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ABSTRACT Human activity recognition (HAR) is one of the important research areas in pervasive
computing. Among HAR, sensor-based activity recognition refers to acquiring a high-level knowledge about
human activities from readings of many low-level sensors. In recent years, although the existing methods of
deep learning (DL) have beenwidely used for sensor-based HARwith some good performance, they still face
such challenges as feature extraction and characterization, continuous action segmentation in dealing with
time series problems. In this study, a multichannel fusion model is proposed with the idea of dividing. In this
proposed architecture, a multichannel convolutional neural network (CNN) is used to enhance the ability to
extract features at different scales, and then the fused features are fed into the gated recurrent unit (GRU) for
feature labeling and enhanced feature representation, through the learning of temporal relationships. Finally,
the multichannel CNN-GRU model is designed using global average pooling (GAP) to connect the feature
maps with the final classification. The model performance was conducted on three benchmark datasets of
WISDM, UCI-HAR, and PAMAP2 with the accuracy of 96.41%, 96.67%, and 96.25% respectively. The
results show that the proposed model demonstrates better activity detection capability than some of the
reported results.

INDEX TERMS Human activity recognition, feature extraction, multichannel CNN, GRU.

I. INTRODUCTION
Human activity recognition (HAR) refers to inferring the
current action and predicting the following action from a
series of observations and analysis of human behavior and
the environment [1]. There are two mainstream techniques
for HAR: video-based [2] and sensor-based systems [3].
Video-based system classifies video clips containing various
types of human actions [4]. This way is very intrusive
to the life of the target individual and difficult to ensure
his/her privacy. Besides, the quality of the video captured
by the camera is also affected by complex environment,
such as lighting, background noise, and the target object
occlusion [5], leading to performance degradation.Moreover,
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the recognition of video images faces more difficulties and
more expensive costs [6]. Sensor-based HAR extracts the
features of human activity details from the raw data of the
sensor and recognizes the human activity [7]. Sensors have
a wider range of application scenarios such as healthcare,
sports, smart home, and human-computer interaction due to
their stability, non-intrusive nature, and excellent ability to
protect privacy [8]. Smartphones and smartwatches, a range
of wearable devices, have inertial sensors such as gyroscope,
accelerometer, and magnetometer embedded in them. These
increasing computational devices make it possible to collect
time series data efficiently and infer details of human
activities [9], and serve as very useful monitoring tools in
smart homes.

In recent years, sensor-based HAR has become a pop-
ular research area, with researchers first using traditional
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machine learning (ML) methods for HAR task. The general
process of HAR includes [10]: Collecting motion data
using sensors, pre-processing the data, action segmentation,
extracting features, and action classification. Fig. 1 shows
the whole process of HAR task. Traditional ML, including
SVM [11], decision trees [12], Bayes [13], and random
forest [14], has seen excellent performance in classifying
action. However, ML has many limitations and relies
heavily on manual feature extraction due to its shallow
learning process. Manual feature extraction, such as sta-
tistical and frequency domain features, always depends
on elaborate features selection of human experience and
domain knowledge [15]. Besides, the hand-crafted features
can only characterize some simple human activities, but
not the complex ones. As a result, shallow ML algo-
rithms find it difficult to adapt to new complex HAR
scenarios [16].

DL has achieved automatic feature extraction by end-to-
end neural networks, largely reducing the time-consuming
and labor-intensive manual extraction of features and
simplifying the huge feature engineering. Meanwhile, the
features extracted by DL are deep [17], [18]. Currently,
DL methods, with higher efficiency and higher classification
accuracy, have found wide use in HAR, and become
effective methods for HAR. CNN and Recurrent neural
network (RNN) are two typical neural networks. CNN
evolved from multilayer perceptron and has features such as
weight sharing, local connectivity and down-sampling [19],
which has excellent performance in the field of computer
vision. RNN is a DL neural network used to model sequence
data [20], connects neurons which saves the previous input
sequence-information to abstractly characterize the whole
sequence, and it generates a new sequence in the end. RNN
solves the intractable problems of variable-length sequences
and long-distance dependencies in sequences that exist in
feedforward neural network (FNN), and is widely used in
the fields of sequence annotation, image annotation, etc.
Long short-term memory (LSTM) [21] and GRU [22],
two variants of RNNs, are used to solve the gradient
disappearance and gradient explosion problems of RNNs.
Compared with LSTM, GRU has one less control gate inside,
fewer parameters, and easier training, but can get similar
results.

