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ABSTRACT Cross-database micro-expression recognition (CDMER) is a difficult task, where the tar-
get (testing) and source (training) samples come from different micro-expression (ME) databases, resulting
in the inconsistency of the feature distributions between each other, and hence affecting the performance
of many existing MER methods. To address this problem, we propose a dual-stream convolutional neural
network (DSCNN) for dealing with CDMER tasks. In the DSCNN, two stream branches are designed to
study temporal and facial region cues in ME samples with the goal of recognizing MEs. In addition, in the
training process, the domain discrepancy loss is used to enforce the target and source samples to have similar
feature distributions in some layers of theDSCNN. Extensive CDMERexperiments are conducted to evaluate
the DSCNN. The results show that our proposedDSCNNmodel achieves a higher recognition accuracywhen
compared with some representative CDMER methods.

INDEX TERMS Micro-expression recognition, CDMER, convolutional neural networks, domain
adaptation.

I. INTRODUCTION
Compared with macro-expressions, micro-expressions
(MEs) are one type of particular dynamic facial expression
that have the characteristics of short duration and low inten-
sity. The duration of ME is usually only 1/25 s to 1/3 s, with
the facial muscle actions emerging in only small regions of
the face. Although micro-expression recognition (MER) is an
exceedingly arduous task, it has attracted many researchers.
Many effective methods based on machine learning and deep
learning have been proposed in recent years. For exam-
ple, the conventional methods usually extract handcrafted
features, e.g., LBP-TOP [1] and its variant (STLBP [2],
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DSLBP [3], LBP-SIP [4], and Hierarchical STLBP-IP [5]),
MDMO [6], FHOFO [7], Bi-WOOF [8], and LTOGP [9],
and then construct various types of classifiers, e.g., SVM [8],
RF [10], k-NN [11], SRC [12], relaxed K-SVD [13], and
GSL [5], especially for MER tasks [14]. In contrast, some
deep learning methods have also been devoted to MER
tasks, e.g., long short-term memory (LSTM) [15], pre-
trained CNNs (e.g., OFF-ApexNet [16], MagGA/SA [17] and
3D-CNNs [18]), CapsuleNet [19] and STRCN [20]. These
networks can usually improve the representation ability of
MEs and learn the spatio-temporal features as well as the
classifier in an end-to-end way [21].

These above methods are evaluated in an ideal scenario in
which the testing samples and training samples are sourced
from the same databases. In this case, it can be thought
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that such training and testing samples abide by the same
or similar feature distributions. However, in many applica-
tions, the testing samples and training samples may come
from different databases (e.g., the target database, and the
source database) that recorded by different camera, different
subjects, stimulus materials under different environments.
Some theoretical and empirical results [21]–[26] have shown
that different training and testing databases have the large
feature distribution difference and increase the test error in
proportion. It thus brings us a new topic in micro-expression
analysis, i.e., cross-database micro-expression recognition
(CDMER), in which the training and testing samples come
from two different micro-expression databases collected by
different cameras or under different environments [27]. The
CDMER can be viewed as a domain adaptation problem
(DA). For two different databases, traditional classifiers
learned in a source domain do not necessarily transfer well to
target domains. We may learn proper feature representations
that are discriminative and domain invariant by optimizing
the DA methods. Recently, there are many classical domain
adaptation methods for cross-database recognition can be
applied to cross-database micro-expression recognition, e.g.,
Zong et al. [28] proposed a domain adaptation method
based on target sample regenerator (TSRG) to deal
with CDMER problem. Hassan et al. [29] proposed an
importance-weighted SVM (IW-SVM) to eliminate the fea-
ture distribution mismatch between different samples and
improve the classification accuracy under different databases.
In the work of [30], Long et al. proposed the application
of transfer kernel learning (TKL) to learn a domain invari-
ant kernel for eliminating the feature distribution difference
between the samples that come from different databases.
Gong et al. [31], [32] proposed a method called the geodesic
flow kernel (GFK) to bridge two different databases and
narrow their gaps with a well-designed geodesic flow kernel
on a Grassmann manifold. Chu et al. [33], [34] proposed a
selective transfer machine (STM) to model the relationship
between the training samples and their AU information,
which aims to ensure that the testing samples have the
similar feature distribution as the training ones by studying
a group of weight values in the STM. Fernando et al. [35]
proposed another method called subspace alignment (SA)
for seeking a mapping function that can align the subspace
in which the source samples lie with respect to the target
samples. Pan et al., [36] proposed a transfer component
analysis (TCA)method based on a reproducing kernel Hilbert
space to eliminate the distribution difference of samples
from different domains by seeking some transfer components
across domains. Li et al. [37] proposed a target-adapted least-
squares regression (TALSR) method based on the enabled
learned regression coefficient matrix, which can learn a
regression coefficient matrix from the source samples and
their label information to suit the target ME database.

