
Received 16 May 2022, accepted 7 June 2022, date of publication 21 June 2022, date of current version 29 June 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3184786

A High-Performance ECC Processor Over
Curve448 Based on a Novel Variant
of the Karatsuba Formula for
Asymmetric Digit Multiplier
ASEP MUHAMAD AWALUDIN , JONGUK PARK , RINI WISNU WARDHANI, (Member, IEEE),
AND HOWON KIM , (Member, IEEE)
School of Computer Science and Engineering, Pusan National University, Busan 609735, South Korea

Corresponding author: Howon Kim (howonkim@pusan.ac.kr)

This work was supported in part by the Energy Cloud Research and Development Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Science, ICT under Grant NRF-2019M3F2A1073385, in part by the Institute for Information &
Communications Technology Planning & Evaluation (IITP) Grant through the Korea Government [(Ministry of Science and ICT (MSIT)]
under Grant 2022-0-01201, and in part by the Convergence Security Core Talent Training Business (Pusan National University).

ABSTRACT In this paper, we present a high-performance architecture for elliptic curve cryptography (ECC)
over Curve448, which to the best of our knowledge, is the fastest implementation of ECC point multiplication
over Curve448 to date. Firstly, we introduce a novel variant of the Karatsuba formula for asymmetric digit
multiplier, suitable for typical DSP primitive with asymmetric input. It reduces the number of required DSPs
compared to previous work and preserves the performance via full parallelization and pipelining. We then
construct a 224-bit pipelined multiplier and interleaved fast reduction algorithm, yielding a total of 12 stages
of pipelined modular multiplication with four stages of input delay. Additionally, we present an efficient
Montgomery ladder scheduling with no additional register is required. The implementation on the Xilinx
7-series FPGA: Virtex-7, Kintex-7, Artix-7, and Zynq 7020 yields execution times of 0.12, 0.13, 0.24, and
0.24 ms, respectively. It increases the throughput by 242% compared to the best previous work on Zynq 7020
and by 858% compared to the best previous work on Virtex-7. Furthermore, the proposed architecture
optimizes nearly 63% efficiency improvement in terms of Area × Time tradeoff. Lastly, we extend our
architecture with well-known side-channel protections such as scalar blinding, base-point randomization,
and continuous randomization.

INDEX TERMS Elliptic-curves cryptography (ECC), curve448, high-speed multiplier, asymmetric
Karatsuba, field-programmable gate array (FPGA).

I. INTRODUCTION
The performance of Public-Key Cryptography has become
one of the main factors of interest in the recently emerging
technologies such as the 5G System [1] and Blockchain [2].
At the same time, there is increasing demand to increase
the security level against attacks that could compromise the
overall performance. In particular, applications enabled on
Internet of Things (IoT) devices suffer from performance
degradation due to limited resources on the processing unit.
Elliptic Curve Cryptography (ECC) has been chosen as the

The associate editor coordinating the review of this manuscript and

approving it for publication was Tianhua Xu .

building block in the security protocol of those technolo-
gies among asymmetric cryptographic algorithms due to its
smaller key size. The Internet Research Task Force (IRTF) [3]
recommended Curve25519 [4] and Curve448 [5] for a high
level of practical security with 128-bit and 224-bit security
levels, respectively, along with inclusion in Transport Layer
Security (TLS) standard 1.3 [6]. Afterward, National Institute
of Standards and Technology (NIST) [7] also included these
curves in their standard.

Curve448 is a conservatively designed elliptic curve with
very competitive performance on a wide variety of plat-
forms, leading to ECC construction issues and to advances in
strong cryptanalysis and classical attacks [5]. Obviously, this

67470
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-5994-2823
https://orcid.org/0000-0002-8704-0261
https://orcid.org/0000-0001-8475-7294
https://orcid.org/0000-0002-5510-841X


A. M. Awaludin et al.: High-Performance ECC Processor Over Curve448

research is being performed not only due to the wide use of
high-performance ECC Processors over Curve448 but also to
address the need for achieving a high-security and efficient
ECC processor architecture as an imperative step for the
emergence of Post-Quantum Cryptography (PQC). We must
acknowledge, with the invention of the Shor’s factorization
algorithm [8], that the current state of the cryptographic sys-
temwill soon likely be compromised by quantum computing;
likewise, the classic public key exchange algorithm will soon
be replaced. Nevertheless, as long as PQC has not been fully
implemented, hybrid mode ECC will still be used in order
to sustain the compatibility of industry and government reg-
ulations. Since in the hybrid schemes, classic and PQC will
work concurrently during the transition to PQC [9]. Classical
cryptographic system will still be needed, even though PQC
development has come a long way. Consequently, designing
an ECC processor architecture with a high level of security,
high speed, low latency, and high efficiency in every single
processing step is crucial.

Generally, optimization can be done through algorithmic
improvement to reduce the number of calculation steps for
such expensive primitive operations such as finite field and
group operations. Despite that, keeping a short critical delay
path on hardware implementation is even more challenging
due to being limited by technology, as it determines the
maximum working frequency. Thus, critical delay requires
more attention than software implementation.

A. PRIOR WORK
To the best of our knowledge, there are only a few published
results on hardware implementations targeting ECC with a
security level above 128 bits, particularly Curve448.

The first hardware implementation of Curve448 was
investigated by Sasdrich and Güneysu [10]. Their design
employed Schoolbook multiplication with interleaved reduc-
tion for the underlying modular multiplier. The implementa-
tion results on a Xilinx Zynq 7020 Field Programmable Gate
Arrays (FPGA) archived a throughput of 1087 ECC point
multiplication (ECPM) per second and consumed 1580 logic
slices and 33 Digital Signal Processor (DSP) blocks. Their
design also offered basic (vertical) side-channel protections,
such as scalar blinding and base-point randomization. Fur-
thermore, they extended their previous design with additional
protection against horizontal attacks in [11] by adding a
re-randomization countermeasure. This type of attack iden-
tifies side-channel leakage during a single trace of the ECPM
routine. At the same time, they evaluated their countermea-
sure with scalar- and base-point-dependent leakage side-
channel evaluations.