Good results of DL networks have also been achieved
in the other fields, Liu et al. optimized the structure
of the GRU network and proposed a new modulation
recognition method based on feature extraction and a DL
algorithm [23], Hartpence and Kwasinski utilize ensembles
to defend against data poisoning attacks attempting to create
classification errors [24]. However, HAR using sensor-based
DL methods still faces some problems. The first is the
extraction, characterization, and classification accuracy of
features [25]. Despite the advantage of DL in extracting data
features automatically, different network structures have high
and low characterization ability of features. Besides, time
series of HAR activity has backward and forward relevance,

FIGURE 1. HAR framework.

and has difficulties in labeling the sequences. Thus, the
performance of feature extraction will directly affect the
accuracy of classification; The second is the computational
cost, i.e., the number of parameters [26]. These lightweight
wearable devices, despite the improvement of chip arithmetic
power, still have high requirements on the computational
cost of the model, requiring the model to be relatively
lightweight and fast to response to real-time data in practical
application [27].

For better feature extraction and limitation on compu-
tational cost, we propose a three-channel CNN structure
for feature extraction for the input samples. The features
at different scales extracted from these three channels are
connected and fed into GRU for the sequence features. The
use of GAP instead of fully connected (FC) layer improves
the training speed of the model and get more accurate the
classification. Our model achieves higher performance on the
benchmark HAR dataset.

The main contributions of the proposed model are:
• To begin, a multichannel convolutional neural network
is used for initial feature extraction at different scales
before connection and fusion. Next, a GRU neural
network is used for sequence labeling to further extract
sample features. The mapping between feature maps
and final classification using the GAP makes the
transformation smoother, ensuring the model is more
robust against fitting.

• Compared to other fusion models as well as similar mul-
tichannel models, the multichannel CNN-GRU model
we proposed has fewer parameters and higher accuracy
on WISDM, UCI-HAR, and PAMAP2.

The rest of this paper is structured as follows: The second
section introduces the related work of HAR, especially DL
methods; The third section contains the methodology used
in our proposed multichannel model; the fourth section
describes the experiments and the experimental procedure,
and the fifth section summarizes the work of this paper and
gives the areas for improvement.

II. RELATED WORK
As we know sensors could be easily built into smartphones,
smartwatches, and other wearable products. For its high
portability and accurate and rapid collection of motion data,
sensor-based HAR has many application scenarios [28],
such as motion classification, fall detection, human-computer
interaction.
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A. MACHINE LEARNING METHOD
Researchers have conducted a lot of research work in the
area of traditional ML. Initially, researchers used traditional
ML methods for the action classification task of HAR with
some success. Bao and Intille [29] presented the earliest HAR
system that used five wearable dual-axis accelerometers,
machine learning classifiers. It could identify 20 categories
of activities of daily living, achieving 84% classification
accuracy, and this result is fairly good for its relatively
large number of activities. However, traditional ML requires
manual feature extraction from the raw data, which is a very
huge project, and the effectiveness of the extracted features
is affected by domain knowledge, which makes it difficult to
improve the accuracy of the action classification results.

B. DEEP LEARNING METHOD
In recent years, DL methods have been used in HAR with
impressive performance. Zeng et al developed a method
based on CNN, which can capture local dependency and scale
invariance of a signal. They also proposed a partial weight
sharing approach and applied it to accelerometer signals to
obtain further improvements [30]. Yang et al. [31] further
used 1-dimensional convolution (Conv1D) in the same time
window to unify and share the weights of time series data
from multiple sensors.

Ronao and Cho [10] proposed a model consisting of
alternating convolutional and pooling layers, the extracted
features are passed to the FC and Softmax layers to
predict human activities. CNN and statistical learning were
combined to implement a real-time classification framework
by Andrey [32]. In [25], the authors designed a cell phone
sensor-based HAR model using CNNs. Wang and Liu [33]
proposed a hierarchical LSTM approach to identify human
activities. CNNs were also used in HAR task to extract
temporal features, and achieved significant performance
improvements. Bianchi et al. [34] proposed a CNN model
consisting of four convolutional layers and one FC layer for
human activity recognition, which achieved good results on a
small training set. A hybrid CNN-LSTM model is proposed
in [35] for multi-mode wearable sensor devices. In [36] the
authors designed a LSTM-RNN architecture model for HAR.

