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ABSTRACT A Wireless Body Area Network (WBAN) is a network that expands over the human body,
consisting of multiple nodes that are connected through wireless channels. It offers many applications in
the area of remote health care. Maintaining the security of health information in WBAN is an essential
requirement. One aspect of ensuring WBAN security is the generation of random binary sequences (RBSs),
e.g., encryption keys generation. Due to the very limited resources of WBAN sensors, traditional pseudoran-
dom number generators cannot be used. To reduce resource consumption, some researchers suggested using
biometrics in generating RBSs, specifically the electrocardiogram (ECG) signal. However, their methods
suffer from low throughput, so they are not suitable for real-time healthcare applications. In this paper,
we present a new random sequence generator based on the ECG signal. Our contribution is to build a
random sequence generator that generates different length RBSs and has throughput tens or hundreds of
times higher than previous methods. Our generator reduces resource consumption due to its very simple
processing operations. To evaluate the proposed generator, RBSs of different lengths (128, 256, 512, 1024,
2048 bits) were generated from two ECG datasets, the first is for healthy people, and the second is for people
who suffer from arrhythmia. The randomness and distinctiveness of the generated RBSs are evaluated using
the National Institute of Standards and Technology (NIST) statistical tests and the Hamming distance. Thus,
we have proved that the resulting RBSs are appropriate for information security applications.

INDEX TERMS Electrocardiogram, pseudorandom number generator, random bit sequence, random
number generator, wireless body area network.

I. INTRODUCTION
Wireless Body Area Network (WBAN) is a network that
provides a mechanism for collecting patient health data using
sensors [1]–[3]. It consists of various sensors that can be
placed on, around, or in the human body to monitor various
biometrics such as body temperature, blood pressure, pulse
oximetry, electrocardiogram (ECG), etc. [3]–[5]. WBANs
can be applied in multiple medical applications. For example,
in healthcare systems, the data collected by WBAN’s sensors
are used to alert medical personnel when a life-threatening
event occurs [4], [6]. Securing the communication between
WBAN sensors is essential for preserving the privacy of
health data and for ensuring the safety of healthcare deliv-
ery [1]–[8]. The tampered biometric data could cause serious
medical accidents and even threaten the patient’s life [8].

In cryptographic applications, the need for random num-
bers arises, e.g., common cryptosystems employ keys that
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must be randomly generated. Many cryptographic protocols
require random input at various points [9], e.g., in [10]
we developed a secret key exchange scheme for WBAN
that uses random numbers to hide secret exchanged values.
Two basic types of generators are used to generate random
sequences: random number generators (RNG) and pseudo-
random number generators (PRNG). RNG uses an entropy
source, along with processing functions, to produce random-
ness. Those functions are needed to overcome any weakness
in the entropy source. The entropy source typically consists
of some physical quantity. Using RNGs, the production of
high-quality random numbers may be too time-consuming.
To produce a large number of random numbers, PRNG may
be preferable [9]. PRNG uses one or more inputs, called
seeds. These seeds themselves must be random and unpre-
dictable. Hence, they should be obtained from the output of
an RNG [9]. In general, wireless sensor networks (WSNs)
use PRNGs for generating random binary sequences (RBSs)
[11], [12]. However, PRNGs require heavy computations to
obtain randomness, and their seeds must be carefully chosen
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and protected, which in turn leads to the consumption of
resources [11].

In this context, one can take advantage of the fact that
WBAN sensors record biometric signals, thus random-
ness can be extracted from them. Some biometric-based
RNGs have been developed to avoid the use of PRNGs
in WBAN’s sensors to save energy and processing capac-
ity [11], [13]–[16]. Some researchers have studied this topic
in the context of neuronal signals [17], [18]. The main limita-
tion of these studies is the length of the recordings used and
the fact that EEG sensors have limited portability capabilities
[13]. Some other researchers have focused on cardiac signals,
specifically the ECG signal. There are several characteristic
points in the ECG signal that can be used to generate random
values [16], [19].

In this paper, we review the most important previous
work on ECG-based RNG in the second section. In the
third section, we provide a detailed explanation of the pro-
posed scheme. The fourth section presents the implementa-
tion results of the proposed generator. Finally, we conclude
our work in the fifth section.

II. RELATED WORKS
For securing WBAN, the time interval between two consecu-
tive heartbeats, commonly referred to as the Inter-Pulse Inter-
val (IPI), has gained the attention of many researchers [11],
[13], [14], [20]. Each IPI value differs from the others
with little deviation. Therefore, some existing approaches
extract only the last four entropic bits from each IPI value
to produce 128-bit RBSs [14]. The main downside of these
approaches is that they are substantially time-consuming.
Medical sensors have to acquire an ECG signal for approxi-
mately 25-30 seconds to generate 128-bit RBSs. Each 128-bit
RBS is generated from 32 IPIs that are obtained from at least
33 successive heartbeats. For an adult, the normal heart rate
is 60-100 beats per minute (bpm) [11].

