
Received 30 May 2022, accepted 17 June 2022, date of publication 21 June 2022, date of current version 27 June 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3185109

Verifying Maze-Like Game Levels With Model
Checker SPIN
ONUR TEKIK 1, ELIF SURER 2, (Member, IEEE), AND AYSU BETIN CAN 1
1Department of Information Systems, Graduate School of Informatics, Middle East Technical University, Ankara 06800, Türkiye
2Department of Multimedia Informatics, Graduate School of Informatics, Middle East Technical University, Ankara 06800, Turkey

Corresponding author: Aysu Betin Can (betincan@metu.edu.tr)

ABSTRACT This study presents a framework that procedurally generates maze-like levels and leverages an
automated verification technique called model checking to verify and produce a winning action sequence
for that level. By leveraging the counterexample generation feature of the SPIN model checker, one or
more solutions to the level-in-test are found, and the solutions are animated using a video game description
language, PyVGDL. The framework contains four behavioral templates developed to model the logic
of maze-like puzzle games in the modeling language of SPIN. These models automatically are tailored
according to the level-in-test. To show the proposedmethodology’s effectiveness, we conducted five different
experiments. These experiments include performance comparisons in level-solving between the proposed
and existing methodologies —A∗ Search and Monte Carlo Tree Search— and demonstrations of the use
of the proposed approach to check a game level with respect to requirements. This study also proposes a
pipeline to generate maze-like puzzle levels with two levels of cellular automata.

INDEX TERMS Formal verification, model checking, procedural content generation, puzzle games, video
game description language.

I. INTRODUCTION
Procedural generation of video game levels, which is the
automated process of algorithmically creating game levels,
has been an essential topic in game research [1]. Part of this
importance comes from the ultimate goal of having unlimited
content for games. However, having unlimited content has its
downsides, such as the resources needed to verify whether
a level fits a specific requirement. As in the generation of
the game levels, verification of the game levels also requires
computational resources.

A common practice for verifying whether a game level
meets specific requirements is called ‘‘Playtesting,’’ which
may include intense human labor or computational time since
this process is not automated. It can be semi-automated [2],
or it can be done via memory and CPU-intensive methods
[3], [4]. This paper proposes another method for verifying
maze-like game levels —an automated and model-based
approach.

Another practice used to verify a game is having automated
tests. Although automated tests can speed up the process sig-
nificantly, test automation is still labor-intensive in designing

The associate editor coordinating the review of this manuscript and

approving it for publication was Yang Liu .

and coding test scenarios. Model-checking is a push-button
technique similar to automated tests. A comparative study
showed that model checking is compatible, even outperforms,
the bug-finding capabilities of testing tools [5]. Using amodel
checker requires creative effort in modeling the behavior of a
system similar to the creative effort required in designing test
scenarios. This paper presents behavioral models designed
for puzzle games to reduce such effort.

A puzzle game is a system that has a set of game
rules that can be rendered into a behavioral model, an ini-
tial configuration, which in this case is a game level,
and game-ending or game-breaking conditions that can
be specified in a linear temporal logic (LTL) formula.
All these characteristics make it possible to model and
formally verify puzzle games with the help of a model
checker [6]. One advantage of model checking is automated
counterexample generation when a sequence of actions
violates a specified requirement. We leverage this feature
to generate game-winning action sequence by instructing
the model checker to verify that the winning state is
unreachable.

We focus on three puzzle games: maze for single player,
racing in a maze against a non-player character (NPC), and
Sokoban game, in which the player must push several boxes

66492 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-5720-3728
https://orcid.org/0000-0002-0738-6669
https://orcid.org/0000-0002-4828-0190
https://orcid.org/0000-0001-7300-9215

O. Tekik et al.: Verifying Maze-Like Game Levels With Model Checker SPIN

into a set of designated storage locations without getting itself
or the boxes stuck [7]. The behavioral logic of these games is
modeled PROMELA, the input language of the SPIN model
checker, as our first and foremost contribution. There is one
model for each game except Sokoban. There are two models
for Sokoban, one that considers every sprite position change
and one that considers only the changes in positions of boxes.
Given a game level, our framework tailors the model based on
the avatar’s initial map structure and position and then checks
game requirements, including that the game is winnable. The
counterexample generated by themodel checker is not human
readable. The framework translates this trail of execution into
automatically playable instructions on the game environment
as our next contribution.

The games in this paper are from the General Video
GameArtificial Intelligence (GVG-AI) framework [8], which
contains hundreds of two-dimensional games that are defined
in Video Game Description Language (VGDL) [9]. The
GVG-AI framework and VGDL are frequently used in
computational intelligence and game research. Using cellular
automata, our framework generates maze and race game
levels defined in PyVGDL. The Sokoban game’s levels
were exported from the website by Garcia [10]. Then,
the behavioral model templates are automatically tailored
according to the game level and checked using SPIN. The
sequence generated by the model checker is translated into
actions playable on GVG-AI.

This study’s contributions can be summarized as follows:
This research presents an end-to-end pipeline to verify and
create maze-like puzzle games. The algorithmic contribution
focuses on modeling the game logic in detail —a crucial
abstraction— and simplifying the formulae automatically
based on this abstraction. The other contribution is the
application of SPIN to a new domain, gaming, and the
conversion of SPIN’s outputs into playable results. Besides,
this pipeline allows well-known algorithms and tools like
SPIN to be rapidly integrated into the proposed pipeline
while enabling the visualization of the results using tools like
GVG-AI. This visualization aspect is also essential because
SPIN is useful in software engineering; it is not widely used
outside critical systems because SPIN does not provide visual
outputs other than X-SPIN. The SPIN output is re-animated
as playable levels on GVG-AI, allowing game developers to
perceive the gameplay readily, and the solution is re-animated
with visual cues. Finally, we give a well-structured, push-
button solution based on game design-based attributes that
adhere to specific rules.

The rest of the paper is organized as follows. Section 2
presents preliminaries on cellular automata, model checker
SPIN, and the GVG-AI framework. Section 3 presents
the literature review. Section 4 presents our methodology
explaining the proposed pipeline starting from procedural
level generation and sprite placement, followed by proposed
behavioral models and verification of game-specific prop-
erties. Section 5 presents the experiments and their results.
Finally, Section 6 concludes the paper.

II. PRELIMINARIES
This section introduces preliminary material on cellular
automata, the model checker SPIN, PROMELA, and GVG-
AI, that are used and referenced in this study.

A. CELLULAR AUTOMATA
A cellular automaton consists of a grid of cells in a shape
that evolves through a number of steps. Each cell is in one
of a finite number of states. A cell’s next state is calculated
with a fixed rule, called a ‘‘state transition function,’’ which
includes the states of the cell itself and its neighbors. The state
transition function is applied to all cells simultaneously.

Types of cellular automata used in this study are elemen-
tary cellular automata [11] and a life-like cellular automaton
that can create maze-like levels from a random seed called
‘‘Maze’’ [12]. Elementary cellular automata are the most
straightforward kind of one-dimensional cellular automata.
The states of the cells are binary, zero and one. The cells
are put in a line, and the next state of any cell depends on
its two neighbor cells’ state and its own. Since three binary
inputs affect a binary output, there are limited variations of
elementary cellular automata, 2(2×2×2) = 256 in total. Those
rules are grouped into three different categories regarding the
output pattern. These categories are simple, oscillating, and
chaotic. Simple rules result in a stable end state, oscillating
rules result in an ending pattern with few states that repeat
stably, and chaotic rules result in a pattern that is partly stable
or oscillating but unpredictable at the same time.

‘‘Maze’’ is a life-like automaton that can be used to
generate a maze-like output [12]. Maze-like means that
its output includes long and connected corridors that can
be interpreted as a maze. The automaton works in the
Moore neighborhood, including four main neighbors and four
secondary neighbors (North, northeast, east, southeast, south,
southwest, west, and northwest).

B. MODEL CHECKING, LINEAR TEMPORAL LOGIC, SPIN,
AND PROMELA
Model-checking [13] is a computational technique used
to automatically verify concurrent systems that either are
finite-state or have finite-state abstractions. A behavioral
model of the system and its requirements are given to a model
checker as input. The model checker performs an exhaustive
search on the state-space of the submitted model to find a
sequence of execution that violates the requirement.

Requirements are expressed as temporal properties. One
popular way is using linear temporal logic (LTL) [14]. Linear
temporal logic formulae can be used to encode facts in time,
such as a condition that will never or eventually be true
or a condition that can never be true unless some other is.
An LTL formula consists of propositional variables, logic,
and temporal operators. Table 1 presents the most common
temporal operators.

In this paper, the model checker is SPIN [15], which
employs an automaton-theoretic model checking algorithm.

VOLUME 10, 2022 66493

O. Tekik et al.: Verifying Maze-Like Game Levels With Model Checker SPIN

TABLE 1. Temporal operators in linear temporal logic.

The automata used in the algorithm is called Büchi automata
which accept infinite words. In the model checking domain,
an infinite word is an infinite execution sequence generated
by the given system model. The algorithm works with
two automata. One automaton represents the model of the
system,while the other represents the LTL formula specifying
a requirement the system must satisfy. Vardi and Wolper
showed that any LTL formula could be translated into a Büchi
automaton [16] which recognizes all sequences that satisfy
the LTL formula.