C. SIMILAR FUSION MODEL
Recently, there have been some new studies using fusion
models for sensor-based HAR. Dua et al. [37] used CNN
and GRU in 3-head module to extract features and FC
connection for classification, and they achieved satisfactory
results on several datasets, but the overly complex head
causes the increase of parameters for the model, and it
fails to meet the HAR requirement of the lightweight.
Hamza et al. [38] and Ronald et al. [39] utilized the Incep-
tion module from the Inception-Resnet model [40] in the
HAR DL model to perform the HAR classification task,
in [38] the authors used inception modules consisting of
1D convolutional layers and DenseNet network to design

TABLE 1. The related works regarding HAR.

HHARNet model. This model used three ‘‘InceptionDense
module’’ with which to group features together according
to depth. Ronald et al. constructed the iSPLIception model
based on the Inception-Resnet by using the Inception module
directly in the HAR model for extracting more features in
terms of depth and width. Table 1 lists the related works
regarding HAR briefly.

Inception module is essentially to extract features of
different dimensions to enhance the computer vision and
to increase the depth of model. However, the improvement
obtained by directly applying the Inception module or modi-
fying the convolutional kernel size of the Inception module to
the HARmodel is not obvious enough.We continue to extend
the idea of inception by optimizing the network structure
and parameters of each channel. Specifically, following the
input this model connects multiple channels of CNN neural
networks with different convolutional kernel sizes, while the
batch normalization (Batch Norm) layer is added between
the two convolutional layers of a single channel to speed
up the network convergence, and a max pooling layer added
at the end of each channel. In the end, the output features
at different scales of each channel are connected using
Concatenation layer similarly.

The fused features are fed into the GRU neural network
for feature labeling, and the using GAP instead of FC
layers could make the transformation smoother and enable
the model to have stronger anti-fitting ability, reducing the
number of parameters significantly. The excessive number
of parameters will limit the application of DL models of
sensor-based HAR to real-world environments. Although
deepermodels have the ability to express featuresmore richly,
the pursuit of complexity can lead to huge system overhead,
making it difficult to be applied in real world. Our model
achieves better results with fewer parameters and is more
adaptable to practical applications.

III. METHODS
A. MULTICHANNEL CNN
CNN has been widely used in DL and derived many classical
structures, such as FCN, Res-Net. These methods play
important roles in classification tasks of HAR. Fig. 2 depicts
the process of extracting time series features using Conv1D.
The convolution kernel is convolved with a window of
medium length of the sample to obtain the corresponding
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FIGURE 2. Extraction of time series features using Conv1D.

features, and it is shifted down to convolve with the data
behind. The dimension of resulting features equals the
number of convolution kernels. We apply the structural
features of Inception module to our model, in which different
channels obtain features at different scales. This can enhance
the receptive field of the computer to perform HAR tasks.
Three channels at different convolutional scales are designed,
with Batch Norm layer added between the convolutional
layers for normalization, and the sample data go through
each channel and the output features are connected. CNN
extracts the features at multiple scales and makes the model
obtain stronger feature representation, which will effectively
improve the accuracy of classification.

B. GRU
GRU solves the problem of gradient disappearance and
explosion of general RNN. Fig. 3 depicts the principle of
GRU, which has the same structure of input and output as the
RNN. The current input x t and the hidden state ht−1 passed
down from the previous node are passed through GRU to
get the output yt and the hidden state ht passed to the next
node. It only needs one unit to complete two operations of
forgetting and selecting memory (LSTM needs multiple units
to complete this function), and the Formula 1 is the updated
expression of GRU unit.

ht = (1− z)� ht−1 + z� h′ (1)

GRU has better performance in longer sequence data
compared to RNN. GRU controls the transmission state with
the state of gates, remembering the critical information that
needs to be kept for a long time and forgetting the unimportant
ones. Compared with LSTM, GRU has a smaller number of
parameters. The features at different scales extracted from
multiple channels are fused and put into the GRU layer for
labeling the time-dependent sequences, enhancing the feature
representation. A model consisting of CNN networks only

FIGURE 3. The principle of GRU.

FIGURE 4. The conversion process of features using: (a) FC; (b) GAP.

cannot solve the problem of error tolerance, with wrong
data or illegal data increasing the recognition rate of CNN
decreases. This is due to that this model fails to filter dirty
data in the input samples. Instead, GRU network enables the
model to have fault-tolerant capability. The input samples
correspond to several feature maps at several consecutive
moments, even a wrong channel occurs in the corresponding
feature map in a certain moment, GRU would predict and
erase the errored channel according to the other features for
there is a time dependency in each feature map.

