IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 28 March 2022, accepted 13 June 2022, date of publication 21 June 2022, date of current version 1 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3185069

Automated Risk Management Based Software
Security Vulnerabilities Management

RAGHAVENDRA RAO ALTHAR 12, DEBABRATA SAMANTA 3, (Member, IEEE),
MANJIT KAUR“2, (Senior Member, IEEE), DILBAG SINGH 2, (Senior Member, IEEE),
AND HEUNG-NO LEE 2, (Senior Member, IEEE)

!Data Science Department, CHRIST University, Bangalore, Karnataka 560029, India

2QMS, First American India Private Ltd., Bangalore, Karnataka 560038, India

3Department of Computer Science, CHRIST University, Bangalore, Karnataka 560029, India

#School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea

Corresponding author: Heung-No Lee (heungno@gist.ac.kr)
This work was partly supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by
the Korea government (MSIT) (No.2019-0-01842, Artificial Intelligence Graduate School Program (GIST)) and This research was

supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program
(IITP-2021-0-01835) supervised by the IITP(Institute of Information & Communications Technology Planning & Evaluation).

ABSTRACT An automated risk assessment approach is explored in this work. The focus is to optimize
the conventional threat modeling approach to explore software system vulnerabilities. Data produced in
the software development processes are better leveraged using Machine Learning approaches. A large
amount of industry knowledge around security vulnerabilities can be leveraged to enhance current threat
modeling approaches. Work done here is in the ecosystem of software development processes that use
Agile methodology. Insurance business domain data are explored as a target for this study. The focus is
to enhance the traditional threat modeling approach with a better quantitative approach and reduce the
biases introduced by the people who are part of software development processes. This effort will help
bridge multiple data sources prevalent across the software development ecosystem. Bringing these various
data sources together will assist in understanding patterns associated with security aspects of the software
systems. This perspective further helps to understand and devise better controls. Approaches explored so
far have considered individual areas of software development and their influence on improving security.
There is a need to build an integrated approach for a total security solution for the software systems.
A wide variety of machine learning approaches and ensemble approaches will be explored. The insurance
business domain is considered for the research here. CWE (Common Weaknesses Enumeration) mapping
from industry knowledge are leveraged to validate the security needs from the industry perspective. This
combination of industry and company data will help get a holistic picture of the software system’s security.
Combining the industry and company data helps lay down the path for an integrated security management
system in software development. The risk management framework with the quantitative threat modeling
process is the work’s uniqueness. This work contributes toward making the software systems secure and
robust with time.

INDEX TERMS Quantitative threat modeling, software security, machine learning, quantitative risk
assessment, integrated security management system.

I. INTRODUCTION

Threat modeling is one of the prominent parts of software
development processes. A large part of the exercise includes
expert judgment in practice. There is a need to make this
exercise as quantitative as possible. In this paper, constructs

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Ali Babar

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

of threat modeling are studied to build a quantitative threat
modeling approach with less dependency on the experts.
The paper is organized to explore some of the related work
in the field. The study’s objective is to enable a more
extensive system of smart security in software development
[1], [2]. This smart security system is discussed in detail in
the earlier work by the author [3], [4]. Threat modeling and
its constructs are described. Exploration of risk assessment

90597

https://orcid.org/0000-0001-5859-0662
https://orcid.org/0000-0003-4118-2480
https://orcid.org/0000-0001-8804-9172
https://orcid.org/0000-0001-6475-4491
https://orcid.org/0000-0001-8528-5778
https://orcid.org/0000-0001-9696-3626

IEEE Access

R. R. Althar et al.: Automated Risk Management Based Software Security Vulnerabilities Management

methodology for threat modeling is conducted. Data collec-
tion and modeling for threat prediction are covered. Paper
wraps up with the recommendations and future work. The
focus of the work is automating the security vulnerability
risk assessment approach and threat modeling approach with
the machine learning approach. Both exercises are optimally
combined for better outcomes. Machine learning classifica-
tion approaches are leveraged to get visibility into possible
security vulnerabilities.

A. MOTIVATION

This work is motivated by the lack of focus on software
vulnerabilities threat modeling. Though this exercise is con-
ducted, it is restricted due to the manual intervention involved
by experts and the time involved. Multiple efforts focus on
the security vulnerability discovery but are happening in
silos. This state motivates to bring together the efforts into a
common framework. With fast-paced progress in the security
threat and its impact, it is essential to develop these systems.

B. OBJECTIVE

This work intends to quantify the security threats and help
focus as needed. Connecting the knowledge prevalent in the
industry with the needs of the software development industry
is the focus area. Utilizing the historical knowledge of the
organization for better visibility into future operations is
given prominence in the study. The flexible threat modeling
approach targets the critical security areas as per the area
prioritized under study. Getting the confidence of the soft-
ware development stakeholders with predictable and secure
software systems.

C. CONTRIBUTION

Paper contributes an approach to making threat modeling a
data-based quantitative process, by reducing the manual inter-
vention of the experts. This approach reduced the dependency
on the security experts. With reduced dependency on experts
and human intervention, this approach can be extensively
used when needed. The proposed approach will help build a
knowledge system that will get better over time by including
knowledge from across the industry and within the company.
This proposed system helps bridge the gap between security
experts, software development teams, and software system
users. This work is part of a comprehensive Software Security
Management system envisioned by the authors.

Paper also contributes to the Information Security domain
by helping reconcile the data available across industry and
companies for the benefit of software development teams.
The ideas presented in this paper are noble and essential
in ensuring a common approach to threat modeling in an
organizational setting. An integrated model for detecting
security threats in an organizational setting will help the soft-
ware development teams explore security flaws effectively.
This approach would be of immense use as it standardizes
threat detection in software system development. It will serve
as a knowledge management tool for software development

90598

companies. The primary focus of our work is on applying data
analytics in threat modeling, and risk assessment approaches
and proposing an integrated approach.

The paper starts with exploring the literature for work done
on threat modeling for software development and machine
learning approaches used to learn the security needs from the
various data sources across the industry. Focus areas of the
paper are discussed in the next section, followed by the under-
standing of threat modeling. The application of risk assess-
ment with threat modeling is explored in the next section. The
data collection-related process is discussed in the subsequent
section. Experiments are built on understanding how threat
prediction can be introduced into the conventional threat
modeling approach. The outcome of these experiments is
validated with the available best approaches and their results.
The Paper is wrapped up with a discussion on weaknesses in
the work and possible future prospective areas.

Il. LITERATURE REVIEW

In work [5], neural networks, deep learning techniques, and
ensembles were explored in cyber security. Cyber security
areas of intrusion detection, prediction of cyber-attacks, and
malware identification are targeted areas. This paper provides
a reference point for cyber security professionals in deep
learning. This work highlights the need for further explo-
ration to make the algorithms more efficient based on the spe-
cific data under study [6], [7]. Challenges in data collection
are also highlighted as the area that needs focus. This paper
explores a variety of the deep learning approach in the space
of cyber security. However, these approaches are not covered
by software development processes. We leverage some of the
learning from this paper and explore them for software devel-
opment processes in our work. In work, [8], machine learning
and deep learning approaches are explored to tackle the secu-
rity issues bothering big data. Due to considerable growth in
data volumes, there are vulnerabilities for the security threats
to hamper the system. In [9] and [10], an exploration of
taxonomy around the threat modeling approach was achieved
with the machine learning and deep learning approaches.
However, the practical implementation in software develop-
ment eco-systems was not achieved. In [11], the growing
application of machine learning and the possible vulnerabil-
ities introduced into the system were explored. The study
covers the threat model for machine learning and explores
the attack involved and the defenses that would be needed.
This paper takes away some of the learning around threat
modeling. Work attempts to bring perspective around model
accuracy, complexities, and resilience that needs attention
based on its operating environment [12], [13].