The automaton-theoretic model checking algorithm is as
follows. LetM be the Büchi automaton recognizing all of the
execution sequences generated by the given system model.
Let also F be the Büchi automata accepting the complement
of the given LTL property we want the system to satisfy,
i.e., the requirement. Let L(B) represent the language of the
automata B. The system does not violate the given property
if L(M) ∩ L(F) = ∅, the empty language. If the result is
non-empty, then it is the execution sequence that is generated
by the system and violates the property. The result of the
intersection is a counterexample to be emitted by the model
checker. If the intersection is an empty language, then the
system model satisfies the property. The model checker
SPIN employs this algorithm in a space and time-efficient
manner [15].

SPIN, an open-source model checker tool, is a generic
verification system that supports the design and verification
of systems that include asynchronous processes [15]. SPIN
has been used to verify mission-critical software, including
medical device protocols and the automotive industry [17],
[18]. SPIN accepts correctness properties expressed in linear
temporal logic (LTL) and performs on-the-fly verifica-
tion based on the automata-theoretic foundation explained
above [19].

The input language of SPIN is called PROMELA (Process
or Protocol Meta Language) [19]. A system behavior is
modeled using this language. PROMELA is built to model
processes in parallel systems. It realizes Dijkstra’s Guarded

Command Language. PROMELA code is written in a way
where it can have more than one possible flow in a
conditionally controlled structure. If more than one guarding
condition is true at any point, this implies a non-deterministic
situation. If SPIN is instructed to make a single simulation
from the model, one of the possible flows is chosen with
an equally random chance. However, if verification is in
progress, as in our case, SPIN looks for every possible flow
at every choice —not a random choice—with the help of its
automata-theoretic model-checking algorithm. The language
also includes a communication structure between processes
called channels. A channel may either be a buffer-based
or a rendezvous-based channel with zero buffering ability.
A message sent to a rendezvous-based channel blocks the
execution of a process until another process receives the
message. This feature is used to model the synchronous
communication among processes. Another feature is that it
is possible to include C code snippets and C program files
to PROMELA code for additional capabilities. These C code
segments are accessible from the PROMELA side, and they
can access any variable or process on the PROMELA side.

SPIN has directives for enabling some optimizations.
These optimizations increase speed or reduce memory
usage by using various techniques. Some examples of these
directives are used in our work. The first one is using bitstate
hashing, reducing state-space table size, and increasing
memory effectiveness while searching. The second one is
disabling array boundary violation checks, increasing the
verification speed of SPIN. The third one is to generate more
than one unique counterexample if possible. The last is a
run-time option instructing SPIN to return a counterexample
with the smallest number of state changes to generate the
shortest solutions.

C. GVG-AI AND PyVGDL
GVG-AI is a framework that provides a common open-source
platform for artificial intelligence and game researchers with
hundreds of single and multi-player 2-D games [8]. To have a
standard notation, a common Video Game Description Lan-
guage (VGDL) was proposed in 2013 [9], called PyVGDL.
Nowadays, the project has moved to PyVGDL 2.0 [20]. Two
different files define games in PyVGDL: one is a game rules
file, including sprites included in the game, how they are
represented in the game file, how they interact with each
other, and when the game terminates. The other is a level
file, a 2-D array representing sprites’ positionswhen the game
starts.

In our study, we have used PyVGDL to re-animate the
solutions found by our methodology. We have forked the
PyVGDL project on GitHub [20] to implement a predictable
non-player character (NPC) type for the games that need a
competitive and modelable opponent, such as the race game.
The NPC type follows the A∗ algorithm to chase a target and
a controller that takes all the moves it will do up-front. There
are two reasons for the implementation of that specific NPC.
The first is to make it predictable, making the same moves

66494 VOLUME 10, 2022

O. Tekik et al.: Verifying Maze-Like Game Levels With Model Checker SPIN

in the game model and engine. We gain consistency between
the actual game and its model by making it predictable. The
second reason is to benchmark the model-based solution
against a perfect opponent. By making its opponent play
optimally in a two-player game, we can benchmark the
optimality of the solution that the model-based approach
gathers.

III. LITERATURE REVIEW
Model-checking is a technique used for formally verifying
reactive and concurrent systems [13], [22]. The model
checking process includes modeling a system’s behavior
and then fully exploring this behavior with respect to
temporal logic formulae, where the formulae stand for system
requirements. Although solutions using the model-checking
approach tend to suffer from the exponential nature of the
model-checking problem [13], model checking is used to
study games, including major video game titles [23]–[26],
simple single-player [27], [28], or multi-player games [29].

Although verification of software, in general, is an active
area for research, verification of games is only partially
investigated. Research in games regarding formal verification
focuses on three main areas. The first of these areas is
verifying the game itself by verifying game rules. Verification
of a multi-player mobile game, Penguin Clash, is done with
a model checker by Rezin et al. [29]. The work is focused
on verifying the robustness and correctness of game rules.
The game is verified against four different basic formulae
that verify the game’s requirements using a model checker.
These requirements include both players’ basic collision
behavior and the winnability of the game. Also, the work
proposes a pipeline to create verified games by placing
a model-checking phase between game design and game
integration. However, the study is built for verifying the game
rules instead of content related to the game. Verification
of an RPG game specified in a domain-specific language
is done by Barroca et al. [30]. The game development is
done in a model-driven way. The developer creates a model
for a role-playing game as the starting point. Next, the
game model is transformed into a model to be verified in
an algebraic Petri net. After verification, the developer’s
model is transformed into code for a mobile game. Although
the model is promising, the necessary steps to construct a
successful game model are not explicitly stated. The game
of Bomberman is verified using a discrete-event simulation
in a model checking environment in another study [27].

Another area is automated game balancing. A multi-
player game where a player picks a strategy against others
is expected to balance strategies to have more player
excitement. If one way of playing the game is strictly better
than others, the other strategies become obsolete, and the
game can lose its variety. Kavangh et al. studied automated
game balancingwith the help of a probabilistic model checker
[28]. With the help of a model checker, their solution mimics
how a player adapts between different strategies in a chain
to see if any strategy is superior to others. Milazzo et al.

studied extracting successful strategies and balancing game
core mechanics with the help of statistical and probabilistic
model checkers [31]. The work includes three case studies
that answer a game design question via model-checking.

The final area of focus is verifying a storyline in a
story-driven game. Holloway [26] focuses on pointing out
logically incorrect parts in a game’s storyline before the
actual development of the game starts. Verifying educational
adventure video games with the help of model checking
is achieved by Moreno-Ger et al. [32]. The work focuses
on scene-based educational adventure games. After the
verification step, if the game fails in the model checker,
an animation of how the game failed is generated from the
counterexample trace from the model checker. However, our
study differs from this one in onemain aspect. Since the study
of Moreno-Ger et al. focused on adventure games built on a
scenario, there are no fixed game rules like our target genre.
So, in their study, every different scenario must be verified
with a different model. On the contrary, our study is focused
on puzzle games, which have a fixed rule set and a level
configuration. Thus, unlike the study of Moreno-Ger et al.,
our target genre allows us to generate models from template
models.

We used cellular automata to generate maze-like game
levels in our main pipeline. Usage of cellular automata on
procedural generation of game levels is also one of the
popular research areas over the last decade [33]–[35]. The
main reasons for the usage of cellular automata are their
simplicity and reliability [33]. A simple cellular automata-
based algorithm is evaluated for its performance in generating
tunnel-based maps by Johnson et al. [33]. Cellular automata
are also used with the help of genetic algorithms to generate
mazes [34], [35]. There is also a pure cellular automata
solution proposed [12]. Another methodology proposed
to generate game levels includes multi-layered cellular
automata and Hilbert curves [36]. There is also a different
usage of cellular automata called self-referencing cellular
automata [37]. The self-referencing cellular automata are
developed to compensate for the lack of feedback between
the elementary cellular automata rules and their output. The
rule depends on the output line-by-line. The output and the
rule of cellular automata may oscillate mutually, get fixed
in a mutual point, or the output may be oscillating with a
fixed rule. However, the output of a self-referencing cellular
automaton is not fit to be a puzzle level. Cellular automata are
also used in machine learning literature. A cellular automaton
type called Classificational Cellular Automaton was used as
a classifier in a Multiple Classifier System [38].

We used three games in our study. These games are a
single-player maze, a multi-player maze, and Sokoban. Both
mazes and Sokoban are well-studied games from various
perspectives. Maze is a game where the player tries to move
on to a specific tile to exit a labyrinth-like level. Maze solving
is mainly studied as a path-finding problem, and according to
Goyal et al., two of the most effective methods are identified
as the A∗ search algorithm and the Dijkstra’s algorithm

VOLUME 10, 2022 66495

O. Tekik et al.: Verifying Maze-Like Game Levels With Model Checker SPIN

FIGURE 1. Overview of the proposed pipeline.

[39]. We used the A∗ search algorithm as a baseline in our
research for comparing our proposed method between these
two methods.