Zheng et al., [16] presented a method that can extract
16 random bits from each heartbeat; they used the periods
RR, RQ, RS, RP, and RT to generate RBS. The limitation of
their method is the long encoding time required to convert the
five different heartbeat intervals into RBSs.

To improve time efficiency, Pirbhulal et al., [11] concate-
nate only eight consecutive IPIs to produce 128-bit RBSs.
A cyclic block encoding technique is applied for decreas-
ing the measurement errors and generating random binary
sequences from heartbeats. This technique can be up to four
times faster than other IPI-based methods but still suffers
from poor time efficiency.

From the above, it can be seen that generating RBSs based
on IPI values provides very low performance. In addition to
the low performance, according to some recent studies, the
time interval between two heartbeats can be determined using
a camera and skin color analysis, making these methods less
secure [21]. Consequently, Camara et al., [13] did not use
IPI values in constructing their RNG, but they use the entire
ECG signal. First, the ECG record should be cleaned using

filters. Then it is divided into windows that contain an R-peak
(one heartbeat). Secondly, the approximation coefficients of
each ECG window are obtained by wavelet analysis. The
signal is then subsampled by 2, and the process is repeated
to increase the level of decomposition. This method is better
than its previous in terms of throughput (number of random
bits generated per second), but it needs to perform wavelet
analysis that may lead to consuming the sensor’s power.

To improve time efficiency and power consumption we
develop in [22] an ECG-based random binary sequence
generator that generates RBSs of 128 bits. In this paper,
we improve the proposed generator to generate RBSs of
128, 256, 512, 1024, and 2048 bits. We chose those lengths
because they are appropriate for encryption keys and other
random values used to secure communication between
WBAN sensors. The proposed generator uses the ECG sam-
ples’ values instead of the IPI values, to profit from the
rich entropy that they have. Our generator depends on very
simple operations which in turn reduce the energy consump-
tion. It has a very high throughput that outperforms previous
works.

III. PROPOSED SCHEME
In the proposed random binary sequence generator scheme,
we assume that any entity that is not in contact with the
patient’s body cannot measure its ECG signal. We rely on
the fact that the values of ECG samples when they are
selected nonconsecutively, they have better randomness than
consecutive ones. To generate random sequences, simple
arithmetic operations including addition, subtraction, multi-
plication, and modulus are applied to some nonconsecutively
chosen ECG samples. Those samples are chosen based on the
value of another selected sample.

To generate 32-bit random sequences (RS32), the ECG
signal is acquired and sampled for a specific duration with

TABLE 1. Notations and their descriptions.
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FIGURE 1. The proposed ECG-based random binary sequence generator scheme where ecgi is an ECG sample with the index i, len is the number of the
acquired ECG samples, X100, X10,and X1 are digits equal to the tenths, hundredths, and thousandths of ecgi respectively given that ecgi values range
from −1 to 1, a, b, c, d, e are five secret values used to calculate f1, f2, f3, f4, f5, RS32 is a 32-bit random sequence generated from the proposed
generator, RS32_SET is the set of the generated RS32i , n is the number of generated RS32, RSL is an L-bit random sequence formed by the concatenation
of l string RS32.

a minimum sampling frequency of 128 Hz, and a mini-
mum analog to digital convergence resolution of 11 bits.
For each RS32, one sample is chosen, and some calculations
are applied to it to generate five values. The resulting five
values are then used to calculate five samples’ indexes. Next,
the samples’ values with the calculated indexes are used to
generate RS32. Briefly, it can be said that in the proposed
generator, each RS32 is generated from the values of five
nonconsecutive ECG samples after some calculations. These
samples are selected based on the value of another selected
ECG sample. Then an RBS of the required length is created
by concatenating multiple RS32.