In [12], Shah et al. proposed the hardware design of
Curve448 utilizing LookUp Table (LUT) only, which aims
to be platform independent. They adopted the redundant-
signed-digit (RSD) representation for arithmetic operations
and the segmentation approach at the architectural level
to reduce the required number of clock cycles for ECPM
operations. Their implementation results targeting Virtex-7

achieved a throughput of 869 ECPM per second utilizing
50,143 LUTs.

The proposal by Niasar et al. [13] represents a very
recent work hardware implementation of Curve448.
They investigated three different implementation strategies
(i.e., lightweight, area-time efficient, and high-performance
architectures) targeting the Xilinx Zynq 7020 FPGA. Their
high-performance architecture increased throughput by 12%
by executing 1,219 ECPM per second and increased effi-
ciency by 40% in terms of required clock cycles × utilized
area compared to the initial work in [10]. They achieved
their speed-up by utilizing 81 DSPs for parallelization in the
lowest level of Karatsuba computation. To the best of our
knowledge, their high-performance variant is the state-of-the-
art of Curve448 hardware implementation in terms of ECPM
throughput.

The Karatsuba-Ofman formula [14], also known as
Karatsuba formula, has been a widely used method of multi-
plying two n-bit arbitrary-precision numbers, which reduces
the asymptotic complexity to O(n1.585) bit operations com-
pared to O(n2) bit operations for the Schoolbook method.
However, the nature of its algorithm that uses recursion to
construct higher precision numbers leads to the extra over-
head of additions. In particular, implementing parallel Karat-
suba in hardware is problematic in that it increases the critical
delay path due to the addition tree, despite using parallel
DSP blocks for digit multipliers at lower levels. Therefore,
despite reducing the number of required DSP blocks, the
overall operating frequency remains low, as shown in the
implementation results in [13] and [15].

Awaludin et al. [16] demonstrated a new way of using the
Karatsuba formula for high-speed hardware parallel multi-
plier without the cost of increasing the critical delay path.
The technique employs the combination of the Schoolbook
method and the Karatsuba algorithm with a compressor cir-
cuit (i.e., carry-save-adder tree (CSAT)), despite requiring
slightlymoreDSP blocks than the original Karatsubamethod.
Apparently, the presented equation is similar to the method
discovered earlier by Khachatrian et al. [17], which was then
formalized by [18], called the arbitrary degree variant of
Karatsuba (ADK). Themethodwas initially intended to avoid
overflow during the accumulation of the partial products on a
typical word-based processor (i.e., software implementation),
which is technically implemented in an iterative way.

Apart from optimizing the cost of extra addition, the
method employed by [16] does not leverage the full capability
of DSP blocks (i.e., Xilinx DSP48E1), as they use a symmet-
ric 16 × 16-bit digit multiplier. Thus, the use of the Karat-
suba formula with the asymmetric feature (sometimes called
rectangular) of DSP blocks remains unexplored. To the best
of our knowledge, Roy et al. [19] represents the most recent
work that uses the full capability of asymmetric DSP blocks,
which reduces the required DSP blocks in the Schoolbook
method using the nonstandard tiling method. This method is
also used by [20] to construct a 257-bit signed multiplier for
the hardware implementation of PQC SIKE.

VOLUME 10, 2022 67471



A. M. Awaludin et al.: High-Performance ECC Processor Over Curve448

B. OUR CONTRIBUTIONS
The contributions of this paper are summarized as follows:

1) We present a novel variant of the Karatsuba formula
for asymmetric digit multiplier, which reduces DSP
block utilization while offering a high-speed multiplier
through parallelization and pipelining. To the best of
our knowledge, this is the first work considering the full
capability of DSP blocks with the Karatsuba algorithm.
Furthermore, it can be generalized for broader use in a
cryptographic algorithm that employs multiplication.

2) We then present a high-performance ECC processor
architecture over Curve448 that to the best of our
knowledge, outperforms the existing architecture in
terms of execution time as well as Area × Time
efficiency.

3) For the underlying architecture, we propose a 12-stage
pipelined modular multiplier with four stages of input
delay, which is built from a five-stage 224-bit fully
pipelined multiplier with an interleaved fast reduction
over the modulus p = 2448 − 2224 − 1.

4) The presented five-stage 224-bit fully pipelined multi-
plier is constructed from a novel variant of Karatsuba in
point 1. At the same time, the interleaved fast reduction
is obtained by exploiting the Solinas prime with the
golden ratio φ = 2224.

5) We provide an efficient Montgomery ladder schedul-
ing algorithm without the requirement of an additional
temporary register.

6) Lastly, the proposed architecture is extended with
side-channel attack countermeasures such as scalar
blinding, base-point randomization, and continuous
randomization, which are expected to resist vertical and
horizontal attacks.

The rest of this paper is organized as follows: Section II
gives a brief introduction to Curve448 with the underlying
group arithmetic and field arithmetic. Section III describes
the proposed novel variant of the Karatsuba formula for
asymmetric digit multiplier. Section IV presents the proposed
hardware architecture of the ECC processor over Curve448.
Then, in section VI, we present our hardware implementation
results and compare them to those of the existing methods.
Lastly, Section VII concludes the paper.

II. PRELIMINARIES
Ed448-Goldilocks is an elliptic curve over prime field GF(p)
with a 224-bit security level introduced by Hamburg [5],
which is defined in untwisted Edwards form:

Ed : y2 + x2 = 1+ dx2y2 mod p (1)

with d = −39081 and p = 2448 − 2224 − 1. The curve is
birationally equivalent to the Montgomery curve defined in
RFC 7748 [21] called Curve448, the term we will use for
the rest of the paper. Curve448 satisfies the requirement of
SafeCurves and is included in TLS standard 1.3 [6].