Sokoban is a game that consists of a pusher who must
push several boxes into a set of designated storage locations
without getting itself or the boxes stuck [7]. Sokoban is
a game that is proved to be an NP-hard and PSPACE-
complete problem [40], [41]. Usage of pattern databases is
salvaged for finding optimal solutions to Sokoban levels by
Pereira et al. [42]. Pattern databases store the shortest
distances from abstract states to abstract goal states, and they
are used to find optimal heuristic functions by introducing
an intermediate goal state. Another successful method
for solving Sokoban levels is the iterative-deepening A∗,
proposed in [43]. However, to the best of our knowledge,
no study in the literature uses a model-based approach to
solve any of these games.

IV. METHODOLOGY
We have developed a framework that procedurally generates
a maze-like level and verifies whether it fits the requirements
provided. Four different template models are proposed for
the games we used in our study. These models represent the
game rules in the language of the model checker. To verify
whether a level is solvable or satisfies the game designer’s
requirement, the template game model is configured with
the level-in-test. The verification output is re-animated as
playable levels on GVG-AI, allowing game developers to
perceive the gameplay.

The games that we used with our pipeline are:

• Maze: A single-player maze game that has only one exit
point. The maze contains only walls and floor, and there
are no items to interact with other than the exit point.

• Race: Amaze game in which the player is racing to solve
the maze against an NPC that uses an A∗ algorithm to
find an exit point. The maze consists of walls and floors
only, and there are no items to interact with except the
exit point.

• Sokoban: A puzzle video game in which a player
pushes around boxes in a warehouse to place them
in predetermined positions. The player wins when all
boxes are in their correct positions. The game has a few
variants. The Sokoban variant is used in this work where
the player tries to fill holes with boxes around. This is
also the variant presented with PyVGDL as an example
game.

The proposed pipeline in Figure 1, which is explained
in detail in the following sections, works as follows: First,
amaze level is generatedwith the help of two levels of cellular
automata. The width of the level is determined from a random
line that the user feeds, and the height of the level is taken
equal to its width, making levels square. The line fed to the
pipeline is also used as a random seed for the maze level
generation. Then key sprites are placed in the maze to create
a game level. Next, the template model corresponding to the
game is configured according to the generated level. This
configuration includes embedding the level map and sprite
locations in the PROMELA code’s initialization process. The
requirements to be satisfied are also defined in LTL at this
stage. By default, the aim is to find a winning sequence of
actions, so the formula states that the game level can never be
won. At this step, custom game design properties such as the
player having to make turns at least N times to win the game
can also be given as an LTL formula. Next, the model checker
SPIN is run to emit a trail containing a sequence of moves
to be performed to win the level or show how the custom
property holds. Finally, PyVGDL plays these moves on the

66496 VOLUME 10, 2022

O. Tekik et al.: Verifying Maze-Like Game Levels With Model Checker SPIN

FIGURE 2. Steps of procedural maze generation. (a) The random line,
(b) The output of the first level of cellular automata (c) The output of the
second level of cellular automata.

map to re-animate how the requirement is satisfied. Also, the
score obtained by the gameplay is collected and displayed.
The pipeline that includes a level generator and a level verifier
is available at [44].

A. LEVEL GENERATOR
This phase consists of two steps: maze generation using
cellular automata and sprite placement.

1) MAZE GENERATION
Our level generation module uses an elementary cellular
automaton implementing rule 150, one of the chaotic rules
according to Wolfram [11]. The cells can be in one of two
states, a floor or a wall, being 0 and 1, respectively. We used
empty cells for padding, and we started the automaton with a
randomly generated line of full and empty cells. Every next
state of the cells is appended below the starting line until the
level becomes a square. The output looks like a maze, but it
is too rough. To make it more maze-like, we applied another
level of operation.

The next component of the cellular automaton is a life-
like cellular automaton specialized to generate maze-like
outputs [12]. The rule is abbreviated as B3/S12345 and
works as follows. If a cell is a floor and has precisely three
Moore neighbors marked as a wall, it turns into a wall; if a
wall has one to five wall cells in its Moore neighborhood,
it stays as a wall. The rule is calculated repeatedly on the
maze candidate until the changes between generations are
negligible. For a 24 by 24 maze, this value is taken as four or
less.

Figure 2 presents the three main steps of maze generation.
Figure 2-a shows a random line to start generation. Figure 2-b
shows the output of the elementary cellular automaton with
rule 150. As seen, the output is quite complex and contains
closed rooms with sawtooth-like walls. To generate a more
maze-like level, B3/S12345 rule is applied. The final output
of the maze generation step is in Figure 2-c. The result is
a maze-like level with lots of corridors with straight walls.
Also, the output contains no closed rooms.

FIGURE 3. Generated maze-like levels with sprite placement (a) for maze,
(b) for race.

2) SPRITE PLACEMENT
Wemade different placement choices for each different game
type. For the game ‘‘Maze,’’ we place the avatar and the exit
on the two-floor cells that are most far away in Manhattan
distance, which is often on opposite ends of one of the
diagonals of the level. For the game ‘‘Race,’’ the avatar and
the opponent are placed on the two-floor cells that are most
distant, and the exit portal is placed at an equal distance to
both sprites in a beeline. Since the level is not symmetrical
and the opponent moves optimally, using A∗ search, some
generated levels are unwinnable.

B. BEHAVIORAL MODELS
We developed four behavioral model templates. The first one
encodes behaviors of ‘‘Maze’’ levels. There exists only one
process for the game, representing the avatar. The avatar
process includes only a main loop, and it makes a non-
deterministic, navigation-based decision every iteration of the
loop until the avatar reaches the exit. This decision moves
in one of the four directions: up, down, left, or right. The
non-determinism represents possibilities in the game play.
Recall that the model checker will investigate all possibilities,
including all choices made, during verification; therefore,
the model does not have to keep track of which moves
have been made. Since there is no rule against the total
number of moves, there is no way to lose a valid maze level.
However, a maze level can never be won if poorly generated
or designed, having no way to reach an exit.

The PROMELA model of the avatar process is shown in
Figure 4. In the code, the movement and updating of the
map are inside an atomic block. Recall that this language
is for parallel processes, and the keyword atomic tells
the model checker to execute the statements in the block
as single instruction without considering possible process
interleavings. Atomic blocks make the search more efficient
as it is considered one transition. This feature is used to
increase the performance of the model checker for this game.

Configuring the model means adding the map initializing
process according to the maze game level generated and
defining LTL properties representing the game requirements.
One solution produced with a configured version of the maze

VOLUME 10, 2022 66497

O. Tekik et al.: Verifying Maze-Like Game Levels With Model Checker SPIN

FIGURE 4. The avatar process model for the maze game.

model is given in Figure 5. The path to take by the avatar in
this solution is highlighted with the color white, starting from

FIGURE 4. (Continued.) The avatar process model for the maze game.

FIGURE 5. An example solution produced by the maze model. Avatar’s
starting position is marked with a white square. The exit is marked with a
green square. The path to exit is drawn as a white path. The number
indicates the number of moves done so far. For example, the avatar
reached to exit in 52 moves.

the white square to the green one. The number of moves that
it takes to arrive at every corner on the path is given in the
figure.

The second behavioral model template is for the ‘‘Race’’
game levels. This model template is navigation-based. The
model includes two process types, one representing the
avatar and one representing the non-player character (NPC)
opponent. The map of the level is shared among these
two processes. The ‘‘Race’’ game is a turn-based game.

66498 VOLUME 10, 2022

O. Tekik et al.: Verifying Maze-Like Game Levels With Model Checker SPIN

FIGURE 6. Process type definition to model the avatar behavior in the
race game.

To achieve a turn-based model, two rendezvous PROMELA
channels are used. After making a move, the avatar process

FIGURE 6. (Continued.) Process type definition to model the avatar
behavior in the race game.

passes its turn to the opponent by sending a signal to
the opponent’s channel. The opponent-process receiving the
signal performs a move while the avatar is waiting on the
other side of its channel to get the turn. The processes
pass the turn to each other after making decisions until one
of them reaches the exit point. Figure 6 gives the process
description of the avatar for ‘‘Race’’ levels. The avatar
process makes non-deterministic, navigation-based decisions
in every iteration of its loop, similar to the ‘‘Maze’’ model.
Figure 7 gives the process description of the opponent. The
opponent process uses the A∗ search algorithm. Since we
use PyVGDL to replay the action sequence generated by
the model checker, the opponent has to execute the same
algorithm both in the model and in the re-animation of the
game. Therefore, a C code snippet implementing the A∗

search algorithm is inserted into the process definition of the
opponent.

After configuring this template with the map generated
in the previous step of the pipeline, the resulting model
describes possible behaviors to be produced by the turn-based
race game with an A∗ opponent. Recall that the model
checker does not select one of the non-deterministic choices
but examines all possible choices using the automata-
theoretic model checking algorithm given in Section II.

A solution produced by the ‘‘Race’’ model is in Figure 8.
In the figure, the path taken by the avatar is highlighted with
white, and the path taken by the opponent is highlighted with
red. Also, in the figure, the number of moves that both players
need to do to arrive at every corner is given.

The last two behavioral model templates are for Sokoban
levels. One is a navigation-based model, while the other
one only considers the moves that change a place of a box,
called the push-level model. The navigation-based model is
similar to the models introduced above, except this time,
the model checks if moves can be used to solve a Sokoban
map. An avatar process makes navigation-based decisions in

VOLUME 10, 2022 66499

O. Tekik et al.: Verifying Maze-Like Game Levels With Model Checker SPIN

FIGURE 7. Process type definition to model the opponent behavior in the
Race game.

a loop and updates the map array representing the game level.
Navigation can result in a basic movement or a push. The
navigation-based model for solving Sokoban levels is given
in Figure 9.