Fig. 1 shows the proposed ECG-based random binary
sequence generator scheme and Table 1 summarizes the nota-
tions used in this paper. To form n random sequences ofRS32,
which can be represented by the set RS32_SET={RS321,
RS322, . . . , RS32n}, the ECG signal is acquired and sampled
for a specific duration. Let the number of acquired ECG
samples be len, thus the set of samples should be {ecg1,
ecg2,. . . , ecglen}. Each RS32i is generated based on the values
of five samples of the samples set, where i (ranges from 1 to n)
represents the index of the generated RS32. The five samples
are selected based on: i, ecgi, len, and a set of predefined
secret values a, b, c, d, e.
To generate the set RS32_SET and then use its ele-

ments (RS32i) in the generation of different-lengths random
sequences, e.g., 128-bit RBS (RS128), the following steps can
be performed:

1) Select ecgi value from the samples set. Then extract
X1, X10, and X100, where X100, X10, and X1 are three
digits equal to the tenths, hundredths, and thousandths
of ecgi, respectively, given that ecgi value ranges from
-1 to 1. If ECG samples values have a different range,
they must be scaled to be within the range {-1,1}.

2) Calculate f1, f2, f3, f4, f5based on the values of X1, X10,
X100, i, len, and the secret values a, b, c, d, e as shown

in (1)-(5):

f1 = F1 (X1,X10,X100, a, i, len)

= (i× X100+ X10× a× i+ X1)mod(len-i)

(1)

f2 = F2 (X1,X10,X100, b, i, len)

= (i× X10+ X1× b× i+ X100)mod(len-i)

(2)

f3 = F3 (X1,X10,X100, c, i, len)

= (i× X10+ X100× c× i+ X1)mod(len-i)

(3)

f4 = F4 (X1,X10,X100, d, i, len)

= (i× X1× X100+ X10× d

×i+ X100)mod(len-i)

(4)

f5 = F5 (X1,X10,X100, e, i, len)

= (i× X1× X10+ X100

×e× i+ X100)mod(len-i) (5)

where a, b, c, d, and e are positive integers greater
than 0.

3) Calculate RS32i based on ECG samples set {ecg1,
ecg2, . . . , ecglen}, i, and f1, f2, f3, f4, f5as shown in (6):

RS32i = (uint32)
((
ecgi+f 1 × 109 + ecgi+f 2 × 108

+ ecgi+f 3 × 106 + ecgi+f 4 × 105

+ ecgi+f 5 × 103
)
× (i)+ i

)
(6)

4) Repeat the previous steps for i = 1 to i = n, thus
generating n RS32, that is, RS32_SET.

5) Generate RBSs of L-bit length (RSL), where L can have
one of the values 128, 256, 512, 1024, 2048, by con-
catenating l sequences from the resulting RS32_SET,
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where l = L/32, as shown in (7):

RSL j← RS32j×l+1||RS32j×l+2|| . . . .||RS32j×l+l (7)

where j ranges from 1 to n/l
For example, 128-bit random sequences (RS128) can
be generated by concatenating every four RS32i, where
L = 128 and l = L/32=4, as shown in (8):

RS128j ← RS32j×4+1||RS32j×4+2||

RS32j×4+3||RS32j×4+4 (8)

where j ranges from 1 to n/4.
Using the proposed scheme, random streams longer
than 128 bits can be generated by concatenating more
than four RS32. For example, to generate 256-bit ran-
dom sequences (RS256), every eight RS32 are concate-
nated as shown in (9):

RS256j ← RS32j×8+1||RS32j×8+2|| . . .

||RS32j×8+8 (9)

where j ranges from 1 to n/8.
Similarly, 512-bit, 1024-bit, and 2048-bit random
streams can be generated by concatenating the adequate
number of RS32.

Algorithm 1 The Proposed ECG Based Random Binary
Sequence Generator
Input: ECG={ecg1, ecg2, . . . , ecglen}, len, n, L
Output: RS32_SET={RS321, RS322, . . . , RS32n}, RSL
1: For i← 1 to n do
2: X100← first digit after point.
3: X10← second digit after point.
4: X1← third digit after point.
5: f1 ← (i×X100 + X10×a× i+ X1)mod(len–i)
6: f2 ← (i×X10 + X1×b× i+ X100)mod(len–i)
7: f3 ← (i×X10 + X100×c× i+ X1)mod(len–i)
8: f4 ← (i×X1×X100 + X10×d × i+ X100)mod(len–i)
9: f5 ← (i×X1×X10 + X100×e× i+ X100)mod(len–i)
10: RS32i ← (uint32)((ecgi+f 1×109+ ecgi+f 2×108+ ecgi+f 3×106+

ecgi+f 4×105+ ecgi+f 5×103)× i+ i;
11: add RS32i to RS32_SET
12: end for
13: select j, where j ranges from 1 to n/l and l = L/32

14: RSLj =RS32j×l+1|| RS32j×l+2|| . . . ||RS32j×l+l

The pseudocode for the proposed generator is shown in
Algorithm 1.