Benefiting from the above methods, we propose a dual-
stream CNN (DSCNN) to address the CDMER task by
studying a group of weight values from the labeled source

samples and the unlabeled target samples. We calculate the
MMD value [38] between the output distribution of two
domains on some fully connected layers of DSCNN as the
domain discrepancy loss in the training process, which can
eliminate the feature distribution difference between samples
from two domains. Two stream branches of the DSCNN can
jointly learn spatio-temporal features through different input
clues in ME samples, which aim at improving the representa-
tion ability of MEs and optimizing for cross-database micro-
expression classification. In addition, we visualize the feature
maps of intermediate activations that are output by various
convolution and pooling layers in the DSCNN. Extensive
cross-database experiments are conducted under the designed
protocol in [39], and the experimental results are compared
with some representative methods in dealing with CDMER
tasks. This result proves that the DSCNN has advantages over
these representative methods.

The rest of the paper is organized as follows. In Section II,
we describe the dual-stream convolutional neural net-
work (DSCNN) model for CDMER in detail. Extensive
experiments and analyses are given in Section III. Finally, the
conclusion is drawn in Section IV.

II. PROPOSED METHOD
The DSCNN consists of two stream branches, which can
jointly learn spatio-temporal features from two separate input
clues in ME video samples. Each branch in the DSCNN
is a convolutional neural network that uses 2D convolution
kernels, pooling cells, and fully connected cells, which have
the same structure. The structure of the same branches can
allow the DSCNN achieve parameter fitting in a brief time by
reducing the redundant parameters and realizing parameter
sharing. Specifically, each stream branch in the DSCNN
consists of 9 network processing layers: 1 fully connected
layer, 3 pooling layers, and 5 convolutional layers, as shown
in Table. 1.

For 5 convolutional layers in each branch, the number of
convolutional kernels (N) is set equal to 64, 64, 64, 128,
and 128. The N value of the last two convolutional layers is
much larger than that of the first three convolutional layers.
Many studies [40], [41] show that the N value gradually
increases from small to large and can learn more abstract
features that come from some important facial regions related
to expression, such as the mouth or eye region. For the
convolutional kernel on the first convolution layer, we use a
kernel size of 5×5 with a stride size of S=1, and the zero
padding is set equal to ‘‘valid’’. Meanwhile, the kernel size
on the other four convolutional layers is set equal to 3×3, the
stride size is set equal to 1, and the zero padding is set equal
to 1.

For 3 pooling layers in each branch, the number of ker-
nels (N) is set equal to 64, 64, and 128. For the max pooling
layer, we use a window size of 5×5 with a stride size of 2,
and the zero padding is set equal to 2. For 2 average pooling
layers, we use a window size of 3×3 with a stride size of 2,
and the zero padding is set equal to 0 and 1. Three pooling
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TABLE 1. The structure of the DSCNN used for cross-database
micro-expression recognition.

FIGURE 1. An illustration of how to solve the CDMER problem from the
perspectives of DA and feature distribution. Eliminate the feature
distribution difference between two domains through DA.

layers aim at downsampling the dimensions of features that
are studied from spatio-temporal cues in ME video samples.

For the final connected layer in each branch, their output
dimensions are all set equal to 1024, which aims to reduce
the number of parameters in the DSCNN. At the end of
two recognition stream branches, the output is merged into
a 2048-dimensional feature vector. In the last fully connected
layer of the DSCNN, the output dimension is set equal to the
number of sample categories in the ME databases.