C. GAP
The FC layer connects the convolutional layer and the normal
layer, takes the data from the previous layer, and puts the
result into the normal layer through nonlinear transformation,
its conversion process is shown in Fig. 4 (a); the GAP
layer averages the feature data in both height and width
dimensions, while the FC layer is prone to overfitting when
training toomany parameters, its conversion process is shown
in Fig. 4 (b). Thus, the GAP layer has a more stable
performance. There are two advantages of using GAP instead
of FC: First, the transformation between featuremap and final
classification is simpler and more natural in GAP; Second,
it does not need a large number of training tuning parameters
like FC layer, which reduces the number of spatial parameters
and makes the model more stable.
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FIGURE 5. Multichannel CNN-GRU model.

D. PROPOSED MODEL
In this study, a multichannel CNN-GRU model is proposed
for HAR. After input of the samples, they are fed into
three channels with convolutional kernels of different scales,
then into two GRU layers after feature fusion, and sent to
the final classification layer through GAP and Batch Norm
layers. The structure of the model is shown in Fig. 5. Three
channels are similar in structure except for the convolutional
kernels at different size scales in the convolutional layer; the
convolutional kernels at different scales obtain features of
different scales from the samples and possess the capability
of enhancing the vision of the neural network.

The samples first pass through a Conv1D of the channel,
which accepts input data in three dimensions. The first dimen-
sion – the number of samples, the second dimension – the size
of the sliding window is 128, and the third dimension – the
original number of features (3 for the WISDM dataset and
9 for the UCI-HAR dataset). Then the data passes through the
activation layer with an activation function of rectified linear
unit (ReLU), followed by Batch Norm layer, which converts
the sample to data with a mean of 0 and standard deviation
of 1. This can speed up the training and convergence of the
model, control the gradient explosion, prevent the gradient
from disappearing, and reduce overfitting. Then the data go
through a Conv1D layer and an activation layer with the same
activation function as ReLU, and finally the 1-dimensional
max pooling (MaxPooling1D) layer with a size of 2 and a

step size of 1. The number of convolution kernels in the
first Conv1D layer is 64 for all channels, and the second
one is 128. The structure of the three channels is the same
except that the size of the convolution kernels is 3, 5, and 7,
respectively. These extracted features are concatenated in
the concatenation layer and fed into the GRU layer with
the number of neurons of 128 and 64, respectively. Then,
they go through the GAP layer and the Batch Norm layer to
realize normalization, and then the Dense layer with softmax
activation function as the classification function to obtain the
normalized output.

The spatial complexity of CNN networks is low, and the
number of its parameters is related to the feature dimension
and the number of convolutional kernels, etc. Conv1D is used
in our model, with two input feature dimension of sliding
window size and features, and its number of parameters is
low. The number of GRU parameters is the sum of updated
unit parameters and reset unit parameters, with its size related
to the input dimension and gate units. In our experiment,
the number of parameters of the proposed model with
the comparison model is compared, which is an important
evaluation of the HAR framework.

IV. EXPERIMENTS AND RESULTS
A. DATASETS
To verify the validity of the model, experiments were
conducted using the WISDM dataset (single sensor), the
UCI-HAR dataset (multi sensors), and the PAMAP2 dataset
(multi sensors). The basics of the three datasets are described
below.

1) WISDM DATASET
WISDM is a benchmark HAR dataset provided by the
Wireless Sensor Data Mining (WISDM) Lab research team.
36 participants, with Android smartphones in their front
leg pocket, conducted specific activities in a controlled
environment [41]. A total of 1,098,207 samples (sampled
at 20 Hz) are obtained using a three-axial acceleration
(implanted in an Android phone). Participants were asked
to perform six activities: sitting, standing, walking, walking
up, down stairs, and jogging. Each sample consists of
six attributes: user ID, activity, timestamp, x-acceleration,
y-acceleration, and z-acceleration. Some of the data in
WISDM are displayed in Fig. 6.