The value of n can be chosen depending on the number of
random strings to be generated and their length L. For exam-
ple, if only one 128-bit random sequence has to be generated,
then n can be set to 4. In general, the value of n is chosen to
be less than or equal to len/2 because f1, f2, f3, f4, f5values
which determine the samples contributing to the generation
of RS32, are modulus len-i as shown in (1)-(5). Assuming
that n=len, when i becomes close to n, then the resulting
mod(len-i) will have a very limited range of values, making
the choice of ECG samples that contribute to the generation
of RS32 also limited. This may reduce the randomness of

the resulting strings and make it easier for an opponent to
determine ecgi values from RS32. It is clear that for each
RS32_SET, n/l sequences of RSL can be generated.

In the proposed generator, arithmetic operations such as
addition, subtraction, multiplication, andmodulus are applied
to obtain the desired randomness. a, b, c, d, and e are used
to protect the ECG signal from exposure. These values are
integer numbers selected by the user. The greater these values
are, the more secure the generator is against ECG signal
exposure. The minimum length of each of the secret values
should be 10 bits.

IV. RESULTS AND DISCUSSIONS
A. PROPOSED SCHEME SECURITY EVALUATION
In RNG, the entropy source must be resistant to any attack
that could decrease the level of entropy [23]. In our case, the
entropy source is the ECG signal. Attacks against entropy
can be of two types: Active and Passive [24]. In RNGs,
active attacks mean that the attacker can control the entropy
source [23]. In our case, controlling the subject’s heartbeats is
impossible. Therefore, these types of attacks are impractical
against the developed generator. Passive attacks are those
in which the attacker, using an identical signal acquisition
platform, tries to deduce the random sequence generated
by the entropy source [23]. These types of attacks are also
impractical because the ECG signal differs from one person
to another and is a time-variant signal. The distinctiveness
of the generated RBSs is proven in section IV. B.2 which
emphasizes that the attacker cannot use data from one subject
to predict the RBSs generated by another.

In biometric-based RNG, supposing that the generated
RBSs are public values, an opponent should not be able
to retrieve the biometric values from the generated RBSs.
This condition is fulfilled in our proposed scheme. Below,
we demonstrate the inability of the opponent to disclose the
ECG signal and the secret values a, b, c, d, and e from the
resulting RBSs.

Assuming that the length of each of the secret values a,
b, c, d, and e is x bits and the opponent could determine
the index i for each of the generated RS32i. To expose the
values f1, f2, f3, f4, f5, and then the corresponding indexes of
the ECG samples that contribute to the generation of RS32i,

the opponent needs to accomplish (23)
3
× (2x)

5
= 29+5x

tries. (23)
3
represents the approximate number of tries needed

to get X1, X10, and X100 values, where each of them is a
digit with value ranges between 0 and 9. (2x)5 represents the
number of tries needed to expose the five secret values of a, b,
c, d, and e. After finding ecg indexes, the opponent needs to
find ECG samples values. If the opponent wants to disclose
the values of len samples from the ECG signal, which is the
worst case, he needs to find f1, f2, f3, f4, and f5 for all of the
resulting RS32i, thus, he needs to accomplish (29+5x)

n
tries.

For example, if the opponent wants to determine f1, f2, f3,
f4, and f5 values for all of the resulting RS32i from ECG
signal acquired within one second with a sampling rate of 360
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sample-per-second, and if n=len/2 and x = 10, where 10 is
the minimum length of each secret value, then the opponent
needs to accomplish (259)

360/2
= 210620 tries. We used the

expression ‘‘worst case’’ because some ECG samples might
be used in generating multiple RS32i, on the other hand,
other samples might never be used. Therefore, the opponent
may expose the same sample multiple times, and some other
samples can never be exposed. Consequently, knowing all
ECG samples is the worst case. Since the opponent cannot
determine the index i of RS32i, it becomes more difficult to
expose the values of the ECG samples.

It is noticeable that the more len is greater than n, the
greater the security against ECG exposure.

B. RANDOMNESS AND DISTINCTIVENESS EVALUATION
To ensure the capability of using the proposed generator in
securing medical data, it is necessary to evaluate the random-
ness and distinctiveness of the resulting RBSs. It is insuffi-
cient to ensure randomness but also distinctiveness, which
indicates that different individuals create different RBSs. The
distinctiveness ensures that opponents would not be able to
impose security threats on WBSNs using medical informa-
tion, i.e., ECG signals from other patients [11].