Work [14] explores machine learning capabilities for cyber
security. Machine learning capabilities to identify advanced
threats and targets in infrastructure vulnerabilities, organiza-
tion profiling, and other exploits are explored. With the inabil-
ity of the traditional malware handling approaches, these new
capabilities come in handy. From this work, we take away
the key insights of applying machine learning in the cyber

VOLUME 10, 2022

R. R. Althar et al.: Automated Risk Management Based Software Security Vulnerabilities Management

IEEE Access

security space and re-use and test it in the software devel-
opment space. Work [15] focuses on providing insights into
threat modeling. Exploration done on Microsoft’s threat mod-
eling is used as a base to offer insights into an effective threat
modeling approach. Work [16], [17] explores threat modeling
applications in agile software development processes with
Microsoft’s STRIDE approach. Practical challenges facing
the industry are explored and validated with the challenges
highlighted in the literature. Some of the key challenges are
seen during the identification of assets stage and how the post-
threat modeling exercise is implemented.

In [17], a variety of vulnerabilities were studied. IT helped
to understand the granular details of the vulnerability. This
knowledge helps to build the datasets for our experiments.
This knowledge also helps to enhance the construction of
machine learning experiments. In work, [18], automation of
threat modeling is focused. The focus is to reduce the effort
involved in the threat modeling by leveraging the available
data [19], [20]. This work helps to understand the thought
process behind the threat modeling framework. This learning
helped build the threat modeling framework that can work
with other security-related frameworks. Lack of context is
another challenge faced by the prediction models. This lack
of context is due to the lack of domain knowledge being
considered in the modeling process. Authors try to bring in
an ontology framework to improve the conceptual model-
ing. In work [21], authors introduce threat identification as
part of the software development lifecycle. The idea here
is to reduce the need for educating software development
experts on security knowledge. The proposed approach looks
at analyzing the design of the software to explore risks and
threats to the system. Authors introduce an identification
tree named a new data structure approach for detection of
threats to [22]. The mitigation tree approach is utilized for
the description of countermeasures. These methods provide
a guided approach for risk assessment across the software
development lifecycle.

Ill. RESEARCH GAPS

Based on the literature review done, we see that there are
the following research gaps. Focus on learning the structure
of customer requirements in agile development methodology
from a security perspective which is missing now. Utilizing
the construct of security categories from the industry data
to derive the implicit security needs of the customer. These
elements are essential to bridge the conventional threat mod-
eling, and risk assessment approaches with machine learning
capabilities. Integrating the customer, industry, and software
processes data sources to learn the security needs is not
addressed appropriately and needs deeper exploration. This
approach helps to have a comprehensive view of the proposed
framework’s security vulnerabilities.

Deep learning advancements in cyber security are another
area that needs attention. Improvisation of algorithms based
on the data eco-system can provide good leverage for the
research in software development practices improvisation.

VOLUME 10, 2022

Deep learning approaches to the exploration of software
development space need more effort. Deeper work is needed
on addressing security issues in software development. Soft-
ware system threat modeling automation needs more focus.
Deeper work is needed on associating context and domain
knowledge for modeling the information. A stronger asso-
ciation of risk assessment and threat modeling good prac-
tices would be important to leverage the power of both the
framework.

IV. KEY THEMES OF THE STUDy

In work [3], we have outlined an efficient system that can
facilitate information management in software development
processes. The intent is various sources of the software devel-
opment process data and ways to model them to supply it as
helpful information [23], [24]. The overall objective of this
integrated information system is to combine the information
in the areas of customer conversation, industry best prac-
tices, and internal software development processes. Figure 1
depicts the system outline of the conceptualized Integrated
Information Management system to tackle security vulnera-
bilities.

Customer Conversation
odeling

=
a

Integrated
Information
Management
System

Software Development
Proceszes Modeling

Industry Knowledge
Modeling

FIGURE 1. Conceptualized Integrated Information Management system to
handle security vulnerabilities.

Under the module of industry knowledge modeling, threat
modeling concepts are studied. This study will reduce the
inefficiencies prevalent in the threat modeling exercise.
Machine learning approaches are explored to build pre-
dictability into the exercise. The information available in
the industry around the threats and vulnerabilities can be
leveraged to provide the information needed when it matters.
A combination of vulnerability identification from customer
conversation, internal software development processes, and
industry knowledge will help build a robust information
system.

V. THREAT MODELING APPROACH

Cyber security risks that challenge the software system make
it essential for the industry to take a proactive step towards
tackling it effectively. The complexity of threat modeling
makes it less effective when it is implemented. The best
approach is to start with simple steps and build it [25], [26].
Constructing the software systems boils down to the require-
ments that specify the features needed, acceptance crite-
ria from the customer, and a technical breakdown of the
requirements. A specific standardized approach to threat
modeling is missing which makes the situation harder [27].

90599

IEEE Access

R. R. Althar et al.: Automated Risk Management Based Software Security Vulnerabilities Management

Technical risks would be a good starting point as they are par-
ticular to the software system, like the ones around missing
security control in the software. Since the software system’s
structure is well within the control, it will be easier to handle.
Making risk identification a collaborative effort goes a long
way in maintaining effectiveness in the system [26]. Agile
methodology has a nice setup of the team structure where
the product owner, system analyst, developer, tester, architect,
and scrum master form a scrum team that intends to deliver
the value-based product to the customer. This mix of expertise
across the value chain can be a good setup for collaborative
threat assessment. Cyber security risks go beyond ticking the
checklist and making sure the business risks are kept under
check [28], [29].

Breaking the system into smaller components to start the
analysis will be a good starting place. This specific focus
helps to take action more frequently and see the progress. This
iterative approach of threat modeling will help get everyone’s
involvement rather than a complex analysis done at the begin-
ning of the project [30], [31]. Exploration, brainstorming of
the threats, and prioritizing and fixing the threats are the sim-
ple starting points to implement. Deciding on the stakehold-
ers needed for the threat exploration is essential. Frequency
to be agreed upon for the threat exploration session. It is
always better to have a face-to-face session with the people
involved rather than an online session. This aspect has been
our experience while conducting brainstorming sessions with
the software development team for threat modeling analysis.
Figure 2 shows the simple format to identify the threat in the
system.

As discussed earlier, prioritizing, and taking up the impor-
tant work to time box the exercise is essential. This focus
helps to maintain the healthy progress on threat modeling
exercise. The latest features that are worked upon, any identi-
fied security feature, services that are collaborating with other
services, and technical security debt are good areas to start
focusing upon [32].