2) UCI-HAR DATASET
UCI-HAR was collected from 30 volunteers between the
ages of 19 and 48 wearing a smartphone (Samsung Galaxy
SII) on the waist [42]. Eatch Each individual performed six
activities-three static activities: walking, walking upstairs,
and walking downstairs, and three dynamic ones: sitting,
standing, and laying. These data were recorded by the
developed software. Two three-axial linear acceleration and
a three-axial angular velocity captured the data at a constant
rate of 50 Hz using the built-in gyroscope and accelerometer
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FIGURE 6. Part of WISDM dataset.

TABLE 2. A brief description of UCI-HAR dataset.

TABLE 3. A brief description of PAMAP2 dataset.

of the smartphone. The training and test set have been divided
and its pre-processing has also been completed in UCI-HAR.
So we can just use it. A brief description of UCI-HAR is
shown in Table 2.

3) PAMAP2 DATASET
PAMAP2 — recorded from 18 activities performed by
9 subjects, wearing 3 IMUs and a HR-monitor — is created
and made publicly available by Reiss et al [43]. Three
inertial measurement units (IMUs) and a heart rate monitor
were used as sensors during the data collection. These
relatively lightweight and small IMUs contain 3-axis MEMS
sensors, including two accelerometers, a gyroscope and a
magnetometer, all sampled at 100 Hz. Participants followed
a protocol of 12 activities (lie, sit, stand, walk, run, cycle,
Nordic walk, iron, vacuum clean, rope jump, ascend and
descend stairs) and 6 optional activities (watch TV, computer
work, drive car, fold laundry, clean house, play soccer). The
data are from a total of 9 volunteers, aging from 24 to 32, and
each performs some of these activities. The description of this
dataset is presented in Table 3.

B. DATASET PREPROCESSING
The original data needs to be pre-processed due to their
unbalance distribution. By normalization, we make the data
have a mean of 0 and standard deviation of 1. To better

evaluate the effectiveness of the proposed model, special
attention is given to divide the dataset. The original data
consists of time series of different activities by user ID, and
the data of the user to be predicted is completely unknown
when the model is applied to reality. With a sliding window
splitting the original data, the dataset is randomly divided into
training set and the test set according to a certain ratio. This
would lead to that some samples of the same user’s activity
may appear in both training set and test set. Dividing the
dataset in this way may improve the accuracy of the proposed
model, but does not reflect its true validity.

The reality is that the user data to be tested is completely
unknown when the model is applied. Thus, we divide the
training and test sets by user IDs to ensure that the samples
from the same ID could only exist in one of the two sets.
The size of the sliding window and the overlap have a great
impact on the partitioning of time-series data. The sliding
window size of 128 and the overlap rate of 50% are set to all
WISDM,UCI-HAR, and PAMAP2 according to the sampling
frequency and human activity habits.

C. EVALUATION METRICS
Commonly used evaluation metrics for classification models
includes: precision, recall, and F1 score. These metrics will
be used to evaluate the proposed model.

Accuracy: For a given test dataset, the ratio of the number
of samples correctly classified by the classifier to the total
number of samples is the correct rate for the identified
samples.

Accuracy =
TP+ TN

TP+ FP+ FN + TN
(2)

where TP= True Positives, FP= False Positives, FN= False
Negatives, and TN = True Negatives.

Precision: The ratio of the number of correctly identified
positive samples to the total number of samples identified as
positive in the identified sample.

Precision =
TP

TP+ FP
(3)

Recall: Also known as sensitivity, is the fraction of
examples classified as positive, among the total number of
positive examples.

Recall =
TP

TP+ FN
(4)

F1-score: It is ameasure of amodel’s accuracy on a dataset,
used to evaluate binary classification systems, which is the
harmonic mean of the precision and recall.

F1− score = 2×
precision× recall
precision+ recall

(5)

Confusion matrix (CM): It is a square matrix that gives
the full performance of the classification model. rows of the
CM represent instances of the true class labels and columns
represent the predicted class labels. The diagonal elements of
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FIGURE 7. Confusion matrix of the proposed model on the WISDM test
sets.

this matrix define the number of points where the predicted
labels are equal to the true labels.

Parameters: The amount of data to be trained in the model,
measuring the spatial complexity of the model.