To analyze the randomness and distinctiveness of the pro-
posed generator, RBSs generated from different subjects with
two different cases are tested. The first case is the normal one,
where the heartbeats of the subjects are regular. In this case,
the randomness generated from the entropy source (ECG
signal) is at its minimum. The second case is where the
subjects suffer fromArrhythmia. In this case, the randomness
generated from the entropy source is better than that in the
first case. RBSs from the ECG signal of 50 subjects were
generated. The subjects’ data (ECG signals) are divided into
two datasets. The first dataset consists of the ECG signal for
25 subjects in good health (healthy subjects), which is the nor-
mal case, retrieved from the MIT-BIH Normal Sinus Rhythm
Database [25] (all 18 records), and from the MIT-BIH Long-
Term ECG Database [26] (all 7 records), where the sampling
rate is 128 samples-per-second. The second dataset consists
of the ECG signal for 25 subjects with arrhythmia (arrhythmia
subjects), retrieved from the MIT-BIH Arrhythmia Database

FIGURE 2. Box-and-whisker plot of the minimum entropy per bit for ECG
signal samples of healthy subjects.

[27] (the first 25 records, i.e., from record 100 to record 201),
where the sampling rate is 360 sample-per-second.

Randomness and distinctiveness evaluations were per-
formed for random sequences of 128-bit, 256-bit, 512-bit,
1024-bit, and 2048-bit. The RBSs were generated for len (the
number of ECG samples acquired) corresponding to a signal
acquisition duration of 1, 2, or 4 seconds. The minimum
acceptable signal acquisition duration is 1 second because it
is preferable that the samples contain at least one heartbeat to
provide more randomness.

It should be noted that the signal acquisition duration
has nothing to do with the length of the resulting RS. For
example, if the signal is acquired for 1 second and the sam-
pling rate is 360 sample-per-second, at most len/2=(1 ×
360)/2=180 RS32 can be generated, where len equals the
acquisition time in seconds multiplied by the sampling
rate. Every 4 RS32 can be concatenated together to get 45
RS128, or every 8 RS32 can be concatenated together to get
22 RS256, etc.

1) RANDOMNESS EVALUATION
We evaluated the randomness of the generated RBSs through
entropy analysis and by applying the National Institute of
Standards and Technology (NIST) statistical tests. In addi-
tion, we apply the health test to evaluate the behavior of the
noise source (ECG signal).
a) Randomness Evaluation through Entropy Analysis
RBSs’ entropy is defined as the unpredictability of the

generated RBSs. Before analyzing the entropy of the resulting
RBSs, the entropy source (ECG signal) was evaluated. The
entropy level of the ECG signal was estimated for healthy
subjects. As mentioned before, the entropy of the ECG signal
of healthy subjects is less than that of Arrhythmia due to
the regularity of heartbeats. The minimum entropy of the
ECG samples was analyzed using theNIST 800-90B standard
[28]. Entropy was estimated for the ECG signal of 25 healthy
subjects according to [28]. The ECG signal is classified
with a non-IID assumption. For each subject, a bitstream of
1,000,000 samples was tested using the NIST recommended
software for entropy estimation.

The min-entropy of the Arrhythmia subjects cannot be
estimated because each record in the MIT-BIH Arrhythmia

FIGURE 3. Box-and-whisker plot of the minimum entropy for the
generated RS32s from the ECG signal of healthy subjects.
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FIGURE 4. The average entropy of RBSs generated from healthy subjects.

Database contains only 650,000 samples, whereas the NIST
800-90B tests require at least 1,000,000 samples as input.
Furthermore, the restart test cannot be performed because the
entropy source (the heart) works continuously.

As shown in Fig. 2, the mean of the min-entropy per
bit for the ECG signal samples of the 25 health subjects
is 0.32823156. It is clear that the min-entropy of the noise
source in our case is not high because of some periodic
aspects of the ECG signal.

The min-entropy of the RBSs generated after the condi-
tioning component is also estimated. In our generator, the
conditioning component consists of all the operations applied
to ECG samples that are described in Algorithm 1. From
each record of the 25 healthy subject records, 1,000,000
RS32s were generated, and their min-entropy was calculated
as described in 3.1.5 in NIST 800-90B for Non-vetted Con-
ditioning Components [28]. Fig. 3 shows the min-entropy of
RS32s where the mean equals 13.1291 bits. The min-entropy
is low due to the formula for calculating hout (the entropy of
the conditioned output) shown in (10):

hout = min(Output_Entropy, 0.999nout , h′ × nout ) (10)

where Output_Entropy is a function of several parameters
(see 3.1.5 from [28] for more details). Its output depends on
the min-entropy of the noise source, which is low in our case.
Therefore, the output of Output_Entropy has a low value,
which in turn makes the min-entropy hout low.
The entropy of the RBSs can be evaluated using Shannon

entropy, as shown in (11):

H (X) = −
n∑
j=1

P(xj)× log2P(xj) (11)

where X is an information source with n mutually exclusive
events, x1, x2, . . ., xn, and p(xj) is the probability of the jth

event. The entropy can have amaximum value of 1 if it fulfills
a uniform distribution [11].