FIGURE 8. An example solution produced by using the race model. Green
cell is the exit. The white cell is the initial position of the Avatar. The red
cell is the initial position of the opponent. The paths of the avatar and the
opponent are shown in white and red lines, respectively. Avatar reached
the exit in 41 moves, whereas the opponent reached it in 42 moves.

For the navigation-based model, more challenging levels
become impossible to win because of the gigantic search
space of a PSPACE-complete game like Sokoban. Thus,
we adopted a more sophisticated approach to this specific
game presented by [7]. This model abstracts away the
moves that do not change the positions of any of the boxes.
Considering this abstraction, we proposed a push-level model
for reducing the search space. Like the other Sokoban model,
this model also defines a process to describe the avatar
behavior making decisions until the game ends. However, this
time, the decisions are about the pushes that the avatar can
make, instead of the basic navigation moves. Before every
loop, the model is informed about pushes that the avatar can
perform without changing any other sprite’s position beside
itself, and the avatar process decides non-deterministically on
doing one of these pushes. Computing available pushes on
the map is performed via a helper C code. This code finds
the boxes that may be pushed and looks for whether they are
reachable. The avatar process gets the list of possible pushes
before every decision through an array that is shared between
the helper C code and the PROMELA code. After the model
makes a choice, the 2D array representing the game level is
updated accordingly; all the avatar moves to make the push
possible were made, and the pushing move is recorded. The
loop continues until there are no pushes available or there is
no box left, which is the winning condition.

The expectation from push-level search is to reduce the
state-space by its abstraction. In this model, any push is
equally likely to be done at any point. The situation is
different in the navigational model. All one-cell movements

66500 VOLUME 10, 2022

O. Tekik et al.: Verifying Maze-Like Game Levels With Model Checker SPIN

FIGURE 9. Process type definition to model the opponent behavior in the
race game.

are equally likely in the navigational model, so the far away
boxes are less likely to be pushed than near ones. This will

FIGURE 9. (Continued.) Process type definition to model the opponent
behavior in the race game.

FIGURE 10. Push-based model of the avatar process for the game
Sokoban.

result in randomly switching boxes while solving the level
in the push model, and the avatar is likely to perform lots
of transitions between boxes. This will make the resulting
movesets to be larger in the push-based model. In the end, the
expectation from the push model is to have a higher solving
rate but with a larger solution size than the navigational one.

The push-level model is presented in Figure 10. The array
named choices is used for communication between the model
and the helper C code. The model code in this figure will

VOLUME 10, 2022 66501

O. Tekik et al.: Verifying Maze-Like Game Levels With Model Checker SPIN

be configured according to the number of boxes in the game
level by setting the size of the choices array. There are four
elements in this array for each box, one for each direction.
Each array element for a box encodes whether it is possible
to push the box in that direction.

C. VERIFYING GAME DESIGN PROPERTIES
Every game design aims to satisfy some properties which
are decided at the start. Designers mainly use a source to
look up when it comes to design for guidance. One of these
guides is Jesse Schell’s book ‘‘The Art of Game Design’’
[45]. One chapter of the book is dedicated to designing puzzle
games and includes a ‘‘Ten Puzzle Principles’’ list. Some
of the principles can be related to the level design, while
others are related to the design of game rules or how levels
are cascaded. Since we picked three different games with
predetermined game rules and checked game levels one by
one, the principles of the game rules are not applicable in our
case.

Four principles in this book are applicable to the level
design:

#3: ‘‘Give a Sense of Progress.’’ Although this principle
can be interpreted as progress between levels, it also can be
interpreted as progress in a level. Thus, it can be related to the
level design.

#4: ‘‘Give a Sense of Solvability.’’ This principle is highly
related to principle #3 and can be considered a level design
issue for the same reasons.

#6: ‘‘Parallelism Lets the Player Rest.’’ This principle can
be related to level design since a parallel set of challenges
may exist at a level, so it should be possible to reach the same
goal differently.

#9: ‘‘Give the Answer!’’. This principle is about giving the
solution when the player gives up. This is not a level design
decision, but serving the solution and ensuring the level’s
solvability can help the level designer.

The listed principles are all qualitative properties.
A designer may have quantitative goals as well. Such goals
may include the number of turning moves, straight moves,
or their ratio to each other [46]. To see the effectiveness
of our work, we checked both qualitative and quantitative
properties to verify various game levels and explained them
in the following subsections.

1) SENSE OF CONTINUOUS PROGRESS AND SOLVABILITY
Schell states that a good puzzle game should make the player
see progress when solving a problem, as principle #3 [45].
This property is highly coupled with principle #4, convincing
the player that the game is solvable. To demonstrate these
properties, we chose Sokoban because there is an opportunity
to display visual progress in this game. Since there are several
boxes at the start, and the goal is to clear all of them,
we decided to take the number of boxes remaining in the level
to keep track of the user’s progress.

To check whether a continuous progression exists in the
level, we add an integer variable to the model code to monitor

the number of moves performed to remove one single box.
This integer variable, named c_moves, counts the number
of consecutive moves and is reset when a box is removed.
We define the progress property as follows: the maximum
consecutive moves without visual progress should not exceed
a given limit. The limit is an integer constant given by the
designer and denoted by N. During tailoring, this limit is
defined in the initialization process. We check that it is
possible to solve this level as well. To check whether these
properties are satisfied in each Sokoban level, we used the
LTL formula:

[](!(win)||(c_moves > N)) (1)

Here win is a boolean variable that becomes true when the
avatar removes all of the boxes as shown in Figure 9 and
Figure 10. The formula can be translated into: ‘‘This level
of Sokoban can never be won, or the consecutive moves
done without visual progress is always greater than N.’’ SPIN
generates a counterexample of the tailored behavioral model
with respect to this LTL property. Using this output, our
framework displays a gameplay in GVG-AI that solves the
puzzle where the consecutive moves done without visual
progress stay under or equal to N.

Our motive to have this LTL formula is because it encodes
principles #3 and #4. Counting and limiting the moves that
do not make a box placed in its destination encodes the
sense of progress. Having a sense of progress keeps the user
interested in the game. If visual progress takes much time,
users can quit a game due to a lack of interest. Also, seeing
progress increases the sense of solvability. If visual progress
in a puzzle level takes too much time, a user can quit playing
since this situation may make the user judge the level as too
hard to solve. By including these two principles of Schell, this
LTL formula can be used to show that a game level holds a
requirement of constantly grabbing the player’s attention.

2) PRODUCING A SOLUTION
Principle #9 requires giving the solution to the level when
the player gives up [45]. So, a good framework that checks
a game level has to present a winning sequence of actions
to the player or designer. We use the LTL formula [](!win),
which states that the variable win will never be true, to make
the model checker generate a winning sequence of actions as
a counterexample. However, to generate that ‘Aha!’ moment
in a puzzle game, we need to present an understandable
and straightforward way to victory, mostly the shortest one.
To produce the shortest path to victory, we used a run-time
option of SPIN to fetch the counterexample with the smallest
state transitions. In our case, this means the one with the least
moves.

After the counterexample with the shortest path is found
and recorded to a trail file, the trail file is played back to re-
animate to capture which moves are done to achieve victory
in the level. After getting the moves performed in the winning
sequence, with the help of PyVGDL, the counterexample is

66502 VOLUME 10, 2022

O. Tekik et al.: Verifying Maze-Like Game Levels With Model Checker SPIN

played visually in a window to show the solution produced
by our framework to the game designer.

This formula encodes principle #9 with a very small
size. As the complexity of the verification algorithm is
exponentially related to the formula’s size, this LTL formula
can be used to verify a game level in an environment with
fewer resources as fast as possible.

3) POSSIBILITY OF DIFFERENT SOLUTIONS
Schell states that there should be more than one way for a
player to finish a puzzle game successfully, as in principle
#6 [45]. Having more than one way to finish the game
corresponds to generating more than one winning sequence.
If at least two different sequences of actions can be generated
as a counterexample, we accept that the level is solvable
with more than one strategy. We need SPIN to generate two
counterexamples with different state transitions to display
this property. Our framework implementing the pipeline can
instruct SPIN with run-time options to achieve this. After
SPIN generates more than one counterexample in multiple
trail files, the tool checks the filesystem for the trail files and
decides whether the level is open to different strategies or not.

We use the same LTL formula of [] (!win) we used for
principle #9 to produce a winning sequence to demonstrate
these properties. We pass the LTL formula with our models
to SPIN and run with the ‘‘-c2’’ option to force it not
to stop when it finds the first violation but to continue
the search to find another one. If there is more than one
solution, we conclude that the level can be won with different
strategies.

This formula and the run-time option encode Schell’s 9th
principle and help check a game level against a requirement of
increased solvability, which is stated in principle #6. Having
more than one solution lets the player choose one of the
possible solutions to win. This may result in a player solving
a level easier as it does not enforce the player to discover the
single unique solution.