VI. COMBINING RISK ASSESSMENT APPROACH

AND THREAT MODELING

The risk assessment approach that we have been practicing in
our company is based on information security assets. We look
at confidentiality, integrity, and data availability as a primary
focus areas for our security risk assessment. Based on the
probability of occurrence of events that compromise these
three factors and their impact, we arrive at the risk level.
Based on these risk levels, risk mitigation actions are devised.
Risk mitigation will be around security controls needed
to manage those risks. Threat modeling for security risks
focuses on the technical risks involved in software systems.
It focuses on all phases of the software development lifecycle,
including requirements gathering, design, construction, and
testing. Threats and vulnerabilities hampering the software
systems are used as a base in this assessment. We integrate
the risk assessment and threat modeling approach with data
analytics approaches in our work. In the further part of this

90600

section and subsequent sections, we propose our approach.
In the first stage of this risk assessment approach-based
threat modeling, all the components of the software system
and processes are to be listed. For example, network and
communication-related components, software components,
and other similar areas. In the next phase, impact analysis is
conducted. To start with this exercise, initial impact analysis
can be expert judgment-based. Later a database can be set
up to track the events that will feed into automated impact
analysis [33]. Impact analysis includes three components,
what is the result of compromise on the confidentiality of the
data, integrity of the data, and availability of the data. We have
used this approach of risk assessment based on confiden-
tiality, integrity, and availability in our company and have
observed that it provides a comprehensive view of the security
risks and their impact. Based on these three components,
impact value can be derived. The organizational database can
be created to collate the experience and events, which will
help understand the impact of compromise of data from all
three perspectives referred to [34]. This database can be an
ongoing repository that helps build the knowledge base for
impact analysis. Impact value of confidentiality, availability,
and integrity can be provided with a range of values based on
their impact on the customer. Based on the combination of
values of these three parameters, the final impact value can
be arrived at in this work [35].

Data collected in the organizational database can predict
the impact value. All the attributes associated with the iden-
tified components can be put together to model the impact
based on confidentiality, integrity, and availability. Alterna-
tively, any other parameters would help build a threat model-
ing system. Impact value can also be directly derived from the
attributes associated with the target components. In the next
stage, based on the categories of the components, possible
threats and vulnerabilities that would impact the components
can be listed. This listing can be based on the organization’s
historical data or industry knowledge. To build a historical
experience-based list, it is essential to have a process that
helps capture all the threats that have hampered software
system components and vulnerability in the system that has
led the threat to exploit. If we take the technical failure of
the software components as the threat, it would be caused by
vulnerabilities like inadequate business continuity manage-
ment, inadequate system monitoring, insufficient user testing,
and others. Using industry data, we can model the threat and
vulnerabilities based on the information related to software
system failures and the causes.

The next part of the information needed is the probabil-
ity of occurrence of these vulnerabilities. This information
will help to assess the risk level of the failures further. The
probability of occurrence can be provided on a high, medium,
or low scale based on the number of times those events
have occurred in the past. This tracking needs a system to
capture all the events associated with the software system
deficiencies from related to confidentiality, integrity, and
availability. As discussed earlier, these three factors or any

VOLUME 10, 2022

R. R. Althar et al.: Automated Risk Management Based Software Security Vulnerabilities Management

IEEE Access

Actor
Data Flow—3
_—
Actor
Authorization
Data source
Threat

FIGURE 2. Depiction of simple threat modeling.

other factors that are relevant to the system can be considered.
While modeling the threats is done in this approach, impact
evaluation and occurrence evaluation can be combined to
obtain the final risk levels of the components. The final risk
level is a combination of impact value and probability of
occurrence of the vulnerabilities in the past. Components can
be subjected to the study of controls needed based on the risk
level. Controls needed can be based on the threat type and
its vulnerabilities type. Control information can be derived
from industry knowledge databases. Control refinement can
be carried out based on the residual risks after implementing
the control. So, the system can be made in real-time where it
captures all the information periodically and recalibrates the
system for its risk value and controls applied. Based on future
events, this system calibrates itself and provides direction for
further strengthening. Figure 3 depicts the outline of a risk
assessment-based approach for threat modeling. We consider
Impact value = I,, Impact factors identified = Ty, Risk
value-R,, Probability of occurrence = Py.

I, = Avg(Ty). (1)
R, =1, % Po. 2

VII. DATA COLLECTION

Threat modeling for the software development processes can
be done concerning the information captured in the soft-
ware development processes. Threat categories will have
multiple CWE (Common Weaknesses Enumeration) under
them. CWE is a community-developed list of software and
hardware weakness types [36]. In the software development
processes with the Agile framework, requirements are docu-
mented in the form of user stories, which are further broken
down into tasks. TFS (Team Foundation Server) is used as

VOLUME 10, 2022

Application

Personal
Information

e

Server

Integration

Database

Payment service Unencrypted data

Money

ALM (Application Life-cycle Management) tool. Test cases
are created to cover all the expected testing scenarios. Any
issues identified during the software development are tracked
as defects and addressed.

Tasks are linked to the user stories; test cases are also linked
to the user stories. Any defects found during testing are linked
to test cases. These linkages help to maintain traceability.
Leveraging these work items’ traceability, requirements can
be mapped to defects that are related to security; additional
security-related issues can be traced to the CWE. Expert
involvement is needed to map the security issues to CWE.
Required training and knowledge sharing must be enabled
for this process. Building a model around the patterns of
software requirements, to security issues to associated CWE
will help understand the possible threats that would hamper
the software system. In this data collection approach, linkages
between these work items are leveraged. CWE mapping done
with the involvement of software development experts is
leveraged for the modeling. The idea is to build a prediction
engine that can predict possible CWEs that would get resulted
when a customer requirement is being worked on. This identi-
fication provides an opportunity for the software development
teams to engage the security controls much earlier in the
process.

All the work items from TFS are extracted, including user
stories, tasks, test cases, and defects. All the work items that
have reference to CWE are selected. Parents’ work items for
these work items are also collected to trace back to original
requirements. CWE ids are separated from the text content,
which will act as a label for the text descriptions. All the
information available across work items in the form of their
title and description with CWE being referred are extracted
to create a data source that has text description and the CWE

90601

IEEE Access

R. R. Althar et al.: Automated Risk Management Based Software Security Vulnerabilities Management

Software system
components
databasze

Impact

Impact analysis

modeling

database

FIGURE 3. Risk assessment-based threat modeling.

mapping. From the data extracted, 1458 text data descriptions
are available that are mapped to 64 different categories of
CWE:s.

VIIl. PREDICTION MODEL FOR THREAT ASSESSMENT

The prediction model intends to categorize the customer
requirements into respective CWE categories. Once the
model is built around this content, it will be possible to map
the new requirements coming from customers to their possi-
ble CWE and predict the potential threats that may hamper
the software system. Based on the CWEs mapped, security
controls can be devised to tackle threats to software systems.

A. MULTI-CLASS CLASSIFICATION APPROACHES

In the first phase of this exercise, a text description is sub-
jected to TF-IDF (Term Frequency Inverse Document Fre-
quency) for the vectorization process. Logistic regression,
Random forest classifier, Multinomial NB (Naive Bayes), and
Linear SVC (Support Vector Classifier) are used for clas-
sification modeling. Random forest classifier is tuned with
n_estimator of 200 and max_depth of 3. Cross-validation of
5 is chosen for the modeling. Table 1 shows the results of the
first round of modeling. Table 1 shows the results of the first
round of modeling.

TABLE 1. Results of first round of modeling.