A. ECC GROUP LAW
Let k be a scalar, P = (xP, yP) and Q = (xQ, yQ) be two
point represented in affine coordinates where P,Q ∈ E
and xP, yP ∈ GF(p). An ECC point multiplication (ECPM),
Q = kP, is a k-times additions of point P (i.e., P + P +
. . . + P), which can be performed with group operation of
point doubling (PD) and point addition (PA). Typically, the
projective coordinate representation is used to avoid modular
inversion during intermediate computation, where an affine
point P = (xP, yP) can be converted to projective point
P = (X ,Y ,Z ) such that xP = X/Z and yP = Y/Z .

TheMontgomery ladder was introduced to perform ECPM
over the Montgomery curve, which processes point point
doubling and addition computation in a single step [22].
A single step of Montgomery ladder is computed with the
following formula (taken from [4]):

XPD = (X2 − Z2)2 (X2 + Z2)2

ZPD =
(
(X2 + Z2)2 − (X2 − Z2)2

)
×

(
(X2 + Z2)2 + a24

(
(X2 + Z2)2 − (X2 − Z2)2

))
XPA = ((X2 − Z2)(X3 + Z3)+ (X2 + Z2)(X3 − Z3))2

ZPA = ((X2 − Z2)(X3 + Z3)− (X2 + Z2)(X3 − Z3))2 xP (2)

where Q2 = 2P2 and Q3 = P2 + P3 with Q2 = (XPD,ZPD),
Q3 = (XPA,ZPA), P2 = (X2,Z2), and P3 = (X3,Z3). A con-
stant value a24 = 39081 is used specifically for Curve448.
Note that this formula needs only x-coordinate of base point
P to perform ECPM. The formula requires ten modular mul-
tiplications and eight modular additions/subtractions.

B. FIELD ARITHMETIC
The name ‘‘Goldilocks’’ refers to the prime modulus of
Curve448 that is defined as the Solinas trinomial prime with
the golden ratio φ = 2224, which offers fast arithmetic in
typical (i.e., 32-bit or 64-bit) machines. Moreover, with its
golden ratio φ, it allows Karatsuba multiplication of two
operands A = (a1φ+a0) and B = (b1φ+b0), A,B ∈ GF(p),
to be calculated efficiently as follows:

C = (a1φ + a0)(b1φ + b0) (3)

≡ (a1b1 + a0b0)+ (a1b0 + a0b1 + a0b0)φ (mod p)

(4)

= (a1b1 + a0b0)+ ((a0 + a1)(b0 + b1)− a0b0)φ (5)

A modular inversion is required to convert back projective
coordinate Q = (X ,Z ) to affine coordinates representations
Q = (xQ) at the end of ECPM operation. A constant time
modular inversion can be implemented using Fermat’s Little
Theorem (FLT) such that Z−1 ≡ Zp−2 mod p. Finally, the
affine representation of the point Q is calculated as xQ =
XZ−1, with Z−1 is computed using FLT.

67472 VOLUME 10, 2022



A. M. Awaludin et al.: High-Performance ECC Processor Over Curve448

III. NOVEL VARIANT OF KARATSUBA FORMULA FOR
ASYMMETRIC DIGIT MULTIPLIER
Consider two n-bit arbitrary-precision numbers A and B rep-
resented in asymmetric radixes α and β, where α 6= β.

A =
u∑
i=0

aiαi, B =
v∑
j=0

bjβ j (6)

u and v are the degree of A and B, respectively. The product
C = AB is calculated as follows:

C =
u−1∑
i=0

aiαi
v−1∑
j=0

bjβ j =
u−1∑
i=0

v−1∑
j=0

aiαibjβ j (7)

The Schoolbook algorithm multiplies u digit and v digit
numbers by multiplying each digit of one input by each
digit of the other, which takes O(uv) digit multiplications in
total. Clearly, it requires uvDSP blocks when performing full
parallelization on digit multiplication.

A. PROPOSED ASYMMETRIC VARIANT
We investigate a novel variant of the Karatsuba formula for
asymmetric digit multiplier, which later reduces the complex-
ity as well as the number of required DSPs compared to other
similar works (i.e., [16], [19], [23]).

We rewrite the Equation 7 as follows:

C =
u−1∑
i=0

d∗eir−1∑
j=0

aiαibjβ j +
u−1∑
k=0

v−1∑
l=d∗ekr

akαkblβ l (8)

with radix ratio r = log(α)/log(β) and α > β. For αiβ j =
αkβ l , we obtain the following identity:

aiαibjβ j + akαkblβ l

=
[
(ai − ak)

(
bj − bl

)
+ aibl + akbj

]
αiβ j (9)

Equation 9 shows that two multiplications can be reduced
into one multiplication for a condition where αiβ j = αkβ l .
This is similar to the Karatsuba and Ofman [14] for
α = β where it reduces four-digit multiplications to three-
digit multiplications, as a generalization of our problem illus-
trated in Fig. 1.

The red points are digit multiplications that are calculated
prior to other digit multiplications (black points). At the same
time, the black points, which are connected by a line, are the
two-digit multiplications that later can be reduced to one-
digit multiplication. For higher precision, more black dot
pairs can be obtained, which trims down more digit multipli-
ers. In general, the Karatsuba formula can be applied when
two-digit multiplications are connected via a diagonal line
without being restricted by the used radix. This method works
ideally on a radix with a power of two. In particular, if we let
α = 2w1 and β = 2w2 , a greater reduction in complexity can
be obtained when GCD(w1,w2) 6= 1.

FIGURE 1. Generalization of karatsuba algorithm with asymmetric digit
multiplier.

FIGURE 2. Top-level architecture.

B. DESIGN RESTRICTION
The Equation 9 is optimal when log2(α) and log2(β) divide
n, otherwise, some digits cannot be applied with Karatsuba
identity. For asymmetric radixes α = 224 and β = 216,
we observe the perfect numbers that fully fit Karatsuba iden-
tity up to 521-bits length are 48, 96, 144, 192, 240, 288, 336,
384, 432, and 480.