4) NUMBER OF TURNING MOVES, AND NUMBER OF
STRAIGHT MOVES
Instead of qualitative design goals, the level designers may
have quantitative requirements to fulfill. Kim et al. state
that the number of turning moves or number of straight
moves done to win a maze can be desired properties while
designing a maze [46]. To check these properties, we modify
the models to keep the count of turning and straight moves
performed to finish the game. We add two integer variables
to the models: where t_moves represent the number of tuning
moves and s_moves represent the number of straight moves.
Then, we use the following two LTL formulae to represent
these quantitative requirements:

[](!(win)||(t_moves > N)) (2)

[](!(win)||(s_moves > N)) (3)

These formulae are aimed to produce a trail where the game
is won, and the number of turning/straight moves performed
is less than or equal to the desired number given by a game
designer.

Maze designers may desire such a property since having
too many straight or turning moves may bore the player,
and some sort of balance may be required between such
movements.

5) TWISTINESS OF THE PATH TO THE VICTORY
The twistiness of a path is the ratio of turning moves to
straight moves. An increased twistiness might require the
player to be more agile to win. Kim et al. state that turning
moves’ ratio to the straight moves can be a desired property
when designing mazes [46]. To state such properties, we add
two counters, t_moves and s_moves into the game model as
discussed above. Then, the twistiness property is specified
using the following LTL formulae:

[](!(win)||(t_moves/s_moves < N)) (4)

[](!(win)||(s_moves/t_moves > N)) (5)

These two LTL formulae encodes the requirement of
having a specific ratio of turning moves against straight
moves in the winning path.

V. EXPERIMENTS
In this paper, three different games are used with the GVG-
AI framework. Two of these games are implemented for this
study, while one is used as-is. The implemented two games
are simple maze games. In the game ‘‘Maze’’, an avatar is
expected to solve a maze with no other sprites involved. In the
game ‘‘Race,’’ the avatar is expected to solve the maze before
its opponent does. The last game is Sokoban, a well-known
game for its computational difficulty [41].

The experiments are grouped into three main categories.
The first group of experiments is done to determine the
level sizes for the other experiments. The second group of
experiments compares the solution generation performance
of the proposed model-based approach against existing
methods. There are three different experiments in this group.
We first compare the proposed model-based approach against
the A∗ search algorithm. Next, the proposed approach’s
performance is compared against Monte Carlo Tree Search in
the game ‘‘Race.’’ The last experiment in this group compares
two different models proposed for Sokoban levels. Since
Sokoban is a demanding game to solve, this experiment
aims to show how optimizations on a model may affect
performance.

The third group of experiments demonstrates the ability of
our approach in the verification of game design properties.
There are two different experiments presented in this
category. The first one is to verify levels for a qualitative
property, while the second is to verify levels for a quantitative
property (see Section V). The first experiment in this category
aims to check ‘‘Race’’ levels for the existence of multiple

VOLUME 10, 2022 66503

O. Tekik et al.: Verifying Maze-Like Game Levels With Model Checker SPIN

ways to victory. The other experiment aims to check maze
levels for the twistiness of the path to victory, which is defined
as the turning moves’ ratio to the straight moves [46].

All experiments are done on a computer that has an Intel
Core i5-3470 CPU at 3.2 GHz clock frequency, 16 GB
of RAM, and CentOS 7 as its operating system. All the
experiments were run in a single core of the CPU. More
in-depth explanations of the experiments are given in their
respective sub-sections.

A. PRELIMINARY EXPERIMENTS FOR DETERMINING
PARAMETERS
We needed to decide on the level sizes to use for the
upcoming experiments. EXPERIMENT 1 is performed to
determine this parameter. This experiment is designed as
follows. Three different candidates will be used in the
subsequent experiments: A∗ search, the proposed Model-
Based approach, and Monte Carlo Tree Search. We create a
maze level 8 × 8 and give it to all three techniques to solve.
Then we generate new levels by increasing the level size two
by two until one of the candidates fails to deliver a solution.

For MCTS, we have established a time limit that is
100 times more than the time spent by our model-based
approach. The last level size played will be designated as the
maximum level size for the rest of the experiments.

The metric collected in this experiment is the success rate
of the candidates with respect to different sizes.

B. EXPERIMENTS FOR PERFORMANCE COMPARISONS
1) EXPERIMENT 2
Our second experiment aims to see the scalability of the
proposed model-based approach with respect to one of the
popular path-finding algorithms, the A∗ search. To assess
the performance of the proposed approach versus the A∗

search, we used the navigation-based model for the game
‘‘Maze’’ given in Figure 4. To generate the shortest path
as its output, we used SPIN with the option that returns
the counterexample with the least number of state changes.
Since the model is navigation-based, the state changes occur
in every move done by the avatar. Thus, the model-based
approach is instructed to produce the shortest path possible
when this option is used. The performance of our approach is
compared with the performance of an agent implemented in
PyVGDL employing an A∗ search. As the heuristic of the A∗

search, Manhattan distance is used.
We have given both candidates the same maze levels in

nine different sizes, all generated by the pipeline described
in Section IV.A. We generated 50 different levels for two
candidates to solve for each size. There are 450 levels in total.

The metrics we have collected for the experiment are the
average solving time and the average solution length with
respect to level size.

2) EXPERIMENT 3
The third experiment aims to compare the performance
of the proposed approach with Monte Carlo Tree Search

(MCTS). MCTS is a heuristic search algorithm notable for
its employment in games. The advantage of MCTS is its
usability without domain knowledge: The state information,
possible actions, and the results of these actions are sufficient
to use MCTS in any game.

MCTS may waste computational time with back-and-forth
movements without progress. In this experiment, therefore,
wemodified the game environment to record howmany times
a tile is moved on and gave a movement penalty to avoid
MCTS being stuck. Since repetitive movements will result
in more penalties, the agent is encouraged to explore further
in the maze faster instead of doing repetitive actions.

Two competitors, our approach and MCTS, were run in
two different games, ‘‘Maze’’ and ‘‘Race.’’ Both solvers are
fed with the same levels in three different sizes generated by
the pipeline we proposed. Both candidates are given the same
50 levels to solve (300 levels in total). MCTS’s exploration
parameter 1.41 (square root of 2) is chosen, and MCTS
agent is given a hundred times more time to complete its
search because MCTS has a disadvantage. This disadvantage
is employing no domain knowledge, and the proposedmodel-
based approach is built on domain knowledge. The average
length for the solutions found and the solving rate are
collected as metrics.

3) EXPERIMENT 4
The fourth experiment compares the performances of the two
proposed template models for Sokoban. These two models
are the navigation-based and push-level models presented in
Section 4. These two competing models are run in the same
20 levels from Alberto Garcia 1-1 level pack [10].

While the navigation-basedmodel works at amore detailed
level, resulting in a larger state-space, the push-based model
is more abstract and optimized for a smaller state-space
with a performance loss on solution optimality. The main
expectation from the experiment is to get higher solution rates
with the push-level model while sacrificing the shortness
of solution lengths. The experiment shows the effects of
optimizations such as abstractions or simplifications on
complex and resource-hungry problems.

The metrics compared in this experiment are the average
time competitors take in a level, the number of levels solved,
and the solution length.

C. EXPERIMENTS ON VERIFYING COMPLEX PROPERTIES
1) EXPERIMENT 5
The aim of this experiment is to show how the proposed
method can be used to check a level with respect to a
qualitative requirement. The requirement chosen here is
the level having multiple ways to victory, as discussed in
Section IV.C.

The game ‘‘Race’’ is played against a bot opponent using
the A∗ algorithm to make optimal moves. Since the player
has no obvious advantage against its opponent in the sprite
placement, some of the levels end up unwinnable. Also, some

66504 VOLUME 10, 2022

O. Tekik et al.: Verifying Maze-Like Game Levels With Model Checker SPIN

of the winnable levels end up having a one-move margin
between the avatar and its opponent to win. In addition to
having a solution, Schell states that a puzzle should have
more than one way for a player to finish successfully [45].
Therefore, we used this game in the experiment to check the
requirement of having more than one solution.

For this experiment, 200 ‘‘Race’’ levels with the size
of 24 × 24 are generated with the pipeline presented in
Section 4. The number of levels that satisfy the requirements
is kept as a metric.

2) EXPERIMENT 6
This experiment aims to show how the proposedmodel-based
approach can be used to verify quantitative requirements.
The requirement chosen is the twistiness of the solution
path, as explained in Section IV.C. Using our framework,
200 ‘‘Maze’’ levels with the size of 24 × 24 are generated.
The levels are checked against the requirement of having
a minimum twistiness of 20%. Since SPIN can generate
counterexamples that have more twistiness with repetitive
actions, a hard limit is placed on the number of moves done
while solving a level. This limit is chosen as 55 moves, being
ten more from the average shortest path in a 24 by 24 maze,
according to the results found in Experiment 3. The metric
collected in this experiment is the number of levels that satisfy
the requirement.

VI. RESULTS AND DISCUSSION
In this study, we have focused on the following questions:
• How does themodel-based approach compare to the A∗

search algorithm on scaling in shortest path finding?
• How does the model-based approach perform in puzzle

games with respect to Monte Carlo Tree Search?
• Does the model-based approach scale with a game like

Sokoban, which is known to be hard to solve in limited
memory or limited time?