Model name Accuracy
Linear SVC 47.20%
Logistic Regression 39.85%
Multinomial NB 30.25%
Random Forest Classifier 23.52%

Linear SVC showed a precision of 51%, recall of 48%, and
F1 score of 46% on a weighted average scale. Performance is
not up to mark.

90602

Threat &
| Impact value Vulnerabilities
" database
y
¥ Probability of
Risk value O — occurance

Controls database

TABLE 2. Model results with parameter details.

Models (Classifier) Parameters F1 score
Random Forest
XGB Default parameters 11.98%
Logistic Regression
Logistic Regression Default parameters 14.38%
XGB Default parameters 38.35%
RandomForest Default parameters 37.67%
penalty="12", class_weight=None,
Logistic Regression | random_state=100, solver="lbfgs’, 13.01%
warm_start=False, 11_ratio=0
penalty="elasticnet’,
class_weight="balanced’,
Logistic Regression random_state=100, 4.79%
solver="saga’,
warm_start=True, 11_ratio=1
max_depth=3, n_estimators=100,
verbosity=1,
objective="binary:logistic’,
XGB booster="gbtree’, 36.64%
gamma=0, reg_alpha=0,
reg_lambda=1,
random_state=100

In this section, we try to build ensemble models. Pre-
processing of the data is conducted with Beautiful Soup
and tqgdm libraries. Also, TensorFlow Kera’s preprocessor
is used to tokenize the natural language data used as input.
The text-to-sequence method is used for this purpose. Input
data is split into train and test components with 80% data
for training and 20% data for testing. This round tries the
Random Forest Classifier, XGB (XG Boost) classifier, and
Logistic Regression classifier. All three models’ outputs are
averaged in this method to obtain better performance from the
ensemble model. Table 2 shows the performance of various
models in terms of F1 score and the parameters that are
used. This experiment shows that XGB is the best among
all the parameters but not good enough. Further ensemble

VOLUME 10, 2022

R. R. Althar et al.: Automated Risk Management Based Software Security Vulnerabilities Management

IEEE Access

methods are explored based on the feasibility study of the
software development work items and the details of the
domain experimented on. Multinomial NB (Naive Bayes),
Decision Tree Classifier, K Neighbors Classifier, Linear SVC
(Support Vector Classifier), and Random Forest Classifier are
used. These algorithms are started with averaging methods
prediction. The F1 score metric is used for the evaluation
of performance. Table 3 shows the performance of various
models in terms of F1 score and the parameters used.

Table 4 lists out the parameters chosen when all the mod-
els were run together. Since Random Forest Classifier and
KNeighbors Classifier were relatively better, they were run
together under averaging method, but their actual perfor-
mance was reduced by 3%. Under the max voting method
also the performance is only about 31%.

In this section, ensemble, deep learning models that are
appropriate to model the data from software development
processes focusing on the security of the software are short-
listed. An attempt has been to classify the content captured
in software development work items into security-related
content mapped to respective CWE. This mapping will help
to call out the possible threats hidden in the system. Spacy
library from NLP (Natural Language Processing) is used
for data processing. Training and testing data of 70% and
30% are constructed for the experiment. Kera’s preprocessing
library text tokenizer and pad sequencer are applied. A pre-
trained model glove with 200 dimensions is utilized for the
generation embedding matrix used for training the model.

B. CNN (CONVOLUTIONAL NEURAL NETWORK) STATIC
CNN static algorithm architecture includes layers of
CONV1D, BatchNormalization, Activation, and GlobalMax-
Pool1D being concatenated. Dropout is kept at 50%, followed
by a dense layer of 512 units and ‘relu’ activation. The
output layer is a dense layer with a ‘softmax’ activation
function. CNN static model is compiled with loss function of
‘categorical_crossentropy, optimizer ‘adam,” and batch_size
of 128 with a function written to compute top three accura-
cies. CNN static model is created with the ‘Model” function
from Keras.model library. This model is further run with
“fit_generator” to feed data in sequential mode. The top
3 accuracies show a performance of 50.68%. Performance on
training and hold-out data set over the epochs in terms of the
loss is depicted in figure 4. The hold-out set cannot close on
the training dataset in terms of the loss value. 80% and 20%
split of training data is a general guideline. In ensemble and
deep learning models, we want to experiment with different
training and testing data spilled. However, this did not make
much of a difference at the end of the experiment.

C. CNN DYNAMIC

To make the CNN network dynamic, in the embedding_layer
creation, the parameter ‘trainable’ is kept to “True’ so that
the training happens dynamically. The architecture of the
network remains the same as the CNN-Static network. Model
building and compilation stay the same. The top 3 accuracies

VOLUME 10, 2022

CMN - Static learning curve

— frain
&1 holdout

loss
'
;

o 2 4 & 8 10 1z 14
epoch

FIGURE 4. Training and hold-out set performance trend over epoch in
terms of the loss in case of CNN-static.

CMNM - Dynamic leaming curve

— frain
6.0 holdout
55
5.0
i
=]
45
4.0

is | | \

0.0 0.5 10 15 2.0 25 3.0 35 4.0
epoch

FIGURE 5. Training and hold-out set performance trend over epoch in
terms of the loss in case of CNN-dynamic.

show a performance of 31.76%. Performance on training
and holdout data set over the epochs in terms of the loss is
depicted in figure 5. Though the holdout data set is close to
training dataset performance on loss. Overall, they cannot do
better compared to CNN- Static.

D. DATA PROCESSING, TRANSFORMATION,

AND MODELING

In this section, data pre-processed with NLP’s spacy library
is used. Tfidf (Term frequency-inverse document frequency)
vectorizer is used for the data vectorization process. Now
the data is subjected to models Logistic Regression, Random
Forest Classifier, and Linear SVC. A cross-validation value
of 5 is chosen for the processing. Random Forest uses
“n_estimators” of 300 and “max_depth” of 3. Accuracies
of the models are shown in figure 6.

Table 5 depicts model performance in terms of accuracy.
Even modifications in the data processing models do not sig-
nificantly improve their performance. Based on the literature
review, some models that have shown good performances
for the classification problems will be explored here. Explo-
ration will look for compatibility of these models for the data
used here, coming from software development processes that
follow Agile methodology and serve the insurance domain
business.

90603

IEEE Access

R. R. Althar et al.: Automated Risk Management Based Software Security Vulnerabilities Management

TABLE 3. Model performance and parameter details.

Model Parameter F1-score
Multinomial NB Default parameters 3.08%
Decision Tree Classifier Default parameters 18.83%
K Neighbors Classifier Default parameters 32.53%
Linear SVC Default parameters 10.61%
Random Forest Classifier Default parameters 32.19%
All models Tunned parameters 41.09%
Random Forest Classifier K Default parameters 29.45%
Neighbors Classifier
TABLE 4. Parameters chosen for various models used during ensemble run of all models.
Model Tuned Parameter
Decision Tree Classifier criterion = entropy", random_state = 100,
max_depth=None, min_samples_leaf=5, split-

ter="random’

KNeighbors Classifier n_neighbors=5, weights="distance’, algorithm="auto’,
leaf_size=30, p=1, metric="minkowski’

Linear SVC penalty="11", loss="squared_hinge’, dual=False,
tol=0.0001, C=1.0, multi_class="ovr’,

fit_intercept=True, interceptscaling =
1, class_weight =’ balanced’,random_state =
100, maz_iter = 1000

Random Forest Classifier

criterion="entropy’,
min_samples_leaf=1,

n_estimators=200,
min_samples_split=2,
random_state=100

0.5

accuracy
(=
=
s

=1
Lt
s

RandomForestClassifierlinearsSVe MultinomialNB LogisticRegression
madel_name

FIGURE 6. Accuracies of the models run in this section.