All hidden layers of the DSCNN are equipped with the
PReLU function in [42], which is defined as follows:

PReLU (yi) =

{
yi, yi > 0
aiyi, yi 6 0

(1)

where i is the channel number, and ai is a parameter obtained
in the training process. Compared with other activation func-
tions, such as sigmoid, tanh, and ReLU, etc., the PReLU
activation function can improve the classification ability of
the CNN model at no cost of overfitting and computational
complexity.

Micro-expressions are transient in an ME video, and the
facial muscle actions emerge in only small regions of the
face during a surprisingly short time. In the training pro-
cess of the DSCNN, to reduce data redundancy and improve
computational ability, we only use three important frames
(i.e., the onset, apex, and offset frames) in each ME video.
We use two streamConvNets in theDSCNN to learn excellent
feature representation from spatial and temporal cues in this

three frames from ME videos. In each ME video, this three
frames are resize to 48× 48 after face alignment and face
cropping. The apex frames of ME videos can be selected by
the automatic apex frame spotting strategy in [43], which has
the largest facial action amplitude and carries more expres-
sion information because facial muscle micro-movement of
this frame is more obvious than that of other frames. The
spatial stream ConvNet in the DSCNN operates on the gray
image of the resized apex frame, learning some useful clues
associated with particular facial action from the single frame.
The input to the temporal stream ConvNet is the optical
flow displacement field between three resized frames, which
calculated by the method in [44]. Such input can explicitly
describe the motion between video frames, and does not need
to estimate series of subtle facial movements throughout the
whole ME video implicitly. The temporal stream ConvNet
ensures that the DSCNN can further learn higher-level fea-
tures from temporal cues in ME videos for MER tasks.

To ensure that the DSCNN has sufficient training samples,
we expand the number of samples by taking the gray image of
the resized apex frame and the optical flow displacement field
obtained from each ME video and applying a horizontal flip
and clockwise/counterclockwise rotation in 5 or 10 degree
increments a total of 10 times. When these sample is ready,
we begin to train the DSCNN according to our purposes.

In the CDMER task, the testing samples and training sam-
ples may come from different databases, which can bring a
large domain discrepancy and result in most MER methods
being unsatisfactory [21]–[26]. Hence, directly training the
DSCNN by using only the source samples often leads to over-
fitting of the distribution of the source samples, causing a sig-
nificant reduction in the recognition performance in the target
domain. For two biased datasets (left), traditional classifiers
learned in a source domain do not necessarily transfer well to
target domains, as outlined in Fig. 1. To address the feature
distribution difference between this two different databases,
we may learn proper feature representations in another fea-
ture space (right) that are discriminative and domain invariant
by optimizing the ideas of domain adaptation (DA).

Benefiting from the DA, in the training process of the
DSCNN, to ensure that source and target samples will have
the similar feature distributions that are output by various
convolution and pooling layers in the DSCNN, we should
choose a proper metric to measure the feature distribution
difference. There are many metrics to measure the difference
of feature distribution between two different databases in
some subspace, e.g., MMD [38], Wasserstein Distance [45],
KLD [46], and A-distance [22]. In this paper, to measure the
feature distribution difference between two domains on some
layer of the DSCNN, we use the maximum mean discrep-
ancy (MMD) from thework of [38] as themetrics. In addition,
theMMD value is computed with respect to a kernel mapping
operator, φ (.). In our DSCNN model, we define the output
of deep features in the fully connected layer as φ (.), which
operates on source data points, xs ∈ XS , and the target data
points, xt ∈ XT . Then an empirical approximation to this
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FIGURE 2. The framework of the DSCNN and the training process.

distance of the feature distribution between the source and
target data on the connected layer can be defined as:

MMD(XS,XT)=

∥∥∥∥∥∥ 1XS
∑
xs∈XS

φ (xs)−
1
XT

∑
xt∈XT

φ (xt)

∥∥∥∥∥∥ , (2)

The smaller theMMD value, the more similar the distribution
of the features obtained by the source sample and the target
sample in each layer of the DSCNN.

