Their values are set

during experiments. The score si shows how much a feature
is not redundant and relevant to other classes. Finally, the
adjacency matrix A’s weights are constructed by coupling the
correspondent s in the following manner:

A(i, j) = ϕ(Evi, Evj) = sisj (5)

After the adjacency matrix is constructed, ranking is per-
formed while evaluating the redundancy of the features,
taking into account all possible pathways among the nodes.
The Inf-FSs algorithm is described in detail [41]. Finally,
cross-validation (cv) is used to determine the mixing coef-
ficient αk for each training split of both datasets.

B. IMPROVED WEIGHTED RANDOM FOREST
Bagged (bootstrap-aggregated) DTs can reduce overfitting
effects and improve generalization by merging the outcomes
of several DTs. In the bootstrap aggregating learning concept,
T base models (decision trees) are trained over subgroups
taken with replacement from the dataset. Their results are
voted to create a prediction estimate of the model. Voting
and bagging are implemented to reduce the model’s vari-
ance without raising its bias since base models are provided
with multiple training sets, creating a varied ensemble [25].
A bootstrap ofM ′ samples is picked randomly from the initial
M training samples and replaced for every tree t , where t
belongs [1, T]. During the training process, F ′ < F attributes
are randomly chosen from F available features at each tree
node, and the optimal split is determined by applying those
F ′ attributes. In the testing process, the unseen instance is run
through all the T trees in the forest, resulting in T predictions
for the test instance. Finally, these forecasts are pooled via
voting to provide the final prediction.
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In imbalanced data classification, RF classifiers tend to
be biased in the direction of the major class since stan-
dard RF treats both classes equally. However, several studies
have shown that a weighted RF can deliver better prediction
results. For this reason, this study presents an Improved
Weighted Random Forest (IWRF), which assigns a weight
for each class, a higher weight for the minor class. The
class weight in the random forest can be computed using
the inversely proportional class frequencies in the training
dataset. The class weights are presented as the following:

CW 1 =
M
2M1

& CW 2=
M
2M2

(6)

whereM presents the total number of samples in the dataset,
M1 and M2 show the number in major and minor classes.
We assign a new coefficient, the weighting factor (α), to com-
pute class weights. Thus, the class weights will be calculated
as follows:

CW 1 = α1
M
2M1

& CW 2 = α2
M
2M2

(7)

where α1 and α2 are the weighting factor for major and minor
classes, respectively, α1 and α2 vary in a range from [0, 1]
with default valuesM1/M2 and one for α1 and α2. To ensure
thatCW2 is always greater thanCW1 to have a heavier penalty
on misclassifying the minor class, the weighting factor is
subjected to the constrain as follows:

α1

M1
<
α2

M2
(8)

The RF algorithm incorporates class weights in two places.
Class weights are used in the tree induction technique to
weight the Gini criteria for detecting splits. Class weights are
again considered at each tree’s terminal nodes. Each terminal
node’s class prediction is established by a weighted majority
vote. Moreover, in imbalance classification, there is a sub-
stantial chance that a bootstrap sample has few or no instances
of the minority class, leading to a tree with low performance
in predicting the minority class. A new coefficient (p) is
added to control the number of minor class samples in each
bootstrap to overcome this problem. It randomly draws a
bootstrap from both classes, containing at least one-third of
the minority class out of the total samples in the bootstrap.
The value of p can range between (1/3 ≤ p < 1/2) depend-
ing on the imbalance ratio between the majority and minority
classes.

C. BAYESIAN OPTIMIZATION
BO [42] is a reiterative algorithm widely used for HPO
problems. BO applies two key components to define hyper-
parameter configuration: an acquisition function and a
surrogate model [30]. The surrogate model seeks to fit all
the examined observations into the objective function. After
finding the probabilistic surrogate model’s predictive distri-
bution, the acquisition function determines various points by
balancing exploitation and exploration. Exploration tests the
samples in the areas that have not been tested. In contrast,

TABLE 2. Feature ranking and weight importance of a particular fold
determined by Inf-FSs.