IV. PROPOSED HARDWARE ARCHITECTURE
Fig. 2 depicts the proposed top-level architecture of
Curve448. This is the typical architecture consisting of
the control unit, modular multiplier module, and modular
adder/subtractor module. In contrast to the architecture pro-
posed in [13], which uses RAM to store the ladder vari-
ables, we use register files utilized from flip-flop (FF). This
is because in a typical FPGA (i.e., Xilinx FPGA [24]),
the availability of FF is higher than that of LUT cells
(e.g., in Xilinx, a single slice consists of four LUTs and
eight FFs). Therefore, with a design that has higher LUT
cell utilization than FF, increasing FF utilization will not
drastically increase the slice utilization. Moreover, utiliz-
ing FF instead of BRAM preserves the overall performance
without introducing overhead on memory read/write access.

VOLUME 10, 2022 67473



A. M. Awaludin et al.: High-Performance ECC Processor Over Curve448

Apart from performance and utilization considerations, the
use of Block Random Access Memory (BRAM) introduces
a new opportunity for attackers to extract secret scalar infor-
mation by recovering information on the BRAM addressing
pattern using Differential Power Analysis (DPA). Although it
can be protected via address scrambling, such as the design
proposed in [11], clearly, it consumesmore area due to the uti-
lization of logic cells. Furthermore, all the computation steps
are one-way controlled by precise scheduling ofMontgomery
ladder without need handshake process such as valid/ready
protocol.

A. MODULAR MULTIPLIER
We construct a 12-stage pipelined modular multiplier with
four stages of input delay based on a 224-bit pipelined multi-
plier. We choose a 224-bit width multiplier because the prime
number of Curve448 has a golden ratio φ = 2224, which
later optimizes the reduction step as we propose the reduction
algorithm for Curve448.

Fig. 3 shows the overall structure of our modular mul-
tiplication design. It consists of a 224-bit pipelined multi-
plier followed by two Ripple-Carry-Save Adders (RCSAs).
An RCSA is actually a pair of adders, which in our case are
carry-compact adders (CCAs) [25] that are used to limit the
critical delay path of the ripple-carry-adder at some point,
as shown in Fig. 4. The carry for the first half is not propa-
gated; instead, it is saved and included as an input for another
half in the next stage. This method is suitable for accumulator
circuits. Additionally, the pipelined one-hot encoding is used
with simple shift register to control the input-output signal
between the stages. Note that the output valid and busy signal
are not necessary in our design since we use a precise ladder
scheduling, considering the restriction in modular multiplier
module (i.e., requires four cycles input delay).

1) 224-BIT PIPELINED MULTIPLIER
The construction of the 224-bit pipelined multiplier based on
Equation 9 is given in the Fig. 5. As shown in, all the red
points represent a single-digit multiplication, while the two
black points connected by a line represent a single-digit mul-
tiplications that are reduced from two-digit multiplications.
Note that some lines may pass through multiple points, yet
the relation should satisfy the Equation 9. There are some
exceptions; when the point is already applied as a red point
(i.e., due to the Karatsuba multiplication on the counterpart),
it cannot be further reduced, even if it satisfies Equation 9.
Thus, it remains as red point (including the counterpart) as
in our case, as shown in points (8,2), (9,2), (8,5), (9,5), (8,2),
and (9,2) in Fig. 5. Finally, we obtain less complexity, as it
requires only 88 DSPs instead of 140 DSPs in the Schoolbook
method or 105 DSPs in the nonstandard tiling method [19].

Fig. 6 shows the architecture of the 224-bit pipelined mul-
tiplier. The architecture contains five fully pipelined stages,
which means it can process an input on each cycle. Our
calculation steps of C = AB are described as follows:

FIGURE 3. Proposed 12-stage pipelined (with four stages of input delay)
modular multiplier.

FIGURE 4. Ripple-carry-save adder (RCSA). Technically, it limits the carry
propagation to a predefined delay, which is the delay of a 224-bit
Carry-compact-adder (CCA) in our case.

FIGURE 5. Construction of 224-bit multiplication with asymmetric digit
multiplier (α = 224 and β = 216). Note that since 224 does not divisible
by 24, there will be unused bits at the most significant bit of the
intermediate results.

• Stages 1 and 2: The parallel 16-bit ripple-carry
adder (RCA) is used to compute bj − bl . The out-
put of the 16-bit RCA is wired to 25 × 17-bit signed

67474 VOLUME 10, 2022



A. M. Awaludin et al.: High-Performance ECC Processor Over Curve448

FIGURE 6. Proposed five-stage 224-bit fully pipelined multiplier.

FIGURE 7. Digital signal processing (DSP) utilization for (a) a three-stage
25× 17-bit signed multiply-accumulator with pre-adder and
(b) a two-stage 24× 16-bit signed multiplier.

Multiply-Accumulate (MAC) modules, which also have
a pre-adder input to compute ai − ak before going
to the multiplication stage. At the same time, parallel
24 × 16-bit signed multiplier (MUL) modules are used
to compute aibl and akbj. Both the 25 × 17-bit signed
MAC with the pre-adder and 24 × 16-bit signed MUL
are utilized from DSP primitive with a three-stage and
two-stage pipeline, respectively, to achieve maximum
performance, as recommended in [26], which is shown
in Fig. 7.

• Stage 3: The output of 24×16-bit signedMUL available
in this stage is then used by the 40-bit CCA to calculate
aibl+akbj. The output 40-bit CCA is routed to the input
accumulator of the MAC modules. Note that the output
of 24 × 16-bit signed MUL is also stored in registers,
as it will be used in the compression stage (Stage 4).

• Stage 4: Before being processed by the carry-save-adder
tree (CSAT), all intermediate values are grouped and
aligned into 40-bit segments to reduce the number of

inputs in the CSAT as well as the depth of the tree.
However, while the output of 24 × 16-bit signed MUL
is already in 40-bit width, the calculation of (ai − ak )
(bj − bl) + aibl + akbj obviously produces up to a
41-bit output width. We employ an alignment method
similar to that used by [16] to handle the overflow bit
(i.e., 41st bit). All intermediates values are compressed
using homogeneous 3:2 compression to achieve bal-
anced performance.