To test the randomness of the resulting RBSs, their entropy
was evaluated and analyzed. The entropy was calculated for
the resulting RBSs from the two datasets, the dataset of
healthy subjects and the dataset of subjects with arrhythmia.

Fig. 4 shows the average entropy of RBSs generated from
the dataset of healthy subjects (25 subjects). The average

FIGURE 5. The average entropy of RBSs generated from Arrhythmia
subjects.

entropy of 75 RBSs (3 per subject) is calculated for each
acquisition duration (1, 2, 4 seconds) and each RBS length
(RS128, RS256, RS512, RS1024, RS2048). Fig. 5 shows the
average entropy of RBSs generated from the dataset of sub-
jects with arrhythmia (25 subjects). The average entropy of
75 RBS (3 per subject) is also calculated for each acquisition
duration and each RBS length. As shown in Figs. 4 and 5,
all of the average entropies (for each acquisition duration and
each RBS length) are greater than 0.99, so they are very close
to 1. It is noticed that all of the resulting averages entropies
are nearly equal. The entropy of RS2048 is the closest to 1.
Sometimes it can also be noticed that the entropy of RBSs
generated from arrhythmia subjects is better than that of
healthy subjects. It can be justified by noting that the ECG
data of arrhythmia subjects are more random than that of the
healthy subjects.

FIGURE 6. Number of repetition count test failures out of 1,000,000
tested samples from each record.
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b) Health test
Health tests are tests that aim to catch the failures of the

entropy source quickly and with a high probability [28].
Another aspect of the health testing strategy is determining
the likely failure modes for the noise source [28].

Health tests are applied to the outputs of a noise source
before any conditioning is done. NIST provides two health

tests: the Repetition Count test, and the Adaptive Proportion
test. The health tests were performed offline using ECG
samples. The calculations were made to 1,000,000 sam-
ples obtained from healthy subjects. The tests were applied
to healthy subjects for the same reasons mentioned in the
previous section. α is set to 2−20, and the cutoff value C
is calculated for each subject depending on its min-entropy,

TABLE 2. The NIST tests results for RBSs with different lengths generated from ECG signal acquired in one second from healthy and arrhythmia subjects.

TABLE 3. The NIST tests results for RBSs with different lengths generated from ECG signal acquired in two seconds from healthy and arrhythmia subjects.
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TABLE 4. The NIST tests results for RBSs with different lengths generated from ECG signal acquired in four seconds from healthy and arrhythmia subjects.

using the formulas declared in 4.4. from [28]. W is set to
512 because the noise source is non-binary. The ECG samples
passed the Adaptive Proportion tests for all records and failed
very few times in the Repetition Count test, as illustrated in
Fig. 6. The maximum number of failures was 5 and the mean
of the failures is 1.6.
c) Randomness Evaluation Based on NIST tests
Various statistical tests can be applied to evaluate the

randomness of bit sequences and compare them with truly
random sequences. The most popular test suites are the
NIST Statistical Test Suite (NIST) [9], ENT [29], and
Dieharder [30].

The NIST Test Suite is a statistical package consisting of
15 tests that were developed to test the randomness of binary
sequences [9]. These tests focus on a variety of different types
of non-randomness that could exist in a sequence. We chose
the NIST tests because they focus on those applications where
randomness is required for cryptographic purposes.

In our study, short RBSs are generated (ranging from
128 bits to 2048 bits), so 10 out of 15 NIST tests have
been performed, which are appropriate for evaluating short
random sequences. The randomness of the tested RBSs can
be evaluated based on the value of α, which is called the
level of significance of the test. Each test results in a P-value.
We assume that RBS is random if the resulting P-value is
greater than α, where α = 0.01 [9], [11].
Several NIST tests were performed on the RBSs generated

using the proposed generator to verify their randomness.
Those tests were performed on RBSs with different lengths
(RS128, RS256, RS512, RS1024, RS2048) resulting from
ECG signals acquired from the prementioned two datasets
(healthy and Arrhythmia subjects) for different durations

(1, 2, or 4 seconds). 150 RBSs are tested from each group
(6 per subject). We mean by RBSs group, the group of RBSs
that have the same length and are generated fromECG signals
acquired from the same dataset for a specific duration.

Equation (12) gives the minimum number of tests that must
be passed for each NIST test [31]:

mpr = (1− α)− 3× sqrt(
α × (1− α)

k
) (12)

being α the level of significance of the test and k the number
of RBSs tested. In our particular case, α = 0.01 and k= 150,
thus the minimum pass rate was 0.9656. Therefore, 145 test
or more must be passed for each NIST test.