TABLE 3. Selected features of both datasets.

exploitation tests in the currently promising regions where
the global optimum is most expected to occur, depending on
the posterior distribution. Bayesian tuning models balance
exploitation and exploration processes to determine the cur-
rent most expected optimal regions and avoid losing better
configurations in the unexplored regions [43]. After each
evaluation of the objective function, the surrogate model is
updated. BO models are sequential processes that are diffi-
cult to parallelize since they are built on previously tested
variables. Still, within a few iterations, BO can find nearby
optimal hyperparameter coefficients [44].

BO’s common surrogate model is the tree-structured
Parzen Estimator (TPE) [45]. BO-TPE creates two gener-
ative models for all domain variables, g(x) and l(x). [46].
The observations are divided into poor and good results by
a specified percentile y∗; both sets are modeled by simple
Parzen windows [45]:

p(x|y,D) =

{
l(x) y < y∗

g(x), y > y∗
(9)

D is the search space of the hyperparameter. After that, the
acquisition function’s expected improvement is reflected by
the ratio between g(x) and l(x), which is applied to establish
the latest configurations for evaluation. The PE is created
in a tree structure to ensure that the necessary conditional
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TABLE 4. Performance evaluation of Statlog dataset.

TABLE 5. Performance evaluation of HD clinical records dataset.

TABLE 6. Comparison results between IWRF and SMOTE-RF on Statlog dataset.

TABLE 7. Comparison results between IWRF and SMOTE-RF on HD clinical record dataset.

dependencies are maintained. Thus, TPE adopts specific con-
ditional hyper-parameters naturally [44].

IV. EXPERIMENTAL RESULTS
This section presents the feature selection results first,
followed by HD presence and survival classification per-
formed for both datasets. The developed model was built and
tested for HD on Statlog and heart failure clinical record
datasets. The Statlog dataset consists of 14 attributes with
the status label, 270 cases, 150 for HD absence and 120 for
HD presence. The heart failure clinical record dataset consists

of 13 attributes with the survival label, 299 total cases,
202 patients survive, and 97 patients deceased. We used a
10-fold cv procedure in our experiment to avoid overfitting
[47].We evaluated the proposedmodel using six performance
metrics. The confusion matrix is applied to measure the
model’s output, including True Negative (TN), True Positive
(TP), False Negative (FN), and False Positive (FP). The six-
performance metrics are calculated as follows:

Accuracy =
TP+ TN

TP+ FN + FP+ TN
(10)
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TABLE 8. Performance evaluation of proposed method compared with previous studies for HD detection using Statlog dataset.

TABLE 9. Performance evaluation of proposed method compared with previous studies for patient survival using HD clinical record dataset.

FIGURE 2. The comparison between the proposed IWRF and SMOTE-RF.

Precision =
TP

TP+ FP
(11)

Recall =
TP

TP+ FN
(12)

Specificity =
TN

TN + FP
(13)

f =
2 ∗ percision ∗ recall
percision+ recall

(14)

MCC =
(TP ∗ TN )−(FP ∗ FN )

√
(TP+FP)(TP+ FN )(TN+FP)(TN + FN )

(15)

A. FEATURE SELECTION RESULTS
Inf-FSs-based feature selection is conducted at each stage of
the 10-fold cv utilizing the training data. The Inf-FSs method
ranks and weights each feature in the 13 and 12 features
pool for both datasets. Table 2 summarizes the features and
associated Inf-FSs weights for a given fold. The top ten
attributes for each validation fold are chosen from these
ranking features automatically. Nine characteristics appear in
both datasets’ top ten features for each of the 10-folds of the

training data evaluated. As a result, the presence and survival
classifications use these nine features. The selected features
for both datasets are listed in Table 3.