The DSCNN is trained jointly on all labeled source data
and unlabeled target data, as shown in in Fig. 2. Three MMD
values (i.e.,MMD1,MMD2, andMMD3) are calculated based
on the output of source data and target data on three selected
connection layers in the DSCNN. To ensure that source and
target samples will have similar feature distributions in some
layer of the DSCNN, the domain discrepancy loss is defined
as:

Ldomain =
∑

i=1,2,3

λiMMDi(XS ,XT ), (3)

where MMD1(XS ,XT ) denotes the feature distribution dis-
tance in the fully connected layer FC1 of spatial stream
ConvNet.MMD2(XS ,XT ) denotes the feature distribution dis-
tance in the fully connected layer FC1 of temporal stream
ConvNet.MMD3(XS ,XT ) denotes the feature distribution dis-
tance in the fully connected layer FC2. The hyperparameter
λi determines how strongly we would like to confuse two
domains, and during the training process, the values of these
parameters are determined by the best recognition results in
the CDMER tasks.

In contrast, only labeled source samples are used to
compute the classification loss of DSCNN, which can be

defined as:

Lclassification = −
1
N

N∑
n=1

Y∑
j=1

τ (yn, j)× logPn,j, (4)

where N denotes the training sample size, Y denotes
the category number of ME, yn denotes the label of the
n-th training sample and Pn,j denotes the prediction value that
the n-th training sample is predicted to be the j-th category.

To ensure that feature representations have good adaptation
performance in CDMER tasks, the joint loss function used in
the DSCNN can be defined as:

Ltotal = Ldomain + λ4Lclassification, (5)

where Lclassification denotes the classification loss on labeled
source data, and Ldomain denotes the joint loss between the
source data, XS , and the target data, XT on three selected
connection layers in the DSCNN. We consider that such
representations can offer strong semantic separation and have
domain invariance in CDMER tasks.

The DSCNN uses the value of the joint loss function
as a feedback signal to adjust the value of the weights by
small amount in a direction that lowers the loss value for
examples in CDMER tasks. This adjustment is the job of the
‘‘optimizer’’, which implements what is called the ‘‘back-
propagation’’ algorithm (BP) [47]. We use the stochastic
gradient descent algorithm with nesterov momentum as the
training optimizer. The iterative process during the training
of the DSCNN is shown as follows:

υt = γ υt−1 + α∇θJ (θ − γ υt−1) ,

θ ← θ − υt . (6)
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where α denotes the learning rate. The correction factor is
set equal to 0.9, and the attenuation of the weight parameters
is set equal to 10−5. We use the strategy to minimize the
value of the joint loss function in the DSCNN and gradually
update the weight parameters to learn transferable feature
representations between samples from two domains. After the
recognition accuracy of the DSCNN in CDMER tasks tends
to be stable, the optimization iteration process stops. Once the
optimal weight parameters in the DSCNN are learned, we can
use the DSCNN to address the CDMER tasks.

III. EXPERIMENTS
A. EXPERIMENTAL SETTING
In this section, we conduct experiments by using many
domain adaptation (DA) methods for respectively
investigating CDMER problem. In these experiments,
we compare the proposed DSCNN with some repre-
sentative methods including importance-weighted support
vector machine (IW-SVM) [29], transfer kernel learning
(TKL) [30], geodesic flow kernel (GFK) [31], selective
transfer machine (STM) [33], subspace alignment (SA) [35],
transfer component analysis (TCA) [36], target sample regen-
erator (TSRG) [28], DR in the Label Space (DRLS) [48],
and region selective transfer regression (RSTR) [39]. For
these DA methods, we employ the temporal interpolation
model (TIM) [49] to normalize the frame number of all the
micro-expression video clips to 16 and resize each frame
image to 112× 112. We compute uniform LBP-TOP [40]
with fixed parameters using four types of spatial grids
(1×1, 2×2, 3×3, and 4×4) in [39] to serve as the micro-
expression features. For uniform LBP-TOP, neighboring
radius R and number of the neighboring points P for LBP
operator on three orthogonal planes are fixed at 3 and 8,
respectively.