Naive Bayes, KNearest Neighbor, Support Vector
Machine, Random Forest, Decision Tree, and ensemble clas-
sifiers are the ones to be explored. There was no significant
improvement in the performance so raw data will be used
directly without the NLP space-based processing done in
the previous section. Tfidf vectorizer will be used on this
data for vectorization purposes. The cross-validation value
is maintained at 5. Table 6 shows the model parameters and
their performance.

Except for the improvement of the Linear SVC model,
where accuracy improved to 47.61%, the rest of the models
are still not doing well. Ensembling the best models among
these will be explored for the data used here. Stacking ensem-
ble modeling is tried in the next section. There will be level
0 and 1 models; a stacking classifier combines the models

90604

TABLE 5. Model performance in terms of accuracy.

Model Accuracy
Linear SVC 38.34%
Logistic Regression 32.51%
Multinomial NB 24.69%
Random Forest Classifier 18.72%

from levels 0 and 1. The logistic regression model is used as
alevel 1 model, and the rest are configured as a level 0 model.
Data processing is kept to raw data being processed with the
Tfidf vectorizer.

Repeated Stratified KFold method from sklearn’s model
selection library is used to configure the ‘cv’ parameter for
the modeling. Parameter set for ‘RepeatedStratifiedKFold’
are ‘n_splits of 10 and ‘n_repeats’ of 3. ‘cross_val_score’
method from sklearn’s model selection library is used to gen-
erate scores to evaluate the model. This method uses param-
eters, ‘model,” ‘input data,” ‘label data,” ‘scoring methods,’
and ‘cv’ value. The scoring method used is accuracy, and the
cv value gets generated from the ‘RepeatedStratifiedKFold’
method. Performance of various models with their parameter
configuration is provided in table 7.

In the first round of stacking with all models, accu-
racy was poor at 0.2%. As per the literature review, deci-
sion tree, neighbors, and Logistics regression has performed
well in a similar setup. The stacking of these models
improved the performance to 44.6%. Individual model per-
formances of Logistic Regression, Decision Tree classi-
fier, and Support Vector Classifier show better performance.
However, removing KNeighbors and adding a Support Vector

VOLUME 10, 2022

R. R. Althar et al.: Automated Risk Management Based Software Security Vulnerabilities Management

IEEE Access

TABLE 6. Model parameters and its performance in accuracy.

Model Parameter Accuracy
Random Forest Classifier n_estimators=200, max_depth=3 24.01%
Multinomial Naive Bayes Default parameters 30.25%
KNeighbors Classifier n_neighbors=5, metric="euclidean’ 37.24%
Linear SVC Default parameters 47.61%
Decision Tree Classifier criterion "gini", max_depth=3, 13.92%
min_samples;ea f = 5%
TABLE 7. Model’s parameter configuration and performance.
Models Parameters Accuracy]S)tar.lde}rd
eviation
Logistic Regression Default parameters 41.7% 2.9%
KNeighborsClassifier Default parameters 38.6% 3.5%
Decision TreeClassifier Default parameters 46.7% 3.7%
Support Vector Classifier Default parameters 43.5% 3.4%
GaussianNaive Bayes Default parameters 37.1% 4.1%
Stacking (All Models) Default parameters 0.2% 0.4%
Stacking (Decision Tree,
KNeighbors,gLogistic Regression) Default parameters 44.6% 3.2%
Stacking (Logistic Regression,
Decision Tree classifier and Default parameters 0.2% 0.4%
Support Vector Classifier)
Stacking(Logistic Regression,
SI?] ;Cpl(s)lr?l{/gf:rcéﬁi?ﬁi’r Default parameters 44.9% 2.8%
and Multinomial Naive Bayes
Multinomial Naive Bayes Default parameters 28.6% 2.6%
XGBoost Classifier Default parameters 49.4% 3.9%
class_weight="None’, max_iter= 200,
LogisticRegression multi_class="ovr’, penalty= "none’, 50.6% 3.9%
solver= ’saga’, random_state=100
Decision Tree Classifier crlter’lonz’gml s S 41.3% 3.9%
max_features= auto’, splitter= "best
Srtlzc]l;l;c‘(’;gi:;giﬁrt;l{gg :;;:grn) Tuned as per parameters in previous 2 rows 38.2% 3.3%

classifier reduced stacking performance back to 0.2%. This
performance indicates the earlier combination was best. With
the best performers, Multinomial Naive Bayes is added, and
performance slightly improved to 44.9%, whereas Multino-
mial Naive Bayes performed at 28.6%. XG Boost classifier
took the performance to 49.4%, but this is computationally
expensive, so it would not be feasible. Logistic regression
and Decision tree classifier were fine-tuned with grid search
CV, and performance was 50.6% and 41.3%, respectively, but
stacking performance was reduced to 38.2%.

The original database had data across 63 CWEs categories.
Many of the CWEs categories had only a few data points
under them. This state resulted in an imbalanced dataset,
and models were poorly performing. The top 20 CWEs were
more prevalent upon discussion with application develop-
ment experts. These top 20 CWEs frequency of occurrence
was also observed to be high. Only 20 of the most occurring
CWE were shortlisted based on expert input. To improve
the prediction performance, more data was collected from
across other programs in the company. Three thousand two
hundred fourteen data points from across multiple programs
were collected for the 20 CWEs that were shortlisted. Among
all the above experiments conducted, the stacking model
of the Decision Tree classifier, KNeighbors classifier, and

VOLUME 10, 2022

Logistic Regression showed the best performance with 77.7%
accuracy and a standard deviation of 2.5%. The decision
tree classifier and KNeighbors were used at level 0, and the
Logistic Regression model was used at level 1 in the stacking.

Based on the variation of the occurrences of the CWEs
in the future, modeling must be fine-tuned to cover more
CWEs. Collaboration with experts is to be continued to study
the outcome of the current model. The experts must validate
predicted labels. Labeling of the data into appropriate CWEs
must be improved during validation. This ongoing effort will
help improve the prediction engine to a much better level.

Evaluation against the state-of-art: Work [37], utilizes
SMOTE, SVM with RBF kernel, and logistic regression
approaches utilizing Recordings of meetings between devel-
opers and customers from a software development com-
pany in the United States. Here they explore a classification
approach to figure out security vulnerabilities. They have
recorded the results of Precision at 70.8% and Recall at
18.3%.

Work [38] explored LDA and SVM approaches with Stack
Overflow dataset for classification of the security vulnera-
bilities from the data. The following results were produced.
For LDA, Precision was 70.33%, Recall was 77% [39], [40].
For SVM (Support Vector Machine), Precision was at 72%,

90605

IEEE Access

R. R. Althar et al.: Automated Risk Management Based Software Security Vulnerabilities Management

and Recall was at 77% [41]. Among all the above experiments
conducted, the stacking model of the Decision Tree classifier,
K-Neighbors classifier, and Logistic Regression showed the
best performance with 77.7% accuracy and a standard devia-
tion of 2.5%. Decision Tree classifier and K-Neighbors were
used at level 0, and the Logistic Regression model was used
at level 1 in the stacking. In comparison to these best works,
we would achieve better performance with a precision of 76%
and recall of 79%.