• How can the model-based approach be employed to
verify qualitative and quantitative requirements?

A. EXPERIMENT 1
Experiment 1 was conducted to determine the maximum
level size to be used in the experiments. The experiment
continuously increased the level size until one of the
three candidates could not solve any level. The metrics
collected here are the solving rate of three candidate-level
solvers. We collected this metric to compare the candidates
and determine a maximum level size for the upcoming
experiments.

Table 2 shows the result of this experiment. It gives the
percentage of levels solved by the candidates with respect to
the level size. The results indicate that levels larger than 24 by
24 are not fit for MCTS. The larger levels are impractical
to distinguish the model-based approach from the MCTS
since the rate of solving for the MCTS will not change
for larger levels. Also, larger levels do not distinguish the

TABLE 2. Results of experiment 1. Solving rate of three candidates on
varying level size.

model-based approach from the A∗ search since they are both
100% successful.

B. EXPERIMENT 2
Experiment 2 aim to answer the first question. We used
our template model proposed for the game ‘‘Maze’’ against
the classical A∗ search for this performance comparison.
The metrics collected here are the average time for solving
a level and the average size of the solution brought up
with respect to both competitors’ level sizes. The main
reason for measuring the average time to solve is to see
the performance of the model-based solution with respect to
the algorithmic solutions in path-finding problems. However,
a direct comparison would not be comparable since the
environments of the two are different. The model-based
solution has multiple file operations, a source compilation,
execution of this compilation’s output, and a Python code
moderating all of these steps, while the A∗ search algorithm
was implemented in Python. So, we have normalized these
datasets to see how the solving time increased while the
level size increased. As a result, the information extracted
from this metric is not a direct performance comparison but
a scalability comparison. The second metric is included to
show the ability of the model-based solution in the shortest
path finding.

Figure 13 shows the average time measured for the
candidates to solve levels with respect to the levels’ size.
However, since the question is on scalability, we normalized
both data with respect to their first data point. Thus, the
data represents how much the average time for solving a
level increased while the level size increased. Also, this
normalization neutralizes the differences between the two
candidates. Figure 14 represents the very same data, without
normalization.

Figure 14 shows that the performance of the model-based
approach is catching up with the A∗ path-finding algorithm.
The figure shows that the proposed approach ismore scalable.
With the increasing level size, the A∗ search seems to lose
more performance relatively than the proposed approach.
When the total space is multiplied by 9, the proposed
methodology’s average solution-finding time only increased
75%, while its competitor’s increased nearly 70 times.

VOLUME 10, 2022 66505

O. Tekik et al.: Verifying Maze-Like Game Levels With Model Checker SPIN

FIGURE 11. An example solution created by the navigation-based model.
Each image shows movements to put a box into its place. For example,
Avatar moves left in the top left image until it reaches the leftmost box
and then pushes it to the bottom.

FIGURE 12. An example solution created by the push-based model.
Avatar is white; boxes are red, and target places for boxes are blue. Each
image shows pushes and paths to put one box in its place. For example,
in the top left image, Avatar pushes the leftmost box down, the second
leftmost to down, and the rightmost box to the right. Then goes all the
way left and pushes the first box to the bottom.

In answer to our first research question, even if the A∗ search
is faster for smaller levels than the proposedmethod, the trend
in data shows that it is fair to assume that this performance
gap will close as levels get larger. Figure 14 shows that the

FIGURE 13. Experiment 2 results comparing proposed method with
A-star search in terms of average time to solve a level with respect to
level size, normalized.

FIGURE 14. Experiment 2 results comparing the proposed method with
A-star search in terms of average time to solve a level with respect to
level size.

two candidates become comparable with the level size of 18,
and the competition becomes close with the size of 24.

The results of this experiment indicate that the model-
based approach can be used as an alternative to an
algorithmic approach in path-finding problems. Since the
proposed approach includes multiple file operations, using
the algorithmic approach on smaller levels would be better.

C. EXPERIMENT 3
Experiment 3 aims to find an answer to the second question.
To assess the performance of the model-based approach with
respect to MCTS, two different games are played in three
different sizes by two candidates. The metrics collected here
are the rate of success for both candidates and the average
length of the solution they brought up in two different games
and three different sizes.

Tables 3-6 display the results of the experiment.
Table 3 shows the success rates of both candidates in three
different sizes for the game ‘‘Race.’’ Table 4 shows the same
metric for the game ‘‘Maze.’’ Table 5 shows the average
solution length of both candidates in three different sizes
for the game ‘‘Race.’’ Table 6 does the same for the game
‘‘Maze.’’

These results show that for maze solving, the success rate
of the MCTS drops drastically as the level size grows. For

66506 VOLUME 10, 2022

O. Tekik et al.: Verifying Maze-Like Game Levels With Model Checker SPIN

FIGURE 15. Metrics collected from Experiment 4. Model 1: Navigational, Model 2: Push-based.

TABLE 3. Success rates of MCTS and model-based approach on the game
race.

TABLE 4. Success rates of MCTS and model-based approach on the game
maze.

the game ‘‘Race,’’ since the game is not forgiving against the
player’s mistakes, referring to the sprite placement section,
the drop in the solve rate of the MCTS is even sharper.
Although the performances of both methods are close for the
smallest levels, in all six cases, the model-based approach is
more performant than its competitor and opens the gap as the
level size increases.

Our second research question indicates that the proposed
approach has a specific advantage over MCTS in maze-like
puzzle games since it relies more on computational power and
memory; while the input size increases, the gap between the
two competitors’ performances grows even more.

While doing these experiments, our expectations were
parallel to the results we got from the experiment. We were
aware of the advantage the model-based approach has
over the MCTS. MCTS is a non-informed search, while
the model-based approach is built on domain informa-
tion. Nevertheless, even if the two approaches are not
exact alternatives to each other, the results point out a
practical advantage of using a model-based approach over
MCTS.

TABLE 5. Average solution length for the game race.

TABLE 6. Average solution length for the game maze.

D. EXPERIMENT 4
Experiment 4 aims to answer the third question about
the scalability of the model-based approach on Sokoban.
The navigation-based and push-based models introduced in
Section IV.B are used to solve 20 Sokoban levels of [10] to
achieve this.

The metrics collected are the average time spent on a
level, the success rate of solving, and the average solution
length for both models in the same Sokoban levels. The
main expectation was for the push-based model to have faster
and more solutions to the levels but with longer solutions.
The reason for this expectation is that by abstracting away
the moves that do not change a box position, the push-
model reduces the state-space of the problem. Therefore,
more levels should have become solvable with this abstract
model. We were expecting higher solution rates with the
push-based model by reducing the memory costs. Also, since
the state-space is reduced, it should take less time to search
that space. So, the expectation was to have significantly
shorter times to solve a level. However, since the push-based
model is more abstract than the other, we expected more
inefficient solutions and more comprehensive solutions on
average. We expected the navigation-based model to have

VOLUME 10, 2022 66507

O. Tekik et al.: Verifying Maze-Like Game Levels With Model Checker SPIN

a lower success rate because the system would run out of
memory. Figure 15 shows the result of this experiment.

Figure 15 shows that a push-based model increased the
solving rate and decreased solving time by nearly 90%
compared to a navigation-based model. However, the average
length of solutions has increased by 15 times. We believe
further optimizations on the push-based model can reduce
the resulting move set, such as tunnel macros or goal macros
[7]. To address our third research question, this experiment
shows that template models can be subject to optimizations
in the model design to get a better result if needed. Also,
it shows that SPIN’s different options that enable different
optimizations can be used to improve performance.

The results indicate that the model-based approach may
react differently when certain decisions are made. In the
experiment, that decision was shrinking the search space
using the push-level search, which trades the optimality of
the solution with the performance and the speed.

E. EXPERIMENT 5
Experiment 5 aims to answer the fourth research question
with a qualitative requirement. The game ‘‘Race’’ was chosen
to conduct the experiment. The experiment was done to check
procedurally generated levels for the game ‘‘Race’’ with
respect to the requirement of having multiple ways to finish
the game. The data collected here are the number of winnable
levels and the number of levels that have an alternate way of
winning the level.

Three factors affect the result of this experiment. First,
the avatar or its opponent has no obvious advantage over
each other in the level generation phase. Either one can be
advantageous, or none of them may be. Second, the player
has the advantage of the first move. Both in the model
and the game, the player moves first, before its opponent.
This gives the player an advantage in neutral levels in the
level generation phase, where the goal is equally distant to
the player and its opponent. The last one is that having an
alternate way to victory can be ensured by either having
more than one equally long but different path or having an
advantage over the opponent that can afford to make a sub-
optimal move. In the light of these factors, our expectation
from the experiment was as follows: We were expecting that
more than half of the levels generated would be winnable
with the advantage of the first move of the avatar. Also,
we were expecting that the levels generated which satisfy the
requirement would be just under but near 50%.

Out of 200 Race levels generated in the experiment, 113 of
them were winnable—the model-based approach found in
95 out of these 200 levels more than one way to victory. The
result that we obtained from the experiment looks parallel
with the expectations. Since the avatar has the advantage of
the first move, 56.5% of the levels generated end up being
winnable. This result is fitting to the expectation of having
more than half of the levels being winnable. 47.5% of the
levels generated have an alternate path of victory for the
avatar, which is aligned with the expectation of having less

than half of the levels having an alternate path. This result
indicates that the proposed model-based approach can be
used to verify qualitative requirements to answer our fourth
question.