• Stage 5: In this stage, a final propagated addition of
sum and carry from the output of the CSAT is per-
formed using the CCA proposed in [25]. We obtained
the optimal parameter CCA with H = 3 and L = 30
experimentally based on trial and error after synthesis
and implemention in FPGA. Furthermore, the input and
output of CCA are enclosed by registers to minimize the
critical delay path.

2) FAST REDUCTION OVER p = 2448
− 2224

− 1
We propose the fast reduction technique interleaving with
the intermediate output from the 224-bit pipelined multiplier,
which is given in Algorithm 1. The multiplication of A and B,
which each have a 448-bit width, can be decomposed into
four 224-bit multiplications. Note that we do not take the
Karatsuba approach (i.e., Equation 5) recommended by [5],
since it does not give an advantage in our reduction step;
rather, we use Equation 4, which take the additional cost
of one clock cycle on the pipelined multiplier. We perform
partial reduction for three intermediate results in advance
(i.e., z4 = 2224(z1 + z2 + z3) mod p), while the second term
(i.e., z0 + z3 mod p) is accumulated with the first reduction
step result and we perform the second reduction accordingly
(i.e., C = z0 + z3 + z4 mod p). This technique relies on the
following property:

(a+ b) mod p = (a+ (b mod p)) mod p (10)

Considering the advantage of the Goldilocks modulus p =
2448− 2224− 1 and the fact that 2448 ≡ 2224+ 1 mod p, the
reduction of z4 = 2224T mod p, where T = z1 + z2 + z3,
can be performed efficiently, as mentioned in Step 13

VOLUME 10, 2022 67475



A. M. Awaludin et al.: High-Performance ECC Processor Over Curve448

of Algorithm 1. Referring to the structure of the RCSA,
the actual addition is performed only in the second adder
(i.e., 226-bit CCA). Accordingly, the reduction of C = G
mod p, where G = z0 + z3 + z4 yields 3 bits of overflow,
can be performed efficiently with the RCSA as mentioned in
steps 18–20 of Algorithm 1. Note that the final reduction
might produce a carry at the first adder of the RCSA, as this
carry needs to be propagated to the second adder at the final
step.

Algorithm 1 Proposed Interleaved Fast Reduction for
p = 2448 − 2224 − 1) Modulus
Require: Integer A,B satisfying 0 ≤ A,B < p
Ensure: C = A · B mod p
1: a0← A[223:0]
2: a1← A[447:224]
3: b0← B[223:0]
4: b1← B[447:224]
5: z1← a0.b1
6: z2← a1.b0


224-bit pipelined
multiplications

7: z3← a1.b1
8: z0← a0.b0
9: T ← z1 + z2 + z3 {450-bit}
10: t0← T[223:0]
11: t1← T[449:224]
12: t2← T[449:448]
13: z4← (t0 + t1 + t2) ‖ t1[223:0] {450-bit}
14: G← z3 + z0 + z4 {451-bit}
15: g0← G[223:0]



interleaved fast
reduction16: g1← G[447:224]

17: g2← G[450:448]
18: U ← g0 + g2 {225-bit}
19: V ← g1 + g2 {224-bit}
20: C ← (V + U[224]) ‖ U[243:0] {448-bit}
21: return C

The precise scheduling of modular multiplication is pre-
sented in Fig. 8. The first four stages are used to calculate z1,
z2, z3, and z0. In these stages, the input A and B are held in the
input register, placing the modular multiplier core in a busy
state and causing input delay for four cycles. Stages 7 and 8
perform the first accumulation z1 + z2 + z3, followed by
addition t0 + t1 + t2 in Stage 9 using A1. At the same time,
Stages 8 to 10 perform the second accumulation z3+ z0+ z4,
followed by two parallel additions g0 + g2 and g1 + g2 in
Stage 10 using A2. Lastly, the output product is avail-
able in Stage 12. Therefore, the modular multiplica-
tion takes 12 cycles, pipelined with four stages of input
delay.

B. MODULAR ADDER/SUBTRACTOR
A unified modular adder/subtractor is utilized from a single
CCA, which calculates C = A ± B ± p, as shown in
Fig. 9. The calculation takes two steps: it first calculates
r1 = A ± B and then calculates s = r1 ± p with op to

Algorithm 2 Fermat-Based Inversion for Curve448
(p = 2448 − 2224 − 1))
Require: Integer z satisfying 0 < z < p
Ensure: Modular inverse z−1 ≡ zp−2 mod p

1: u← z2
1
· z z(2

2
−1)

2: u← u2
1
· z z(2

3
−1)

3: u← u2
3
· u z(2

6
−1)

4: u← u2
6
· u z(2

12
−1)

5: u← u2
1
· z z(2

13
−1)

6: u← u2
13
· u z(2

26
−1)

7: u← u2
1
· z z(2

27
−1)

8: u← u2
27
· u z(2

54
−1)

9: u← u2
1
· z z(2

55
−1)

10: u← u2
55
· u z(2

110
−1)

11: u← u2
1
· z z(2

111
−1)

12: v← u2
111
· u z(2

222
−1)

13: u← v2
1
· z z(2

223
−1)

14: u← u2
223
· v z(2

446
−2222−1)

15: u← u2
2
· z z(2

448
−2224−3)

16: return u

FIGURE 8. Modular multiplication calculation steps. M, A1, and A2 are a
224-bit multiplier, first RCSA, and second RCSA, respectively.

control the sign of ±B and ±p using masking. The output C
is selected between r1 and s depending on the value
of sel, which is the XOR value of cout of the first step
and op. Basically, it detects whether the first step calculation
produces a carry/borrow. While the sign of ±b is converted
with two’s complement, the sign of ±p is rather than more
efficient due to the special form of its prime number. With
the value of 2448 − 2224 − 1, we can construct its value with
the following signal instead of masking (written in Verilog
syntax):

67476 VOLUME 10, 2022



A. M. Awaludin et al.: High-Performance ECC Processor Over Curve448

FIGURE 9. Proposed modular adder/subtractor module.