D. RESULTS AND DISCUSSION
In this sectionwe test the proposedmodel on three benchmark
datasets to evaluate its effectiveness. We carry out four
experiments: the first is the performance of our proposed
model on three datasets, the second is comparison of the
three-channel model with other numbers of channels model,
the third is comparing GRU with LSTM, and the fourth
is comparing the model connected with GAP with the one
connected with FC layer. The model is built and trained
based on DL framework of Keras and TensorFlow-gpu
2.6.0. The labels are transformed into One-Hot encoding
and trained using Adam optimizer with a learning rate
of 0.001 and categorical cross-entropy serves as the loss
function of the model. The Batch size is 96 and the number
of training steps is 100. All the experiments in this study
are performed on Windows 10 system, and the computer’s
CPU is R9-5900HX, memory is 16GB, and GPU is NVIDIA
GeForce
RTX3060.

1) RESULT ON WISDM DATASET
The samples in the WISDM dataset were divided according
to user IDs. The first 30 users (ID: 1-30) were used as the
training set and the last 6 users (ID: 31-36) were used as
the test set. The training set had a total of 14,035 samples
and the test set had a total of 3,121 ones. Fig. 7 shows
the confusion matrix obtained from the trained model on
the test set. The experimental results show that the model
achieved accuracy over 97% for four action categories
(walking, jogging, standing, sitting), with upstairs and
downstairs lower than others due to the similarity of the two
actions.

Table 4 shows the evaluationmetrics of the proposedmodel
on theWISDMdataset, the accuracy and F1-score of reaching
96.41% and 96.39%, respectively.

TABLE 4. Evaluation metrics of the proposed model on the WISDM
dataset.

TABLE 5. Evaluation metrics comparison of the proposed model with
other models on WISDM dataset.

FIGURE 8. Confusion matrix of the proposed model on the UCI-HAR test
sets.

Our model is compared with the existing models, as shown
in Table 5. It demonstrates that the F1-score and Accuracy
of this model against other models, showing that this model
outperforms other compared methods for HAR.

2) RESULT ON UCI-HAR DATASET
In UCI-HAR dataset, 7352 samples are used as the training
set and 2947 samples as the test set. Fig. 8 shows the
confusion matrix obtained by evaluating the trained model
on the test set. The results show that the model achieved over
95% accuracy for five action categories (walking, walkup,
walkdown, standing, laying).

Table 6 shows the evaluation metrics of the model on the
UCI-HAR dataset, with its accuracy reaching 96.67% and
F1-score reaching 96.72%.

This model is also compared with the existing models.
Table 7 compares the F1-score and accuracy of the proposed
model with other models, showing that this model outper-
forms compared methods.

3) RESULT ON PAMAP2 DATASET
In this dataset, 11 protocol activities are chosen to perform
classification. Note that the 24th activities of rope jumping
is not chosen because it has very little recording time, and
even some users did not perform this activity. The other
activities are more balanced categories. The data of No. 6 and
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TABLE 6. Evaluation metrics of the proposed model on the UCI-HAR
dataset.

TABLE 7. Evaluation metrics comparison of the proposed model with
other models on UCI-HAR dataset.

FIGURE 9. Confusion matrix of the proposed model on the PAMAP2 test
sets.

No. 7 of nine users were selected as the test set, and we
performed a linear interpolation of the missing values in the
corresponding activities for the selected users. Meanwhile,
the data of first 10 seconds and the last 10 seconds of
each activity are deleted to reduce the mislabeling. All the
52 features are selected, and 19,700 training set samples
and 6727 test set samples were obtained. Fig. 9 shows the
confusion matrix obtained by evaluating the trained model on
the test set. The proposed model has a lower recognition rate
on sitting and vacuum cleaning, but has a better performance
on other activities. Both standing and vacuum cleaning are
easily misclassified as ironing, due to their similar activity
characteristics.

Table 8 shows the evaluation metrics of the model on the
UCI-HAR dataset, with its accuracy reaching 96.25% and
F1-score reaching 96.59%.

In Table 9, the F1-score and accuracy of proposed model
are compared with other models, and the results show that
this model outperforms other comparison methods.

TABLE 8. Evaluation metrics of the proposed model on the PAMAP2
dataset.

TABLE 9. Evaluation metrics comparison of the proposed model with
other models on PAMAP2 dataset.

FIGURE 10. Model structure: (a) 1-channel; (b) 2-channel.

4) COMPARISON OF MULTICHANNEL CNN-GRU MODEL
WITH FUSION MODEL
Dua et al. performed sequence-based convolution. Then,
the samples are through pooling and flattening operations,
inputted to GRU, and then concatenate was used to connect
the features from multi-head module. The final classification
was obtained by connecting them with a FC layer. Each
head contains two layers of GRU, this will make the head
heavy and result in a large number of parameters. Thus, it is
not reasonable to perform classification directly after fusing
features.