B. CLASSIFICATION RESULTS
The developed IWRF model was used for both datasets
and showed significant improvement in prediction accuracy
compared to existing models. For comparison, we chose six
distinct machine learning models (G-NB, LR, SVM, kNN,
XGBoost, and RF) frequently utilized in the research field
and have a proven record of accuracy and efficiency. The
results of different ML models are presented in Table 4 and
Table 5 for Statlog and HD clinical records, respectively,
including the effects of both with and without FS. IWRF
performed better across both datasets than other ML models
achieving accuracy, F-measure, and MCC up to 95.5%, 94%,
and 0.9 for Statlog, 93.3%, 86%, and 0.81, for the HD clinical
dataset, respectively. Also, it is noted that all models have
been improved when using FS on both datasets, especially
for IWRF, by reaching accuracy, F-measure, and MCC up to
97.7%, 97%, and 0.95 for Statlog, and 95.9%, 91.3%, and
0.88, for HD clinical dataset, respectively.

Furthermore, it can be shown from the results that IWRF
achieved better results than the standard RF model in
handling the imbalanced data, where IWRF improved the
performance for detecting CVD and patients’ survival by
3.7% and 5%, respectively, after FS. Recognizing the minor-
ity class sufficiently during classification is difficult because
the standard RF and the other models used to learn from
data input are biased towards the majority class. With the
benefit of feature selection, doctors can forecast the survival
of patients and the presence of HD by assessing the essential
attributes.

To get another point, the IWRF was compared with
SMOTE as it is commonly used in handling unbalanced
datasets. As with any sampling technique, SMOTE is not
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a stand-alone classifier but can be integrated with any
classifier. For a fair comparison, SMOTE was combined
with RF and then compared with IWRF. Table 6 and
Table 7 present the results of IWRF against base RF with
SMOTE for both datasets. Moreover, we employed BO
for tuning SMOTE hyperparameters (sampling ratio and
k-neighbors) and (α, p) for IWRF, while the other hyperpa-
rameters such n_estimators, max_depth, max_features, and
min_samples_split, are set for the default values as in Sklearn
library. The findings showed that IWRF achieved higher
results than base RF with SMOTE since SMOTE has sev-
eral drawbacks related to overlap and noisy information.
It regularly assigns a global k-neighbor but ignores the local
distribution features [48], [49]. The hyperparameter tuning
improved model prediction accuracy, but it showed more
impact on SMOTE. Increasing the k-neighbor value to com-
pensate for the imbalance ratio may be effective in SMOTE.
The results illustrated in Figure 2 show that the improvement
achieved by the proposed IWRF is higher than SMOTE-RF
compared to the base RF classifier.

The proposed model improved the performance of CVD
detection by 3.62%, 4.82%, for the Statlog dataset, and 6.3%,
11.98% for HD clinical records in terms of accuracy and
f-measure, respectively.

In the end, we compared our findings to those of pre-
vious studies. Because we utilized the same datasets as
previous research, we could take the results from prior
works without employing their methods. The comparison
between the proposed model with the earlier studies is
presented in Table 8 and Table 9 for Statlog and HD
clinical records datasets. According to this assessment and
evaluation, the current research on the CVD detection and
survival prediction model outperforms past work, showing
an accuracy improvement of 2.4% and 4.6% on Statlog and
HD clinical records datasets, respectively. Therefore, the pro-
posed Inf-FSs-BO-IWRF model may be recommended for
CVD detection and patients’ survival based on the overall
findings.

V. CONCLUSION
This article aims to present an accurate and efficient machine
learning ensemble model for predicting the presence of CVD
and cardiac patient survival. The proposed model integrates
Inf-FSs, IWRF, and BO. Those three methods are utilized
to select the most significant features, handle the imbal-
anced data classification issue found in medical datasets, and
tune the weighting factor. The developed model is evaluated
using two public datasets and benchmarked against previous
studies.

The experimental results show that the proposed model
was more effective in achieving higher results without chang-
ing the data distribution. Also, the proposed IWRF improves
the performance of detecting CVD by 3.62% and 6.3%
compared to the standard RF.

This research can significantly enhance the healthcare sys-
tem and serve as a valuable tool for healthcare professionals

in diagnosing and forecasting heart failure survival. For our
future work, we aim to develop a general framework based on
ML ensembles, including outlier detection and removal, and
optimize critical hyperparameters of ML ensemble models
to improve the detection and severity level classification of
various diseases using clinical data.
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