Therefore, it takes two cycles to complete a single mod-
ular addition/subtraction. The critical path of this module
is defined by the CCA circuit with optimal parameters
H = 3 and L = 30 obtained experimentally on FPGA.

C. MODULAR INVERSE
A modular inversion is required to transform back from pro-
jective coordinates to affine coordinates at the end of the
ECPM operation. A fully constant time modular inversion
can be performed based on Fermat’s Little Theorem (FLT).
Let p = 2448 − 2224 − 1 be the prime of Curve448; then,
the modular inverse of z−1 can be calculated as z−1 ≡
z2

448
−2224−3(mod p). The modular inversion calculation via

exponentiation can be performed with a total of 462 mod-
ular multiplications, as given in Algorithm 2, which can
be utilized from the modular multiplier module. Therefore,
no additional module for inversion is employed.

D. EFFICIENT MONTGOMERY LADDER SCHEDULING
The scheduling of the Montgomery ladder algorithm,
Equation 2, is given in Fig. 10. The gray line in the multiplier
indicates the busy signal of the 224-bit pipelined multiplier
modules, where a single modular multiplication takes four
224-bit multiplications, as mentioned previously. It shows
that the 224-bit pipelinedmodular multiplier module is nearly
busy, which yields high usage efficiency for the pipelined
architecture. It takes 52 cycles to perform a single Mont-
gomery ladder step. Furthermore, with the pipelined archi-
tecture of the modular multiplier, no temporary register in
addition to input registers (i.e., xP,X2, Z2, X3, and Z3) is
required.

TheMontgomery ladder in Equation 2 requires conditional
swap such that:

(X2,Z2,X3,Z3) = (X2+b,Z2+b,X3−b,Z3−b) (11)

with b respect to the most two significant bit values of scalar
on each iteration, assuming the scalar register is shifted left.

Constant-time conditional swap can be implemented easily
on hardware since the update of X2, Z2, X3, and Z3 naturally
are performed in parallel.

V. SIDE-CHANNEL ATTACK COUNTERMEASURES
In this section, we extend our proposed architecture with
side-channel attack protection for both vertical (classical)
and horizontal attacks by incorporating several well-known
methods from the literature.

A. SECURE AGAINST VERTICAL SIDE-CHANNEL ATTACK
Our proposed architecture, presented in section IV, is natu-
rally resistant to timing attacks and simple power analysis due
to inherently resistant algorithms (i.e., Montgomery Ladder
and FLT). To provide protection against Differential Power
Analysis (DPA), additional methods such as base-point ran-
domization and scalar blinding have to be implemented [27].
Enabling these countermeasures provides protection against
vertical side-channel attacks, in which the attacker tries to
observe multiple runs of ECPM operation.

1) BASE-POINT RANDOMIZATION
Point randomization can be achieved by multiplying a ran-
dom value λ ∈ Z2448 \ {0} to the projective point P = (X ,Z )
such that P = (λX , λZ ). The output of ECPM is not changed
in this respect, which can be proven as follows:

xp =
X
Z
=
λX
λZ

(12)

Base-point randomization provides different point repre-
sentations corresponding to the entropy given by the random
value λ to prevent any information extraction using statistical
analysis. In particular, this process initializes the z-coordinate
with λ and uses a modular multiplication to update the
x-coordinate accordingly. Hence, this countermeasure can be
integrated easily by using an additional multiplication call
during the initialization phase of the ECPM operation.

2) SCALAR BLINDING
Scalar blinding can be achieved by adding multiple group
order #E to scalar k such that kr = k + r · #E where r is a
random value. The correctness of this approach can be proven
as follows:

krP = (k + r · #E)P = kP+ rO = kP (13)

Note that the multiplication of point P and group order #E
results a point at infinity O. The computation removes the
correlation between the Montgomery ladder swap function
and the corresponding bit in scalar k . For ECC with special
prime field (i.e., Solinas prime), it is recommended to provide
sufficient larger blinding factors r as investigated in [27],
which is at least half of the field size. Thus, the blinding
factor r with 224-bit length builds kr with 672-bit length. The
latency of ECPM is increased accordingly.

VOLUME 10, 2022 67477



A. M. Awaludin et al.: High-Performance ECC Processor Over Curve448

FIGURE 10. Pipelined montgomery ladder scheduling of curve448. The total latency is 52 clock cycles, without the requirement of an additional
temporary register. The constant a24 is equal to 39081.

B. SECURE AGAINST HORIZONTAL SIDE-CHANNEL
ATTACK
The horizontal side-channel attack is another type of attack
in which the attacker observes leakage within a single run of
ECPM operation. Continuous point randomization for each
Montgomery ladder within a single ECPM operation can be
applied sequentially to prevent horizontal attacks. It requires
two more modular multiplications applied on intermediates
output (i.e., λXPA and λZPA) to re-randomized Montgomery
ladder computation.

Hence, enabling horizontal attack protection with a con-
tinuous point randomization will increase Montgomery lad-
der time and total latency. In particular, the Montgomery
scheduling in Fig. 10 is enlarged to 64 cycles. We assume
that the random number is provided externally with sufficient
throughput.

VI. HARDWARE IMPLEMENTATION RESULT AND
COMPARISON
A. COMPARISON OF PROPOSED MULTIPLIER WITH
EXISTING METHODS
Figure 11 shows the complexity comparison of the proposed
multiplier with existing related methods for different operand
widths. By setting up α = 224 and β = 216, our methods
required the least number of digit multipliers in any operand
width compared to existing methods in the literature. We can
infer from the graph that more higher operand width yields
likely more efficient utilization relative to the Schoolbook
method. This is due to the fact that in higher operand width,
multiple Karatsuba identities can be applied easily due to the
wider range of numbers. Also, it can be overlapped, shar-
ing MUL resources (i.e., the red point around the diagonal
in Figure 5).
From a hardware perspective, particularly when paral-

lelization at the digit multiplier level is used, a Schoolbook
multiplicationmethod offers a simple construction, leading to
a shorter critical delay path when configured correctly [23].
However, it requires u-by-v digit multipliers, which are not
negligible for hardware with limited resources. The notable
algorithm such as Karatsuba algorithm [14] or Toom-cook

algorithm [28] reduces the complexity (i.e., digit multipliers)
in exchange for several additions. However, the original con-
struction of these methods often requires pre-addition chain,
which from a hardware perspective may result in longer delay
propagation (e.g., [15], [13]). Furthermore, the asymmetric
property of the digit multiplier even makes it more difficult
to adapt the algorithms.