Some researchers have incorporated Inception module into
HAR DL models, where they use one or more Inception
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FIGURE 11. Model structure: (a) 4-channel; (b) 5-channel.

TABLE 10. Performance comparison of the proposed model with the
Inception fusion model on WISDM, UCI-HAR, and PAMAP2.

modules in the hope that the model will have depth
and width to extract more comprehensive and effective
features. In this study, we deepen the depth and widen
the width of the model, taking into account the parameter
number, to optimize both the structure of the model
and the network layer. Our design allows the proposed
model to have good performance. Table 10 compares
the F1 score, accuracy, and parameter number of similar
multi-channel models fusing the inception module with the
proposed model on the WISDM, UCI-HAR, and PAMAP2
datasets.

It is clear that the model in this study is better than
other two similar inception fusion multichannel models in
the accuracy and the parameter number. Our framework
has better performance than multi-input GRU-CNN on
UCI-HAR and PAMAP2, and the number of parameters is
much smaller.

5) PERFORMANCE COMPARISON OF MODELS WITH
DIFFERENT NUMBER OF CHANNELS
More number of channels means more convolutional kernels
of different sizes can be involved for feature extraction, so is
it true that more channels will have higher classification
accuracy? We designed 1-channel, 2-channel, 4-channel, and
5-channel models for comparison, and the 1-channel model
structure and 2-channel model structure are illustrated in
Fig. 10 (a) and Fig. 10 (b) respectively, the 4-channel model
structure and 5-channel model structure are illustrated in
Fig. 11 (a) and Fig. 11 (b) respectively. Thesemodels have the
same layers and parameters as the proposed model except the
number of channels and the size of the convolutional kernel.
The convolutional kernel size of the two convolutional layers
of the 1-channel model is 5, and the rest of the settings are
the same as the 3-channel CNN-GRUmodel. In the 2-channel
model, the size of the convolution kernel of the first channel
convolution layer is 3, the size of the convolution kernel of
the second channel convolution layer is 5, and the rest of the
settings are as above. The first three paths of the 4-channel
model are the same as the proposed 3-channel CNN-GRU
model, the fourth channel is 11, and the rest of the settings
are the same as above. The first four channels of the 5-channel
model have the same settings as the 4-channel model, the fifth
channel is 13, and the rest of the settings are the same.
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FIGURE 12. Confusion matrix for models with different channels on
WISDM: (a) 1-channel model; (b) 2-channel model; (c) 4-channel model;
(d) 5-channel model.

The confusion matrices of 1-, 2-, 4- and 5-channel models
on WISDM are shown in Fig. 12 (a), Fig. 12 (b), Fig. 12 (c)
and Fig. 12 (d) respectively, the confusion matrices of
1-, 2-, 4- and 5-channel models on UCI-HAR are shown
in Fig. 13 (a), Fig. 13 (b), Fig. 13 (c) and Fig. 13 (d)
respectively, the confusion matrices of 1-, 2-, 4- and
5-channel models on PAMAP2 are shown in Fig. 14 (a),
Fig. 14 (b), Fig. 14 (c) and Fig. 14 (d) respectively, which
were obtained from the test sets of the three datasets with
different channel models separately, and it can be seen
that different channels have different effects for different
action recognition. On the WISDM dataset, the 1-channel
CNN-GRU is prone to identify standing as sitting and upstairs
as walking, and the 2-, 4- and 5-channel models are prone
to identify upstairs as downstairs. On the UCI-HAR dataset,
all the channel models have the problem of identifying
sitting as standing, but this situation slightly improves as
the number of channels increases. On the PAMAP2 dataset,
both standing and vacuum cleaning are easily misclassified as
ironing.

Table 11 records the accuracy, F1-score and parameter
number of the models with different number of channels
on the WISDM, UCI-HAR, and PAMAP2. The parameter
number measures the lightweight of a model, and we can
see from the table that the proposed model proposed is
higher in accuracy than other models with different number
of channels, and also has a reasonable number of parameters.

6) COMPARISON OF MODEL USING GRU WITH LSTM LAYER
The GRU layers has similar effect with LSTM, but
has less parameters, making the model more lightweight.
Fig. 15 shows the structure of the multichannel CNN-LSTM

FIGURE 13. Confusion matrix for models with different channels on
UCI-HAR: (a) 1-channel model; (b) 2-channel model; (c) 4-channel model;
(d) 5-channel model.