Methods used in the paper are briefed by starting with
the background of existing methods. We start from the
“Understanding threat modeling™ section, where there is an
exploration of automating some of the sub-processes using
machine learning. In the next section, ‘“Risk assessment
approach for threat modeling,” there is an exploration of
combining the conventional risk assessment method with the
threat modeling approach. This approach helps to leverage
the best of both approaches. In the section “Threat prediction
modeling,” the core proposal of our work is detailed.

In this section, ’Data Transformation and Modeling,” we
did a detailed study of the machine learning algorithms that
will fit in our architecture. Starting from basic machine learn-
ing algorithms to more advanced algorithms were explored.
A comparison of the performance of various experiments was
conducted. Models’ parameter tuning and the best combi-
nation of the parameters are explored in detail to arrive at
the best combination of parameters for models working well.
Table 7 provides a comprehensive view of all the models,
parameters, and performance. We also provide the best out-
come of the performance on our dataset.

Some of the methods used are as follows. TF-IDF is the
famous approach for weighing the terms in Natural Language
Processing. Logistic Regression, Random Forest Classifier,
and Support Vector Classifier are basic machine learning
approaches used for classification problems. Beautiful Soup
is a python library utilized for web scrapping from XML
and HTML pages. Tensor Flow is an open-source artificial
intelligence library that uses data flow graphs to build models.
Keras is a neural network library that provides high-level
APIs for building and training models. XG Boost stands
for eXtreme Gradient Boosting and is a supervised learning
library with parallel processing capabilities. CNN is an arti-
ficial neural network for processing image data. Ensemble
classifiers help to improve machine learning outcomes by
combining various models.

IX. CONCLUSION

In this exploration, the focus was to build a quantitative
threat modeling approach. It is essential to use the knowledge
prevalent in the software development processes and from
across industries. The information available from the indus-
try has been overwhelming for the software development
team to leverage. Approaches discussed in this paper will
help make this information available as and when needed.
Security challenges are faced depending on the business
domain in which the industry is operating. In this study title,

90606

the insurance business domain is the focus area. The title
insurance business domain is unique from other branches
of the insurance business. Software development processes
following the agile development model also provide differ-
ent set-ups in which security improvements can be focused.
Ongoing calibration of this system is needed to strengthen the
system.

It is essential to calibrate the data store for identifying the
right CWE:s in the software development processes. Identi-
fication of all security-related events is also another crucial
aspect. All these calls for appropriate education of the soft-
ware development communities on security practices.

These proposed systems need to adapt and learn from
dynamic changes in the industry. There are new vulnerabili-
ties that are discovered in the industry regularly. The system
and people need to be up to date on these dynamics of security
issues. This work contributes to establishing an integrated and
automated approach for software threat modeling. Studies of
conventional threat modeling and security risk assessment are
conducted, and the best of both are brought together with
machine learning approaches. Machine learning approaches
are customized to get better results than other related work
done earlier. We have demonstrated a machine learning archi-
tecture appropriate to the subject under study and one that
shows promising results with available data.

X. FUTURE STUDY

This study is limited to looking at software systems without
looking at the category to which the software system belongs.
Visibility into the class or category of the software system and
study-specific to those classes can make the outcome more
effective. This area is a good one for future research. Model-
ing conducted in the study is generic; exploring the machine
learning models that can leverage the contextual information
from the data can make the experiments further stronger. This
area must be developed in future studies. The agile software
development model and security-related controls in software
development may have varied objectives. These objectives
are not analyzed concerning each other as part of our study.
Putting these together and aligning the work will help to
optimize the framework further and needs focus in future
studies. Our work is also limited to building larger datasets to
leverage the capabilities of the deep learning methods. This
area can be a focus for future studies. Imbalanced datasets
are another area that needs focus regarding security-related
data and machine learning approaches. There are many cat-
egories of security threats that are less frequent, but when
they occur, they will impact badly; this needs to be explored
further. Unsupervised anomaly detection methods would help
bring in more efficiency in this research area and need
exploration.

XI. DECLARATIONS

A. AVAILABILITY OF DATA AND MATERIALS

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

VOLUME 10, 2022

R. R. Althar et al.: Automated Risk Management Based Software Security Vulnerabilities Management

IEEE Access

B. COMPETING INTERESTS

This article does not contain any studies with human partic-
ipants performed by any of the authors. There is no conflict
of interest between authors.

REFERENCES

[1]

[4]

[5]

[6]
[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

N. G. Eapen, A. R. Rao, D. Samanta, N. R. Robert, R. Krishnamoorthy,
and G. H. Lokesh, “Security aspects for mutation testing in mobile appli-
cations,” in Cyber Intelligence and Information Retrieval (Lecture Notes
in Networks and Systems), J. Manuel, R. S. Tavares, P. Dutta, S. Dutta, and
D. Samanta, Eds. Singapore: Springer, 2022, pp. 17-27.

P. K. Singh, “Data with non-Euclidean geometry and its characterization,”
J. Artif. Intell. Technol., vol. 2, no. 1, pp. 3-8, Dec. 2021.

R. R. Althar and D. Samanta, “The realist approach for evaluation of
computational intelligence in software engineering,” Innov. Syst. Softw.
Eng., vol. 17, pp. 17-27, Jan. 2021.

A. Balakrishna and P. Mishra, “Modelling and analysis of static and modal
responses of leaf spring used in automobiles,” Int. J. Hydromechatron.,
vol. 4, no. 4, pp. 350-367, 2021.

1. H. Sarker, “Deep cybersecurity: A comprehensive overview from neural
network and deep learning perspective,” Social Netw. Comput. Sci., vol. 2,
no. 3, pp. 1-16, May 2021.

R. R. Althar, D. Samanta, D. Konar, and S. Bhattacharyya, Software Source
Code. Berlin, Germany: De Gruyter, July 2021.

S. C. Mondal, P. L. C. Marquez, and M. O. Tokhi, “‘Analysis of mechanical
adhesion climbing robot design for wind tower inspection,” J. Artif. Intell.
Technol., vol. 1, no. 4, pp. 219-227, Sep. 2021.

R. Gupta, S. Tanwar, S. Tyagi, and N. Kumar, “Machine learning models
for secure data analytics: A taxonomy and threat model,” Comput. Com-
mun., vol. 153, pp. 406440, Mar. 2020.

R. R. Althar and D. Samanta, “Building intelligent integrated devel-
opment environment for IoT in the context of statistical modeling for
software source code,” in Multimedia Technologies in the Internet of
Things Environment (Studies in Big Data), R. Kumar, R. Sharma, and
P. K. Pattnaik, Eds. Singapore: Springer, 2021, pp. 95-115.

L. Li, Q. Dong, D. Liu, and L. Zhu, “The application of fuzzing in web
software security vulnerabilities test,” in Proc. Int. Conf. Inf. Technol.
Appl., Nov. 2013, pp. 130-133.

N. Papernot, P. McDaniel, A. Sinha, and M. Wellman, ‘“Towards
the science of security and privacy in machine learning,” 2016,
arXiv:1611.03814.