In our experiments, we choose uLSIF [50] to learn the
importance weights for IW-SVM, which has shown its excel-
lent performance in CDMER [28], [48]. For TKL, we deter-
mine the optimal value of ζ by searching from the parameter
space [0.1: 0.1: 5]. The subspace of GFK, TCA, and SA are
construct by principal component analysis (PCA) [51], and
we search the optimal dimension k (the number of eigen-
vectors for composing the projection matrix) by trying all
possible dimensions. The penalized coefficient in STM is set
as C = 1, and the searching space of its second trade-off
parameter λ is set as [0.001: 0.001: 0.009, 0.01: 0.01: 0.09,
0.1: 0.1: 1, 2: 1: 100, 1000, 10000]. The optimal values of
two trade-off parameters λ and µ in TSRG and DRLS are
determined by searching from [0.001, 0.01, 0.1, 1, 10, 100,
1000] (for λ) and [0.001: 0.001: 0.009, 0.01: 0.01: 0.09, 0.1:
0.1: 1, 2: 1: 10] (for µ). We search their optimal values from
the preset parameter spaces, i.e., λ ∈ [0.1, 1, 10, 100, 1000,
10000], µ ∈ [0.1: 0.1: 5], and τ ∈ [0.01: 0.01: 0.1].

In these experiments, we evaluate our DSCNNmodel using
the same settings as in the work of [39]. Two publicly avail-
able ME databases (i.e., CASME II [52] and SMIC [53])

TABLE 2. The sample statistics of relabeled CASME II and SMIC
(HS, VIS, NIR) used for CDMER experiments.

are used to build the CDMER tasks, which are often used in
CDMER tasks. The two databases are shown as follows:

1) The CASME II database was created by Yan et al.
from the Institute of Psychology, Chinese Academy of
Science, which includes 247ME samples with high res-
olution from 26 subjects. All samples were recorded at
200 fps, and categorized into 5 ME classes: happiness
(32), surprise (25), disgust (64), repression (27), and
others (99).

2) The SMIC database was created by Li et al. from
the University of Oulu and has three subsets, i.e.,
SMIC (HS), SMIC (VIS) and SMIC (NIR). SMIC (HS)
includes 164ME samples from 16 subjects (i.e., 10men
and 6 women, 8 Caucasians and 8 Asians), and both
SMIC (VIS) and SMIC (NIR) include 71 ME samples
from 8 participants (i.e., 6 men and 2 women, 5 Cau-
casians and 3 Asians). These samples are recorded
by a high-speed camera, a visual camera, and a near-
infrared camera, respectively. All the ME samples are
categorized into three categories: positive, negative,
and surprise. Each subset can be used as an indepen-
dent dataset, because they are recorded under different
conditions.

To conduct cross-database experiments on the two
databases, we need to make CASME II and SMIC have
the same ME labeling. We select the samples of happiness,
surprise, disgust, and repression from CASME II and then
relabel them with the same ME labels in SMIC. The samples
of happiness are relabeled as positive, and the samples of
disgust and repression are relabeled as negative. The labels
of surprise samples remain unchanged. The sample statistics
of SMIC and relabeled CASME II can be found in Table 2.

In this paper, we conduct two types of CDMER experi-
ments based on relabeled CASME II and subsets of SMIC.
The TYPE-I type of experiments are conducted between
either two subsets of SMIC (i.e., HS, VIS, NIR), such as HS
→ VIS, VIS→ HS, HS→ NIS, NIR→ HS, VIS→ NIR,
and NIR → VIS. Meanwhile, the TYPE-II type of experi-
ments are conducted between CASME II and one subset of
SMIC (HS, VIS, NIR), such as CAS → HS, HS → CAS,
CAS→ VIS, VIS→ CAS, CAS→ NIR, and NIR→ CAS.
CAS, HS, VIS, and NIR are short for relabeled CASME II,
SMIC (HS), SMIC (VIS), and SMIC (NIR). In the experiment
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TABLE 3. The detailed information about two types of CDMER tasks.

of S→ T, S and T denote the source and target ME databases,
respectively. The statistics of these CDMER experiments are
summarized in Table 3.