Table 2 shows the average P-value and the proportion of
tests that pass each of the 10 NIST tests. These results are
for RBSs generated using ECG signals of 25 subjects from
each dataset (6 per subject) where the ECG is acquired in one
second. Thus, 150 RBSs are generated and tested for each
RBS length and each dataset. Table 2 shows that the generated
RBSs passed the 10 tests because P-value was greater than
0.01 in 145 tests ormore for each of theNIST tests. Therefore,
the binary sequences generated from ECG signals acquired
in one second using the proposed scheme can be considered
random sequences.

Tables 3 and 4 are similar to Table 2, but for different
acquisition durations. Tables 2-4 show that the generated
RBSs passed the 10 NIST tests where P-value was greater
than 0.01 inmore than 145 tests of each NIST test. As a result,
the RBSs with different lengths generated using the proposed
scheme from ECG signals acquired in different acquisition
durations from the two datasets, are random enough to be
used for cryptographic purposes.
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FIGURE 7. Hamming distance distribution of RS128 for different healthy
subjects, where RS128 are generated from the signal acquired in
1 second.

Furthermore, Tables 2-4 show that the average P-values
for almost all tests are close to 0.5. This can be justified by
the uniform distribution of the average P-values. According
to [9], the uniform distribution of P-values resulting from
NIST tests indicates the randomness of the tested sequences.
Thus, this is another confirmation of the randomness of the
generated RBSs.

From Tables 2-4, it is observed that the normal and the
arrhythmia cases do not differ much in the average P values.
Returning to the proposed scheme, each RS32 is generated
from the values of five non-consecutive ECG samples after
some calculations. Due to the non-consecutive selection of
the ECG samples and the different time intervals between
them, the results did not differ significantly between healthy
and arrhythmia subjects, noting that the ECG signal of sub-
jects with Arrhythmias has the same waveform as the ECG
signal of healthy subjects (P, QRS, T waves), but it is charac-
terized by different time intervals between every two succes-
sive pulses.

2) DISTINCTIVENESS EVALUATION
The distinctiveness evaluation is used to measure if RBSs
generated from different subjects are sufficiently distinct.
If this holds, an adversary cannot use data from another
subject to predict the values generated by the target [13]. The
Hamming distance (HD) is applied to measure the dissimilar-
ity between two RBSs of the same length. It is the number of
places at which the corresponding bits are different. Hence,
for true random binary sequences, the average HD distribu-
tion can be nearly equal to 50% of the RBS length [11].

TABLE 5. The average HDs between RBSs from different subjects.

FIGURE 8. Hamming distance distribution of RS128 for different
Arrhythmia subjects, where RS128 generated from the signal acquired in
1 second.

To evaluate the distinctiveness, a file of 7680 RS32 is
generated for each subject and each acquisition duration
(1, 2, and 4 seconds). The RS32 are concatenated, generating
RS128, RS256, RS512, RS1024, and RS2048. The Hamming
distance is calculated between the RBSs generated from each
subject and their corresponding RBSs generated from the
other subjects of the same dataset (healthy or arrhythmia
subjects) and have the same acquisition duration. For RS128,
HD is calculated between RBS pairs, where 1920 RBSs are
generated from each subject. For RS256, RS512, RS1024, and
RS2048, HD is calculated between RBS pairs, where 960,
480, 240, and 120 RBSs are generated from each subject,
respectively.

Fig. 7 elaborates the normalized distribution of HDs of
128-bit RBSs (RS128). The average HDs for RBSs generated
from healthy subjects equals 63.518, which is nearly equal to
50% of RBS length as revealed in Fig. 7. Fig. 8 elaborates
the normalized distribution of HDs of 128-bit RBSs. The
average HDs for RBSs generated from arrhythmia subjects
equals 63.94, which is also nearly equal to 50% of the length
of the RBS as revealed in Fig. 8. In the same manner, we can
prove that HD has a normal distribution even if the RBSs
are generated from healthy or arrhythmia subjects, whatever
the RBS length is between 128 and 2048 bits, and what-
ever the acquisition duration is between 1 and 4 seconds.
Table 5 shows the average HDs between RBSs of different
subjects resulting from the experiments. HDs between RBSs
of different lengths and different acquisition durations were
tested for healthy and arrhythmia subjects. From Table 5, it is
clear that RBSs generated from ECG of different subjects
are distinctive and can be used for security applications in
WBSNs. Therefore, opponents will not be able to threaten a
WBAN for a specific subject using the ECG signal of another.