A. R. Rao and D. Samanta, “A real-time approach with deep learn-
ing for pandemic management,” in Healthcare Informatics for Fighting
COVID-19 and Future Epidemics (EAl/Springer Innovations in Commu-
nication and Computing), L. Garg, C. Chakraborty, S. Mahmoudi, and
V. S. Sohmen, Eds. Cham, Switzerland: Springer, 2022, pp. 113-139.

T. V. Hahn and C. K. Mechefske, “Self-supervised learning for tool
wear monitoring with a disentangled-variational-autoencoder,” Int. J.
Hydromechatron, vol. 4, pp. 69-98, Mar. 2021.

J. B. Fraley and J. Cannady, ‘“The promise of machine learning in cyber-
security,” in Proc. SoutheastCon, Mar. 2017, pp. 1-6.

I. Williams and X. Yuan, “Evaluating the effectiveness of Microsoft threat
modeling tool,” in Proc. Inf. Secur. Curriculum Develop. Conf., Oct. 2015,
pp. 1-6.

D. S. Cruzes, M. G. Jaatun, K. Bernsmed, and I. A. Tgndel, “Challenges
and experiences with applying Microsoft threat modeling in agile devel-
opment projects,” in Proc. 25th Australas. Softw. Eng. Conf. (ASWEC),
Nov. 2018, pp. 111-120.

K. Goseva-Popstojanova and J. Tyo, “Experience report: Security vulner-
ability profiles of mission critical software: Empirical analysis of security
related bug reports,” in Proc. IEEE 28th Int. Symp. Softw. Rel. Eng.
(ISSRE), Oct. 2017, pp. 152-163.

M. Vilja, F. Heiding, U. Franke, and R. Lagerstrom, “Automating threat
modeling using an ontology framework,” Cybersecurity, vol. 3, no. 1,
pp. 1-20, Dec. 2020.

R. R. Althar and D. Samanta, “Application of machine intelligence-based
knowledge graphs for software engineering,” in Methodologies and Appli-
cations of Computational Statistics for Machine Intelligence. Hershey, PA,
USA: IGI Global, 2021.

Y. Xu, Y. Li, and C. Li, “Electric window regulator based on intelligent
control,” J. Artif. Intell. Technol., vol. 1, no. 4, pp. 198-206, Sep. 2021.

VOLUME 10, 2022

(21]

(22]

(23]

(24]

(25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

(34]

[35]

(36]

(37]

(38]

(39]

E. E. Heymann César and B. P. G. Miller Ruiz, “Automating threat
modeling through the software development life-cycle,” XXIII Jornadas
de Paralelismo, pp. 21-38, May 2012.

L. Williams, G. McGraw, and S. Migues, “Engineering security vulner-
ability prevention, detection, and response,” IEEE Softw., vol. 35, no. 5,
pp. 76-80, Sep./Oct. 2018.

P. K. Kudjo, J. Chen, S. A. Brown, and S. Mensah, “The effect of
weighted moving windows on security vulnerability prediction,” in Proc.
34th IEEE/ACM Int. Conf. Automated Softw. Eng. Workshop (ASEW),
Nov. 2019, pp. 65-68.

D. Jie, G. Zheng, Y. Zhang, X. Ding, and L. Wang, ‘““Spectral kurtosis
based on evolutionary digital filter in the application of rolling element
bearing fault diagnosis,” Int. J. Hydromechatron., vol. 4, no. 1, pp. 27-42,
2021.

O. Alhazmi, Y. Malaiya, and 1. Ray, “Security vulnerabilities in soft-
ware systems: A quantitative perspective,” in Data and Applications
Security XIX (Lecture Notes in Computer Science), S. Jajodia and
D. Wijesekera, Eds. Berlin, Germany: Springer, 2005, pp. 281-294.

L. Allodi, M. Cremonini, F. Massacci, and W. Shim, “Measuring the
accuracy of software vulnerability assessments: Experiments with students
and professionals,” Empirical Softw. Eng., vol. 25, no. 2, pp. 1063—1094,
Mar. 2020.

G. Jabeen and L. Ping, ““A unified measurable software trustworthy model
based on vulnerability loss speed index,” in Proc. 18th IEEE Int. Conf.
Trust, Secur. Privacy Comput. Commun./13th IEEE Int. Conf. Big Data
Sci. Eng. (TrustCom/BigDataSE), Aug. 2019, pp. 18-25.

W. Xiong, M. Giilsever, K. M. Kaya, and R. Lagerstrom, “A study of
security vulnerabilities and software weaknesses in vehicles,” in Secure IT
Systems (Lecture Notes in Computer Science), A. Askarov, R. R. Hansen,
and W. Rafnsson, Eds. Cham, Switzerland: Springer, 2019, pp. 204-218.

A. Jpsang, M. @degaard, and E. Oftedal, “Cybersecurity through secure
software development,” in Information Security Education Across the
Curriculum (IFIP Advances in Information and Communication Technol-
ogy), M. Bishop, N. Miloslavskaya, and M. Theocharidou, Eds. Cham,
Switzerland: Springer, 2015, pp. 53-63.

A. Sadeghi, N. Esfahani, and S. Malek, ““Mining the categorized software
repositories to improve the analysis of security vulnerabilities,” in Funda-
mental Approaches to Software Engineering (Lecture Notes in Computer
Science), S. Gnesi and A. Rensink, Eds. Berlin, Germany: Springer, 2014,
pp. 155-169.

J. M. Kizza, “Introduction to computer network vulnerabilities,” in Guide
to Computer Network Security (Computer Communications and Net-
works), J. M. Kizza, Ed. Cham, Switzerland: Springer, 2020, pp. 87-103.
S.Zhang, D. Caragea, and X. Ou, “An empirical study on using the national
vulnerability database to predict software vulnerabilities,” in Database
and Expert Systems Applications (Lecture Notes in Computer Science),
A. Hameurlain, S. W. Liddle, K.-D. Schewe, and X. Zhou, Eds. Berlin,
Germany: Springer, 2011, pp. 217-231.

U. Erlingsson, Y. Younan, and F. Piessens, ‘“‘Low-level software security
by example,” in Handbook of Information and Communication Security,
P. Stavroulakis and M. Stamp, Eds. Berlin, Germany: Springer, 2010,
pp. 633-658.

L. Ben Othmane, G. Chehrazi, E. Bodden, P. Tsalovski, and A. D. Brucker,
“Time for addressing software security issues: Prediction models and
impacting factors,” Data Sci. Eng., vol. 2, no. 2, pp. 107-124, Jun. 2017.

F. Massacci, S. Neuhaus, and V. H. Nguyen, “After-life vulnerabilities:
A study on Firefox evolution, its vulnerabilities, and fixes,” in Engi-
neering Secure Software and Systems (Lecture Notes in Computer Sci-
ence), U. Erlingsson, R. Wieringa, and N. Zannone, Eds. Berlin, Germany:
Springer, 2011, pp. 195-208.

CWE. Common Weakness Enumeration. Accessed: Oct.
[Online]. Available: https://cwe.mitre.org/

P. Rodeghero, S. Jiang, A. Armaly, and C. McMillan, “Detecting user
story information in developer-client conversations to generate extractive
summaries,” in Proc. IEEE/ACM 39th Int. Conf. Softw. Eng. (ICSE),
May 2017, pp. 49-59.