The work in [29] and [30] have shown that, although
a Schoolbook multiplication algorithm is used, a manually
crafted multiplier (with asymmetric digit multiplier) yields
better performance than the multipliers generated by the Xil-
inx CORE Generator tool. Their work, however, considers a
small size multiplier (up to 128-bit size) due to the fact that
their implementation only considers combinational circuits,
which limits the critical delay path. For many applications,
the sequential circuit is essential to keep the balanced perfor-
mance for the entire system. Moreover, the multiplier circuit
may be extended and combined with other processes, such as
modular reduction.

Dinechin and Pasca [31] and Roy et al. in [19] proposed
the technique to reduce the number of DSP utilization by
constructing the digit multiplier with a non-standard tiling
technique. Their implementations require a fewer number
of DSP blocks compared to standard titling generated from
the Schoolbook multiplication algorithm. Accordingly, [20]
and [32] use this technique for their multiplier construction
of the SIKE accelerator and Diffie-Hellman key exchange
based on the Kummer surface, respectively. Compared to
the non-standard tiling technique, our work requires less
DSP utilization (e.g., for 256-bit multiplier, we achieve 31%
more efficient than their work). In another word, we may
increase the performance of [20] and [32] by only changing
their multiplier circuit with ours. Furthermore, the proposed
multiplier construction can be generalized for broader use in
a cryptographic algorithm that employs multiplication.

B. HARDWARE IMPLEMENTATION RESULT
The proposed design has been described by SystemVer-
ilog HDL. Synthesizing, mapping, placing, and routing
were carried out using Xilinx Vivado 2020.1, targeting four

67478 VOLUME 10, 2022



A. M. Awaludin et al.: High-Performance ECC Processor Over Curve448

TABLE 1. Performance comparison of the proposed high-performance ECC processor over curve448 with existing literatures.

FIGURE 11. Comparison of required digit multipliers for different
operand widths with existing methods.

modern devices (Xilinx Virtex-7 [XC7VX690T], Kintex-7
[XC7K325T], Artix-7 [XC7A100T], and Zynq 7020
[XC7Z020] FPGA) for a more comprehensive evaluation
with other related works. The correctness of implementation
was verified by using the testbench with reference to the test
vector provided in RFC 7748 [21].

The result of our ECC processor implementation, as well as
those of several related papers over Curve448, are presented
in Table 1.We achieve the lowest latency among the proposals
targeting Xilinx Zynq 7020 FPGA with 0.24 and 0.39 ms
for the unprotected and protected designs, respectively. Addi-
tionally, we provide the implementation results on various

TABLE 2. Performance analysis of proposed ECC processor in comparison
with state-of-the-art on Zynq 7020 FPGA.

devices for future reference, such as Artix-7, Kintex-7, and
Virtex-7, achieving latency of 0.24, 0.13, and 0.12 ms for the
unprotected design, and 0.40, 0.22, and 0.20 ms for the pro-
tected design, respectively. For the unprotected design, our
fastest implementation (Virtex-7) requires 7,521 slices, while
Kintex-7, Artix-7, and Zynq 7020 utilize 7,210, 6,826, and
6,946 slices, respectively. On all four platforms, we utilize 88
DSPs and no BRAM. As can be inferred from the table, our
architecture yields the highest efficiency in terms of Area ×
Time and DSP × Time tradeoff compared to other existing
architectures.

To the best of our knowledge, the method by
Niasar et al. [13] represents the state-of-the-art high-
performance hardware implementation of Curve448. They

VOLUME 10, 2022 67479



A. M. Awaludin et al.: High-Performance ECC Processor Over Curve448

provide three different designs (i.e., lightweight, area-time
efficient, and high-performance); in particular, we compare
our proposed design with their high-performance variant. Our
proposed design increases the throughput by 242% for the
unprotected design and by 259% for the protected design.
Their approach is based on the refined Karatsuba formula
by Bernstein [33], employing five levels of Karatsuba com-
putation and parallel multiplication using 81 DSP cores.
However, the multilevel Karatsuba approach yields a longer
addition tree that increases the critical path delay, limiting
their operating frequency to 95 MHz, which is lower than our
design.

Table 2 provides the detailed performance analysis with
a comparison to their design. The latency of our architec-
ture outperforms the state-of-the-art in all underlying field
arithmetic and ECC group operations. The significant latency
improvement is mainly due to a pipelined modular multiplier,
which is constructed from a 224-bit fully pipelined multiplier
and proposed fast reduction over p = 2448−2224−1. Thanks
to the novel variant of the Karatsuba formula, we can enable
the parallelization at the digit multiplication level without
causing large delay propagation caused by additions in the
recursion tree while offering relatively low DSP block uti-
lization. Although a single modular multiplication operation
does not give significant latency improvement (i.e., 12 cycles
compared to 15 cycles), employing multiple operations (i.e.,
10 modular multiplications as in Equation 2) results in a sig-
nificant latency improvement due to pipelining compared to
their design (i.e., 52 cycles compared to 158 cycles). Further-
more, all the stages in the 224-bit multiplier are nearly busy
during the Montgomery ladder operation with the utilization
of 48

52 × 100 ' 92%, making the use of the pipeline architec-
ture in the highest efficiency. On the other hand, the modular
inversion via FLT consumes almost 18% of the total latency
and is considered an inefficient method in our design. This
is because the exponentiation z2

448
−2224−3 mod p requires

462 consecutive modular multiplications rather than paral-
lelization through the pipelining architecture.