F. EXPERIMENT 6
Experiment 6 aims to answer the fourth research question
with a quantitative requirement. The game of choice to
verify a quantitative requirement is the game ‘‘Maze’’.
The requirement chosen to check levels is having at least
20% twistiness which is the ratio of turning moves done
by the avatar to all moves performed. Since twistiness
can be increased by making a turning move repeatedly,
we established a limit to the total moves that can be done. This
limit is chosen with the help of the result from Experiment 2.
Since the average shortest path in a 24 by 24 maze was nearly
45 in Experiment 2, the upper limit for the number of total
moves is chosen as 55. This limit is because the requirement
can be met by performing repetitive movements. We have
determined this value to prevent SPIN from abusing the game
rules to check the level.

The data collected here is the number of levels that satisfy
the requirement. We expected nearly all of the levels to
be verified in this experiment. There are two main reasons
for this expectation. First, the target percentage is relatively
low. For a target placed at the cross corner of the level,
20% twistiness seems achievable. One regular turn makes
four straight moves acceptable, and one U-turn makes eight
straight moves acceptable. The other reason is the upper limit
for the number of total moves. For an average level, the
avatar has ten extra moves that can be used to boost the
twistiness of the winning path. Because of these two reasons,
we were expecting a tiny percentage of levels not satisfying
this requirement.

In the experiment, 196 out of 200 generated Maze levels
satisfy the requirement. This result is in the same direction as
the expectations. With the help of low target and extra moves,
98%of the levels generated end up satisfying the requirement.
This result also indicates that the proposed model-based
approach can be used to verify quantitative requirements to
answer our fourth question.

VII. CONCLUSION
This paper aims to provide a model-based level verifica-
tion framework for maze-like puzzle games. To that end,
we presented a pipeline that begins with puzzle development
using two-level cellular automata, followed by an automated
configuration of the pre-developed model templates of these
games, which is then run using the model checker program
SPIN re-animated on GVG-AI. This re-animation enables
the game developers to perceive the gameplay readily with
the help of visual cues. The proposed technique was tested
against the A∗ path-finding algorithm in a maze solving game
and a slightly modified Monte Carlo Tree Search algorithm
in a game with a low tolerance for sub-optimal actions.
In addition, two different models of the game Sokoban were

66508 VOLUME 10, 2022

O. Tekik et al.: Verifying Maze-Like Game Levels With Model Checker SPIN

run against each other to study the trade-offs taken to scale a
model for a memory-intensive game.

Our results indicate that the suggested method’s mean
performance converges to one of the top path-finding
algorithms in a simple maze game and significantly beats
Monte Carlo Tree Search in a different game with an
opponent. Furthermore, our findings demonstrate that the
proposed strategy may be adjusted or enhanced by making
trade-off considerations to scale for more difficult-to-solve
games. Although this research focuses on maze-like puzzle
games, it may be applied to various different genres.

In the future, we aim to increase our performance by
employing more complicated linear temporal logic specifica-
tions, probabilistic model checkers, and use cloud computing
to improve our study. In addition, we will expand our model
pool by incorporating models for different games.

APPENDIX
In this appendix we give the output of the model checker
SPIN as well as original counterexample generated at the
verification phase.

After configuring the template file with respect to a
Sokoban level, we instructed SPIN to generate a verifier using
the following command spin -a temp.pml. The generated
verifier C code is compiled with the following instruction:
gcc -std=c99 pan.c -DMAX_LEN=11
-DNUM_OF_BOXES=2 -DNOFAIR -DBITSTATE
-DNOBOUNDCHECK -o.. /spin/temp.
out -lm
The output of the verifier is 2214 lines. The verification

result is at the end of the output. The result is as follows:
pan:1: assertion violated !(!(!(win))) (at depth 1216)
#Level got verified
pan: wrote temp.pml.trail
#The path to verification is at temp.pml.trail.
(Spin Version 6.4.6 – 2 s 2214 December 2016)
Warning: Search not completed #Because of -c1
+ Partial Order Reduction
Bit statespace search for:
never claim + (ltl_0)
assertion violations + (if within scope of claim)
acceptance cycles + (fairness disabled)
invalid end states - (disabled by never claim)
State-vector 224 byte, depth reached 1591, errors: 1
5925 states, stored
1422 states, matched
7347 transitions (= stored+matched)
0 atomic steps

hash factor: 22652.8 (best if > 100.)
bits set per state: 3 (-k3)
Stats on memory usage (in Megabytes):
1.424 equivalentmemory usage for states (stored∗(State-

vector + overhead))
16.000 memory used for hash array (-w27)
0.076 memory used for bit stack
0.534 memory used for DFS stack (-m10000)

16.925 total actual memory usage
The counter-example generated by the verifier is dumped

into a trail file. The trail file is replayed with the
command./temp.out -r -s temp.pml.trail to make it human
readable. The result of the replay is 197 lines. The content
of this file is as follows:

MSC: ∼G 3
Push@ 3 5; Side: 0
Push@ 3 7; Side: 0
Push@ 4 5; Side: 2
.//continues for another 23 lines
.//this is the beginning of the counterexample. Line27
pan:1: assertion violated !(!(!(win))) (at depth 1217)
spin: trail ends after 1217 steps
#processes 3:
1217: proc 0 (ltl_0) temp.pml:3 (state 6) (invalid end state)

(!(!(win)))
(1)

1217: proc 1 (:init:) temp.pml:147 (state 4)
-end-

1217: proc 2 (avatar_sokoban) temp.pml:138 (state 35)
(invalid end state)

printf(’Won\n’)
global vars:

byte remaining_goals: 0
bit win: 1
bit map_inited: 1

//. . . continues for 152 lines
local vars proc 2 (avatar_sokoban):
int x: 2
int y: 2
int last_move: −2

//end of file.
This output is hard to process for a user. Our pipeline parses

this file and reanimate the gameplay accordingly.

REFERENCES

[1] O. Drageset, M. H. M. Winands, R. D. Gaina, and D. Perez-
Liebana, ‘‘Optimising level generators for general video game AI,’’
in Proc. IEEE Conf. Games (CoG), London, U.K., Aug. 2019,
pp. 1–8.

[2] S. Iftikhar, M. Z. Iqbal, M. U. Khan, and W. Mahmood, ‘‘An automated
model based testing approach for platform games,’’ in Proc. ACM/IEEE
18th Int. Conf. Model Driven Eng. Lang. Syst. (MODELS) Ottawa, ON,
Canada, Sep. 2015, pp. 426–435.

[3] L. Mugrai, F. Silva, C. Holmgard, and J. Togelius, ‘‘Automated playtesting
ofmatching tile games,’’ inProc. IEEEConf. Games (CoG). London, U.K.,
Aug. 2019, pp. 1–7.

[4] P. García-Sánchez, A. Tonda, A. M. Mora, G. Squillero, and J. J. Merelo,
‘‘Automated playtesting in collectible card games using evolutionary
algorithms: A case study in hearthstone,’’ Knowl.-Based Syst., vol. 153,
pp. 133–146, Aug. 2018.

[5] D. Beyer and T. Lemberger, ‘‘Software verification: Testing vs. model
checking,’’ in Proc. 13th Haifa Verification Conf., Haifa, Israel, Nov. 2017,
pp. 99–114.

[6] O. Tekik, ‘‘Verifying maze-like game levels with model checker SPIN,’’
M.S. thesis, Grad. School Inform., Middle East Tech. Univ., Ankara,
Turkey, 2021.

[7] F. Marocchi and M. Crippa, ‘‘Monte Carlo tree search for Sokoban,’’
Tesi di laurea Magistrale, Dipartimento di Elettronica, Informazione e
Bioingegneria, Politecnico Di Mila, Milan, Italy, Tech. Rep., 2017.

VOLUME 10, 2022 66509

O. Tekik et al.: Verifying Maze-Like Game Levels With Model Checker SPIN

[8] D. Perez-Liebana, J. Liu, A. Khalifa, R. D. Gaina, J. Togelius, and
S. M. Lucas, ‘‘General video game AI: A multitrack framework for
evaluating agents, games, and content generation algorithms,’’ IEEE Trans.
Games, vol. 11, no. 3, pp. 195–214, Sep. 2019.

[9] T. Schaul, ‘‘A video game description language for model-based or
interactive learning,’’ in Proc. IEEE Conf. Comput. Inteligence Games
(CIG), Niagara Falls, ON, Canada, Aug. 2013, pp. 1–8.

[10] A. Garcia. Alberto Garcia 1–1 Sokoban Level Set. Accessed:
Apr. 16, 2022. [Online]. Available: https://www.sokobanonline.com
/play/web-archive/alberto-garcia/1–1

[11] S. Wolfram, ‘‘Universality and complexity in cellular automata,’’ Phys. D,
Nonlinear Phenomena, vol. 10, nos. 1–2, pp. 1–35, 1984.

[12] D. Eppstein, ‘‘Growth and decay in life-like cellular automata,’’ in Game
of Life Cellular Automata. London, U.K.: Springer, 2010, pp. 71–97.