From all of the above, it is clear that the results were satis-
factory for the two datasets, healthy and arrhythmia subjects,
and for all of the ECG acquisition durations and all of the
RBS lengths.

The experiments show that the resulting RBSs have the
required randomness for all the tested acquisition durations
including 1 second. In previous studies such as [11], where
RBS is generated based on IPI values, the generation of
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TABLE 6. The proposed generator throughput compared with previous
studies.

binary sequences with good randomness requires the acqui-
sition of ECG signal for several heartbeats (several seconds).

C. PERFORMANCE EVALUATION
1) THROUGHPUT
Asmentioned earlier, by using the proposed generator, a num-
ber of RS32 equals len/2 can be generated as a maximum.
If the sampling rate is 128 sample-per-second, 64 RS32 per
second can be generated, which is equivalent to 2048 bits-
per-second. If the sampling rate is 360 sample-per-second,
180 RS32 per second can be generated, which is equivalent
to 5760 bits-per-second.

Table 6 shows the proposed scheme throughput (number of
random bits generated per second) compared with previous
studies [11], [13], and [14]. It is clear that the proposed
scheme throughput outperforms the previous ECG-based
RNG. Furthermore, the throughput of the proposed generator
depends on the sampling rate, in contrast to previous studies
where the throughput depends on the pulse rate. Even for
a low sampling rate (128 sample-per-second), the proposed
generator is still having the best throughput compared to pre-
vious studies. In our generator, the ECG signal perturbations,
e.g., variation in ECG signal frequency, do not affect the
throughput because the throughput is only affected by the
sampling rate.

Unlike other RNGs, our proposed generator generates a
large number of RBSs in a limited time. RNGs often have low
throughput as a result of their dependence on natural phenom-
ena, so they usually generate short random sequences over a
relatively long time. PRNGs are used when the generation
of many random sequences within a short time is required.
Although our proposed generator is an RNG, it overcomes
the low throughput of RNGs and has a high throughput as if
it is a PRNG.

In addition, themin-entropy rate (themin-entropy through-
put) was studied based on the min-entropy for the generated
RS32 which was calculated before. The min-entropy rate
equals min-entropy per bit× throughput. We calculate it only
for healthy subjects for the same reason as mentioned before.
Fig. 9 shows the min-entropy rate calculated for the RBSs
generated from the ECG signal of 25 healthy subjects. The
mean of the min-entropy rate is 840.267 bit/s. Returning to
Table 6 and according to the resulting min-entropy rate, it can

FIGURE 9. Box-and-whisker plot of the min-entropy rate for RBSs
generated from ECG signal of healthy subjects.

be concluded that, although the calculated min-entropy rate is
the lowest throughput of our generator, nevertheless it is still
better than the throughput of all the previous studies.

2) COMPLEXITY
The proposed generator has a time complexity of O(n).
Returning to Algorithm 1, it appears that the proposed gen-
erator is consist of one loop with n rounds. The loop body
includes functions with operations such as addition, subtrac-
tion, multiplication, and modulus. The time complexity of
each round equals O(1), consequently, the time complexity
of the proposed generator equals O(n), where n is the number
of the generated RS32.

It can be noted that the simplicity of mathematical and
processing operations may lead to low resource consump-
tion. However, despite the simplicity of the operations, the
proposed generator can be used for cryptographic purposes.

V. CONCLUSION
In this paper, we proposed a new biometric-based random
sequence generator that uses ECG signal samples to generate
RBS. Its throughput is better than that of previous studies tens
or hundreds of times. It generates RBSs of different lengths.

Proceeding from the fact that the simpler the processes, the
lower the resource consumption, the proposed generator is
designed to be based on very simple operations like addition,
subtraction, etc., rather than complex ones like wavelet trans-
forms, and hash functions used in previous studies.

Due to the distinctiveness of the generated sequences, the
opponent cannot predict the random values generated from
one subject using the ECG signal of another. Furthermore,
research shows that IPI values can be eavesdropped from
a distance using cameras. Fortunately, this approach is use-
less with our generator, because it is based on ECG signal
samples instead of IPI, which cannot be detected from a
distance. Moreover, the opponent cannot expose the ECG
signal depending on the resulting RBSs.

There is also an additional feature that is worthmentioning.
The proposed generator does not support external perturba-
tion because the opponent cannot control the noise source (the
heartbeats) of the subject.

Randomness and distinctiveness are empirically verified
for RBSs generated from healthy subjects, which is the
worst-case scenario, and arrhythmia subjects. It is proved
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that the generated RBSs are random enough to be used for
cryptographic purposes.

As for future works, we seek to study the maximum length
of the generated random sequences that ensure the required
randomness.
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