B. RESULTS AND ANALYSIS FOR CDMER
The mean F1-score and accuracy are chosen as the eval-
uation metrics in the experiments. SVM is chosen as a
baseline method to compare with other DA methods. The
results of the TYPE-I and TYPE-II experiments are shown
in Table 4 and Table 5, respectively. Compared with the
SVM without domain adaptation, it is clear that these DA
methods achieve significant improvement in the recognition
ability in all the experiments. The results in Table 4 and
Table 5 indicate that DAmethods are effective ways to narrow
the feature distribution gap between the samples from differ-
ent ME databases when dealing with the CDMER problem.
In addition, we also observe that the DSCNN achieves more
promising results among all the representative DA methods
selected for comparison. The DSCNN achieves an average
mean F1-score/accuracy of 0.7795/78.09% in the TYPE-I
experiments and 0.6956/70.77% in TYPE-II experiments,
which are significantly higher than those of the most DA
methods for comparison. The performance of the DSCNN
should be attributed to the design of two streams in the
DSCNN and the idea of DA based on the domain discrepancy
loss.

From Table 4 and Table 5, we observe that there
are significant differences between the average results of
each method in TYPE-I and TYPE-II experiments. TSRG,
DRFS-T, and RSTR achieve the average mean
F1-score/accuracy of 0.6991/70.05%, 0.7128/71.23%, and
0.7381/73.98% in TYPE-I experiments, which are much
higher than their achieved results (0.5348/56.22%,
0.5498/57.65%, and 0.5587/57.74%) in TYPE-II experi-
ments. The result shows that TYPE-II experiments are sig-
nificantly more difficult than TYPE-I experiments.

When SMIC (NIR) is used as the target database, i.e.,
Expt.3, Expt.5, and Expt.11, we can observe that the average
performance of all the DAmethods can reach 0.6888/69.08%

and 0.7213/73.40% in Expt.3 and Expt.5, whose the source
databases SMIC (HS) and SMIC (VIS) are relatively class-
balanced. The result shows that the remaining one drops to
0.5443/55.43% in Expt.11, where the source databases of
Expt.11 are relabeled CASME II, and very class-imbalanced.

Similarly, the average performance of all DA methods
is also affected by the class-imbalanced target database.
In Expt.6, Expt.4, and Expt.12, whose source database
is fixed, i.e., SMIC (NIR), we observe that the average
mean F1-score / accuracy decreases from the level of
0.7552/76.46% (Expt.6: class-balanced) to 0.5710/58.06%
(Expt.4: class-imbalanced) and 0.4530/47.30% (Expt.12:
class-imbalanced), respectively.

From the results of TYPE-I and TYPE-II experiments,
we notice that three subsets (i.e., HS, VIS, and NIR) of
SMIC in TYPE-I experiments have the same subjects, stimu-
lus materials, recording environments and different cameras,
which results in the relatively small feature distribution differ-
ence. Meanwhile, compared with three subsets (i.e., HS, VIS,
and NIR) of SMIC, relabeled CASME II used in TYPE-II
experiments has substantially different subjects, stimulus
materials, recording environments, and different cameras,
which results in the relatively a large feature distribution
difference. Therefore, the performance of all DA methods is
affected by the class-imbalanced or heterogeneous problem
between the source and target database when dealing with the
CDMER tasks.

To test the structure of the DSCNN and its abil-
ity to learn salient characteristics from the ME samples,
we compare the results between the DSCNN and OSCNN-I
(or OSCNN-II), which only retains a single stream.We notice
that the DSCNN achieves better performance than the
single-stream networks in the TYPE-I and TYPE-II exper-
iments. The result shows that the dual-stream structure
in DSCNN can better utilize various forms of effective
spatio-temporal characteristics for CDMER tasks, achieving
better performance than some single-stream networks, such
as OSCNN-I, and OSCNN-II.

C. DSCNN VISUALIZATION
In this section, to understand how pooling and convnet layers
of the two stream ConvNets in the DSCNN transform their
input, we visualize intermediate activations, which consists
in displaying the feature maps that are output by various
convolution and pooling layers in the DSCNN. This gives a
view into how an input is decomposed into the different filters
learned by the DSCNN.