A. Ahmad, C. Feng, M. Khan, A. Khan, A. Ullah, S. Nazir, and A. Tahir,
“A systematic literature review on using machine learning algorithms for
software requirements identification on stack overflow,” Secur. Commun.
Netw., vol. 2, pp. 107-124, Jun. 2017.

A. Ahmad, “Research on comprehending software requirements on
social media,” Technol. Res., School Comput. Sci. Technol., Austria,
Tech. Rep. 42, 2018.

20, 2021.

90607

IEEE Access

R. R. Althar et al.: Automated Risk Management Based Software Security Vulnerabilities Management

[40] A. Ahmad, C. Feng, K. Li, S. M. Asim, and T. Sun, “Toward empirically
investigating non-functional requirements of iOS developers on stack over-
flow,” IEEE Access, vol. 8, pp. 501-506, 2019.

[41] M. Xiao, G. Yin, T. Wang, C. Yang, and M. Chen, “Requirement acquisi-
tion from social Q&A sites,” in Requirements Engineering in the Big Data
Era. Cham, Switzerland: Springer, 2015, pp. 64-74.

RAGHAVENDRA RAO ALTHAR received the
bachelor’s degree in mechanical engineering from
the VTU and the M.B.A. degree in operations
management from Indira Gandhi Open Univer-
sity. He is currently pursuing the Doctor of Phi-
losophy degree in data science from CHRIST
(Deemed to be University), Bengaluru, India. He is
also working as a Quality Management Specialist
with the Software Development Team of Insurance
domain-based company. For last 15 years, he has
been working on building quality management systems for various domains
like manufacturing, retail, telecom and software industries, based on interna-
tional standards like ISO, Six Sigma, and best global practices for industry.
Adopting best practices of data science to optimize software development
processes and connected business processes has been the recent focus area.
He is a Six Sigma Black Belt Certified and a Quality Management & Infor-
mation Security Audit Standards Certified Practitioner. His research interest
includes application of data science in software development processes.

DEBABRATA SAMANTA (Member, IEEE)
received the Ph.D. degree in computer science and
engineering from the National Institute of Tech-
nology, Durgapur, India, in the area of SAR image
processing. He is currently working as an Assis-
tant Professor with the Department of Computer
Science, CHRIST (Deemed to be University),
Bengaluru, India, and he is also a Co-ordinator
of the IPR Cell, since December 2019. He is
keenly interested in interdisciplinary research and
development and has experience spanning fields of SAR image analysis,
video surveillance, heuristic algorithm for image classification, deep learning
framework for detection and classification, blockchain, statistical modeling,
wireless ad hoc networks, natural language processing, and V2I commu-
nication. He has successfully completed six consultancy projects. He has
received funding 8,110 USD under Open Access, Publication Fund. He has
received funding under the International Travel Support Scheme in 2019 for
attending conference in Thailand. He has received the Travel Grant for
Speaker in Conference, and Seminar, for two years, from July 2019. He is
the owner of 21 patents (three design Indian patent and two Australian
patent granted, and 16 Indian patents published) and two copyright. He has
authored or coauthored over 197 research papers in international journals
(SCI/SCIE/ESCI/Scopus) and conferences, including IEEE, Springer, and
Elsevier Conference proceeding. He is the coauthor of 13 books and the
co-editor of 11 books, available for sale on Amazon and Flipkart. He has
presented various papers at international conferences and received best paper
awards. He has authored or coauthored of eight book chapters. He also serves
as an Acquisition Editor for Springer, Wiley, CRC, Scrivener Publishing
LLC, Beverly, USA, and Elsevier. He is an Associate Life Member of
Computer Society of India (CSI) and a Life Member of the Indian Society
for Technical Education (ISTE). He has received ‘“‘Scholastic Award” at
the 2nd International Conference on Computer Science and IT Application,
CSIT-2011, Delhi, India. He is a convener, keynote speaker, session chair,
co-chair, publicity chair, publication chair, advisory board, and technical
program committee members in many prestigious international and national
conferences. He was an invited speaker at several institutions.

90608

MANJIT KAUR (Senior Member, IEEE) received
the Master of Engineering degree in information
technology from Punjab University, Chandigarh,
India, in 2011, and the Ph.D. degree from the
Thapar Institute of Engineering and Technology,
Patiala, India, in 2019. She worked as an Assis-
tant Professor in three well-known universities
of India, such as Chandigarh University, Mohali,
India; Manipal University Jaipur, Jaipur, India; and
Bennett University, Greater Noida, India. In 2021,
she moved to the School of Electrical Engineering and Computer Science,
Gwangju Institute of Science and Technology, Gwangju, South Korea, where
she is currently affiliated. She was in the top 2% list issues by ‘“World
Ranking of Top 2% Scientists,” in 2021. She was part of the 14 Web
of Science/Scopus indexed conferences. Her research interests include
post-quantum cryptography, fully homomorphic encryption, and privacy-
preserving machine learning, wireless sensor networks, digital image pro-
cessing, and metaheuristic techniques.

DILBAG SINGH (Senior Member, IEEE) received
the Ph.D. degree in computer science and engi-
neering from the Thapar Institute of Engineering
and Technology, Patiala, India, in 2019. He worked
as an Assistant Professor in three well-known uni-
versities of India, such as Chandigarh University,
Mohali, India; Manipal University Jaipur, Jaipur,
India; and Bennett University, Greater Noida,
India. In 2021, he moved to the School of Electri-
cal Engineering and Computer Science, Gwangju
Institute of Science and Technology, Gwangju, South Korea, where he is
currently affiliated. He was in the top 2% list issues by “World Ranking of
Top 2% Scientists,” in 2021. He was part of the 11 Web of Science/Scopus
indexed conferences. He has published more than 80 research articles in
SCI/SCIE indexed journals. He has also submitted five patents and has
published three books and two book chapters. His H-index is 31. His research
interests include image processing, computer vision, deep learning, meta-
heuristic techniques, and information security. He has acted as a Lead Guest
Editor/an Editorial Board Member of many SCI/SCIE indexed journals, such
as Journal of Healthcare Engineering, Mathematical Problems in Engineer-
ing, and Journal of Intelligent and Fuzzy Systems.

HEUNG-NO LEE (Senior Member, IEEE)
received the B.S., M.S., and Ph.D. degrees in
electrical engineering from the University of Cal-
ifornia at Los Angeles, Los Angeles, CA, USA,
in 1993, 1994, and 1999, respectively. He was
with HRL Laboratories, LLC, Malibu, CA, USA,
as a Research Staff Member, from 1999 to 2002.
From 2002 to 2008, he was an Assistant Profes-
sor with the University of Pittsburgh, Pittsburgh,
PA, USA. In 2009, he moved to the School of
Electrical Engineering and Computer Science, Gwangju Institute of Science
and Technology, Gwangju, South Korea, where he is currently affiliated.
His research interests include information theory, signal processing the-
ory, blockchain, communications/networking theory, and their application
to wireless communications and networking, compressive sensing, future
internet, and brain—computer interface. He has received several prestigious
national awards, including the Top 100 National Research and Development
Award in 2012, the Top 50 Achievements of Fundamental Research Award
in 2013, and the Science/Engineer of the Month (January 2014).

VOLUME 10, 2022