FIGURE 14. Confusion matrix for models with different channels on
PAMAP2: (a) 1-channel model; (b) 2-channel model; (c) 4-channel model;
(d) 5-channel model.

TABLE 11. Evaluation metrics of different number of channels models on
WISDM, UCI-HAR, and PAMAP2.

model, in which two layers after feature fusion differ from the
proposed model, and the rest of the settings are the same.

The confusion matrices of multichannel CNN-LSTM
model on WISDM, UCI-HAR, and PAMAP2 are shown
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FIGURE 15. Multichannel CNN-LSTM model structure.

FIGURE 16. Confusion matrix of multichannel CNN-LSTM model on:
(a) WISDM; (b) UCI-HAR.

in Fig. 16 (a) and Fig. 16 (b), and Fig. 17 respec-
tively, which were obtained under the same experimen-
tal environment and settings. On the WISDM dataset,
the upstairs recognition accuracy of the multichannel
CNN-LSTM model is higher than that of the multichannel
CNN-GRU model, but the downstairs recognition rate is
lower than that of the multichannel CNN-GRUmodel; on the
UCI-HAR and PAMAP2 dataset, the twomodels have similar
results.

FIGURE 17. Confusion matrix of multichannel CNN-LSTM model on
PAMAP2.

TABLE 12. Performance comparison of multichannel CNN-LSTM and
multichannel CNN-GRU.

TABLE 13. Comparison of multichannel CNN-GRU-FC with multichannel
CNN-GRU-GAP.

Table 12 compares evaluation metrics of the two models.
They are similar in terms of accuracy and F1-score, but the
multichannel CNN-GRU has a smaller parameter number.
Lightweight is desirable in condition of accuracy.

7) COMPARISON OF MODELS USING THE GAP LAYER WITH
THE FC LAYER
The model in this study uses a GAP layer instead of a FC
layer to connect the feature maps from the GRU layer with
final classification output. The two models have the same
settings except for the connection layer. The structure of the
multichannel CNN-GRU-FC model is shown in Fig. 18.

The trained model predicts the test set of both datasets
to obtain the confusion matrices on WISDM, UCI-HAR,
and PAMAP2 as shown in Fig. 19 (a), Fig. 19 (b), and
Fig. 20 respectively.

Connecting the feature maps with the final classification
using the fully connected layer is prone to overfitting.
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FIGURE 18. Multichannel CNN-GRU-FC model structure.

FIGURE 19. Confusion matrix of multichannel CNN-GRU-FC model on:
(a) WISDM; (b) UCI-HAR.

As seen in the confusion matrix on the WISDM dataset, the
multichannel CNN-GRU-FC model identifies quite a few of
the standing actions as upstairs. Replacing the FC layer with
the GAP layer can effectively suppress this phenomenon.
Table 13 compares the F1-score, accuracy and parameter
number of the multichannel CNN-GRU-GAP model with
the multichannel CNN-GRU-FC model on the WISDM,

FIGURE 20. Confusion matrix of multichannel CNN-GRU-FC model on
PAMAP2.

UCI-HAR, and PAMAP2 datasets. It is clear that the
proposed model with the GAP layer outperforms the
FC-connected model in all evaluation metrics.

V. CONCLUSION
In this study, the proposed multichannel CNN-GRU model
can identify user activity more accurately from raw data
obtained from sensors. The multichannel CNN structure is
able to extract different-scale features, GRU can extract
time-dependent features, and the GAP layer allows to have
a smaller parameter number. These advantages make the
model identify human activity categories accurately and
quickly. We demonstrate that the three-channel CNN-GRU
model could balance both the number of parameters and
the accuracy by comparing models with different channels.
Experiments show that our proposed model has good
performance on all datasets and outperforms other compared
HAR models. Meanwhile, we observe the impact of data
pre-processing on the classification results. In spite of fault
tolerance of the model, the noise such as illegal and wrong
data in raw data from the sensors still affects the classification
result. It is not enough to use normalized pre-processing
for the data in dataset, and for future work we intend to
process the data more effectively. Besides, even though we
tested this model on three benchmark datasets, the training
samples are still relatively small, and in the future we will
train our model on larger benchmark datasets or our own
collected activity data to verify its generality for sensor-based
HAR.
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