[13] E. M. Clarke, O. Grumberg, and D. A. Peled,Model Checking. Cambridge,
MA, USA: MIT Press, 1999.

[14] M. Y. Vardi, ‘‘An automata-theoretic approach to linear temporal logic,’’ in
Logics for Concurrency (Lecture Notes in Computer Science), vol. 1043.
Berlin, Germany: Springer, 1996, pp. 238–266.

[15] G. J. Holzmann, ‘‘The model checker SPIN,’’ IEEE Trans. Softw. Eng.,
vol. 23, no. 5, pp. 279–295, May 1997.

[16] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper, ‘‘Simple on-the-fly
automatic verification of linear temporal logic,’’ in Proc. Int. Conf.
Protocol Specification, Test. Verification. Boston, MA, USA: Springer,
1995, pp. 3–18.

[17] L. Feng, D. Chen, H. Lonn, andM. Torngren, ‘‘Verifying system behaviors
in EAST-ADL2 with the SPIN model checker,’’ in Proc. IEEE Int. Conf.
Mechtron. Autom., Aug. 2010, pp. 144–149.

[18] N. Goga, S. Costache, and F.Moldoveanu, ‘‘A formal analysis of ISO/IEEE
P11073–20601 standard of medical device communication,’’ in Proc. 3rd
Annu. IEEE Syst. Conf., Mar. 2009, pp. 163–166.

[19] G. J. Holzmann, The Spin Model Checker: Primer and Reference Manual.
Boston, MA, USA: Addison-Wesley, 2008.

[20] R. Vereecken. PyVGDL. Accessed: Apr. 16, 2022. [Online]. Available:
https://github.com/rubenvereecken/py-vgdl

[21] O. Tekik. PyVGDL, Forked. Accessed: Apr. 16, 2022. [Online]. Available:
https://github.com/iamonur/py-vgdl

[22] C. Baier and J. P. Katoen, Principles of Model Checking. Cambridge, MA,
USA: MIT Press, 2008.

[23] I. Hasegawa and T. Yokogawa, ‘‘Formal verification for node-based visual
scripts using symbolic model checking,’’ IEICE Trans. Inf. Syst., vol. 105,
no. 1, pp. 78–91, 2022.

[24] N. Igawa, T. Yokogawa, M. Takahashi, and K. Arimoto, ‘‘Model checking
of visual scripts created by UE4 blueprints,’’ in Proc. 9th Int. Congr. Adv.
Appl. Informat. (IIAI-AAI), Sep. 2020, pp. 512–515.

[25] S. Radomski and T. Neubacher, ‘‘Formal verification of selected game-
logic specifications,’’ inProc. Eng. Interact. Comput. Syst. SCXML, Berlin,
Germany, Jun. 2015, pp. 30–34.

[26] L. T. Holloway, ‘‘Modeling and formal verification of gaming storylines,’’
Ph.D. dissertation, Dept. Elect. Comput. Eng., Univ. Texas Austin, Austin,
TX, USA, 2016.

[27] A. Yacoub, M. E. A. Hamri, and C. Frydman, ‘‘DEv-PROMELA:
Modeling, verification, and validation of a video game by combining
model-checking and simulation,’’ Simulation, vol. 96, no. 11, pp. 881–910,
Nov. 2020.

[28] W. Kavanagh, A. Miller, G. Norman, and O. Andrei, ‘‘Balancing turn-
based games with chained strategy generation,’’ IEEE Trans. Games,
vol. 13, no. 2, pp. 113–122, Jun. 2021.

[29] R. Rezin, I. Afanasyev, M. Mazzara, and V. Rivera, ‘‘Model checking in
multiplayer games development,’’ in Proc. IEEE 32nd Int. Conf. Adv. Inf.
Netw. Appl. (AINA), May 2018, pp. 826–833.

[30] E. Marques, V. Balegas, B. F. Barroca, A. Barisic, and V. Amaral,
‘‘The RPG DSL: A case study of language engineering using MDD for
generating RPG games for mobile phones,’’ in Proc. Workshop Domain-
Specific Modeling (DSM), Oct. 2012, pp. 13–18.

[31] P. Milazzo, G. Pardini, D. Sestini, and P. Bove, ‘‘Case studies of
application of probabilistic and statistical model checking in game design,’’
in Proc. IEEE/ACM 4th Int. Workshop Games Softw. Eng., May 2015,
pp. 29–35.

[32] P. Moreno-Ger, R. Fuentes-Fernández, J.-L. Sierra-Rodríguez, and
B. Fernández-Manjón, ‘‘Model-checking for adventure videogames,’’ Inf.
Softw. Technol., vol. 51, no. 3, pp. 564–580, Mar. 2009.

[33] L. Johnson, G. N. Yannakakis, and J. Togelius, ‘‘Cellular automata for real-
time generation of infinite cave levels,’’ in Proc. Workshop Content Gener.
Games, Jun. 2010, pp. 1–4.

[34] C. Adams and S. Louis, ‘‘Procedural maze level generation with
evolutionary cellular automata,’’ in Proc. IEEE Symp. Ser. Comput. Intell.
(SSCI), Nov. 2017, pp. 1–8.

[35] A. Pech, P. Hingston, M. Masek, and C. P. Lam, ‘‘Evolving cellular
automata for maze generation,’’ in Proc. Australas. Conf. Artif. Life
Comput. Intell., Feb. 2015, pp. 112–124.

[36] Y. P. A. Macedo and L. Chaimowicz, ‘‘Improving procedural 2D map
generation based on multi-layered cellular automata and Hilbert curves,’’
in Proc. 16th Brazilian Symp. Comput. Games Digit. Entertainment
(SBGames), Nov. 2017, pp. 116–125.

[37] T. P. Pavlic, A. M. Adams, P. C. W. Davies, and S. I. Walker, ‘‘Self-
referencing cellular automata: A model of the evolution of information
control in biological systems,’’ 2014, arXiv:1405.4070.

[38] P. Povalej, P. Kokol, T. W. Družovec, and B. Stiglic, ‘‘Machine-learning
with cellular automata,’’ in Proc. 6th Int. Symp. Intell. Data Anal., Madrid,
Spain, 2005, pp. 305–315.

[39] A. Goyal, P. Mogha, R. Luthra, and N. Sangwan, ‘‘Path finding: A∗ or
dijkstra’s?’’ Int. J. IT Eng., vol. 2, no. 1, pp. 1–15, 2014.

[40] D. Dor and U. Zwick, ‘‘SOKOBAN and other motion planning problems,’’
Comput. Geometry, vol. 13, no. 4, pp. 215–228, Oct. 1999.

[41] J. C. Culberson, ‘‘Sokoban is PSPACE-complete,’’ Dept. Comput. Sci.,
Univ. Alberta, Edmonton, AB, Canada, Tech. Rep. TR 97-02, 1997.

[42] A. G. Pereira, M. R. P. Ritt, and L. S. Buriol, ‘‘Finding optimal solutions
to Sokoban using instance dependent pattern databases,’’ in Proc. 6th Int.
Symp. Combinat. Search, Jun. 2013, pp. 141–148.

[43] A. Junghanns and J. Schaeffer, ‘‘Domain-dependent single-agent
search enhancements,’’ in Proc. 6th IJCAI, Stockholm, Sweden, 1999,
pp. 570–577.

[44] O. Tekik. Maze-Like Game Levels Verification With SPIN,
Pipeline Repository. Accessed: Apr. 16, 2022. [Online]. Available:
https://github.com/iamonur/the_legendary_pipeline

[45] J. Schell, The Art of Game Design: A Book of Lenses. Boca Raton, FL,
USA: CRC Press, 2008.

[46] P. H. Kim, J. Grove, S. Wurster, and R. Crawfis, ‘‘Design-centric maze
generation,’’ in Proc. 14th Int. Conf. Found. Digit. Games, Aug. 2019,
pp. 1–9.

ONUR TEKIK received the B.S. degree in electri-
cal and electronics engineering from Middle East
Technical University (METU), Ankara, Turkey,
in 2016, where he is currently pursuing the M.S.
degree with the Graduate School of Informatic’
Information Systems.

His research interests include procedural con-
tent generation and software engineering.

ELIF SURER (Member, IEEE) received the B.S.
and M.S. degrees in computer engineering from
Boğaziçi University, Turkey, in 2005 and 2007,
respectively, and the Ph.D. degree in bioengi-
neering from the University of Bologna, Italy,
in 2011.

She is currently working as an Associate Pro-
fessor with the Graduate School of Informatics’
Multimedia Informatics, Middle East Technical
University (METU), Ankara, Turkey. Her research

interests include serious games, virtual/augmented reality, human and canine
movement analysis, machine learning, and computer vision.

AYSU BETIN CAN received the B.S. degree in
computer engineering fromMiddle East Technical
University (METU), Ankara, Turkey, in 1999, and
the Ph.D. degree in computer science from the
University of California, Santa Barbara, in 2005.

She is currently working as an Associate Profes-
sor with the Graduate School of Informatics’ Infor-
mation Systems, METU. Her research interests
include design for verification, reliable concurrent
software development, interface-based modular

verification and specification, web services, and software engineering.

66510 VOLUME 10, 2022