We randomly choose a CDMER task from either TYPE-I
or TYPE-II as an example of intermediate activation visual-
ization, such as Expt.8: HS → CAS. When the training of
the DSCNN is completed, we randomly choose an ME video
from the target domain (i.e., CASME II) as the input, and
visualize intermediate activations on various convolution and
pooling layers in the DSCNN, as shown in Fig. 3 and Fig. 4.

Firstly, we observe that from Fig. 3 and Fig. 4, the feature
maps extracted by a layer get increasingly abstract with the
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TABLE 4. Experimental results (Mean F1-score/accuracy) in the TYPE-I experiments, Where a series of CDMER tasks between three subsets of SMIC
(i.e., HS, VIS, NIR). For short, HS = SMIC (HS), VIS = SMIC (VIS), and NIR = SMIC (NIR). The best results in each experiment are highlighted in bold.

TABLE 5. Experimental results (Mean F1-score/accuracy) in The TYPE-II experiments, Where a series of CDMER tasks between The CASME II and one
subsets of SMIC (i.e., HS, VIS, NIR). For short, CAS = relabeled CASME II, HS = SMIC (HS), VIS = SMIC (VIS), and NIR = SMIC (NIR).
The best results in each experiment are highlighted in bold.

depth of the layers in the DSCNN. The intermediate activa-
tions of layers higher-up carry less and less information about
the specific input being seen, and more and more information
about the class of the target: positive, negative, or surprise.

Secondly, in Fig. 3, we can observe that some intermediate
activations in layers of the spatial stream ConvNet, which
clearly show that some appearance and outline information
of a whole face. It shows that the spatial stream ConvNet
in the DSCNN operates on the gray image of the resized
apex frame, learning some useful spatial clues associated
with particular facial texture information from the single
frame. Facial expressions are strongly associated with these
particular facial texture information that is the most intuitive.

Thirdly, in Fig. 4, we can observe that some intermedi-
ate activations in layers of the temporal stream ConvNet,

which clearly show that the muscle movements in the sub-
ject’s eyebrows from the occurrence to the disappearance
of an disgust micro-expression, although the amplitude of
the facial muscle motion between adjacent frames is very
small. It shows that the spatial streamConvNet in the DSCNN
operates on the optical flow displacement field between
three resized frames, learning some useful temporal clues
associated with the facial muscle actions during a short
time.

Based on the above observations, two stream ConvNets
in the DSCNN effectively act as an information distiller,
with raw data going in, and getting repeatedly transformed
so that irrelevant information gets filtered out while useful
information from spatial and temporal cues in three frames
of each ME video get magnified and refined.
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FIGURE 3. The visualization of intermediate activations on some convolution and pooling layers in the spatial stream ConvNet of the DSCNN.
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FIGURE 4. The visualization of intermediate activations on some convolution and pooling layers in the temporal stream ConvNet of the
DSCNN.
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IV. CONCLUSION
In this paper, we propose a dual-stream convolutional neu-
ral network called DSCNN to address CDMER tasks. Our
method is novel in that we take a domain discrepancy loss and
a classification loss to minimize the feature distribution dif-
ference between the source and target domains. Two streams
in the DSCNN can jointly learn spatio-temporal features of
ME samples to optimize for cross-database micro-expression
classification through different input clues in ME samples.
To evaluate the performance of DSCNN, we conduct TYPE-I
and TYPE-II experiments on relabeled CASME II and three
subsets of SMIC (i.e., HS, VIS, and NIR). Compared with
some representative DA methods, our proposed DSCNN has
an overall superior performance. We observe that the perfor-
mance of DA methods is affected by the class-imbalanced
or heterogeneous problem between the source and target
database when handing the CDMER tasks. In the future,
we could focus on designing a better spatio-temporal feature
extraction method for CDMER tasks, and studying faster
optical flow calculation methods. In addition, we plan to
design a simpler network structure with multiple recognition
tubes to cope with CDMER tasks and verify the effectiveness
of the proposed model on more ME databases.
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