In terms of area, their design has lower slices utilization
(i.e., 4,354 slices for the unprotected design and 4,424 slices
for the protected design). However, in terms of Area ×
Time tradeoff, our design is 63% more efficient for both
the unprotected and protected designs. It turns out that the
cost of higher utilization is well absorbed by the latency
improvement. Note that we use the same assumption as they
do where the area is equivalent to slices + DSPs, while each
DSP is assumed to be equivalent to 100 slices.

It is worth mentioning that the first hardware imple-
mentation of Curve448 was carried out by Sasdrich and
Géneysu [10], who later proposed the protected architecture
by considering side-channel attack countermeasures [11].
They demonstrated an evaluation to detect scalar- and base-
point-dependable leakage on hardwarewith side-channel pro-
tections (i.e., scalar blinding and point randomization) and
proved that their methods are secure against side-channel
attacks. Thanks to their results, we also include side-channel

protections (i.e., scalar blinding, base-point randomization,
and continuous point randomization) in our protected design,
yet we present a 313% speed-up compared to their results on
the same target device (i.e., Zynq 7020).

Shah et al. [12] proposed a LUT-based implementation
targeting Virtex-7, employing the RSD technique for the
arithmetic operations. Their proposed designs aimed to be
platform independent by using LUTs only, consuming 50,143
LUTs with a throughput of 870 ECPM operations per second,
yet our design is 858% faster than their design.

VII. CONCLUSION
In this paper, we proposed a high-performance ECC pro-
cessor over Curve448 that outperformed all the previous
results in terms of execution time. The implementation on the
Xilinx 7-series FPGA Virtex-7, Kintex-7, Artix-7, and Zynq
7020 yielded execution times of 0.12, 0.13, 0.24, and 0.24ms,
respectively. The speed was obtained by utilizing a novel
variant of the Karatsuba for asymmetric digit multiplier, con-
structing a high-throughput 224-bit fully pipelined multiplier.
The method combined Schoolbook long and Karatsuba mul-
tiplication, allowing its digit multiplication to be performed
in parallel while leveraging the full capability of asymmetric
DSP blocks. It is worth mentioning that the algorithm even
works on arbitrary degrees, which means it can be general-
ized for wider use in a cryptographic algorithm that requires
multiplication. In sequence, the interleaved fast reduction
over 2448 − 2224 − 1 was presented, yields a high through-
put 12-stage modular multiplier with four stages of input
delay. Furthermore, we also proposed certain components
to maximize the speed gain and the overall performance,
such as employing a low-latency modular adder/subtractor
as well as efficient scheduling of the Montgomery ladder.
Finally, the proposed architecture was extended with both
vertical and horizontal side-channel protection through well-
known countermeasures such as scalar blinding, base-point
randomization, and continuous randomization.

A. FUTURE WORKS
PQC has garnered a lot of interest in the literature because
of the emergence of quantum computers, which some argue
could endanger the current classical cryptosystem. Among
the final round finalists in the NIST PQC standardization
process, the SIKE protocol has the smallest public key sizes
among the encryption and KEM candidates. It is worth revis-
iting the work of [20] and replacing its multiplier, which was
constructed with nonstandard tiling multiplication, with the
proposed multiplier based on an asymmetric variant of the
Karatsuba formula.

REFERENCES
[1] Security Architecture and Procedures for 5G System, document TS 33.501

V17.4.1, 3GPP, Jan. 2022.
[2] C. Fan, S. Ghaemi, H. Khazaei, and P. Musilek, ‘‘Performance evalua-

tion of blockchain systems: A systematic survey,’’ IEEE Access, vol. 8,
pp. 126927–126950, 2020.

67480 VOLUME 10, 2022



A. M. Awaludin et al.: High-Performance ECC Processor Over Curve448

[3] A. Langley, M. Hamburg, and S. Turner, Elliptic Curves for Security,
document RFC 7748, Internet Research Task Force, 2016.

[4] D. J. Bernstein, ‘‘Curve25519: New Diffie–Hellman speed records,’’ in
Proc. Int. Workshop Public Key Cryptogr. Berlin, Germany: Springer,
2006, pp. 207–228.

[5] M. Hamburg, ‘‘Ed448-Goldilocks, a new elliptic curve,’’ IACR Cryptol.
ePrint Arch., Lyon, France, Tech. Rep. 2015/625, 2015.

[6] E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.3,
document RFC 8446, Internet Requests for Comments, RFC Editor,
Aug. 2018.

[7] L. Chen, D. Moody, A. Regenscheid, and K. Randall, ‘‘Recommenda-
tions for discrete logarithm-based cryptography: Elliptic curve domain
parameters,’’ Nat. Inst. Standards Technol., Gaithersburg, MD, USA,
Tech. Rep. SP 800–186, Oct. 2019.

[8] P. W. Shor, ‘‘Algorithms for quantum computation: Discrete logarithms
and factoring,’’ in Proc. 35th Annu. Symp. Found. Comput. Sci., 1994,
pp. 124–134.

[9] N. Bindel, U. Herath, M. McKague, and D. Stebila, ‘‘Transitioning to a
quantum-resistant public key infrastructure,’’ in Proc. Int. Workshop Post-
Quantum Cryptogr. Cham, Switzerland: Springer, 2017, pp. 384–405

[10] P. Sasdrich and T. Géneysu, ‘‘Cryptography for next generation TLS:
Implementing the RFC 7748 elliptic Curve448 cryptosystem in hardware,’’
in Proc. 54th ACM/EDAC/IEEE Design Automat. Conf. (DAC), Jun. 2017,
pp. 1–6.

[11] P. Sasdrich and T. Güneysu, ‘‘Exploring RFC 7748 for hardware imple-
mentation: Curve25519 and Curve448 with side-channel protection,’’
J. Hardw. Syst. Secur., vol. 2, no. 4, pp. 297–313, Dec. 2018.

[12] Y. A. Shah, K. Javeed, M. I. Shehzad, and S. Azmat, ‘‘LUT-based high-
speed point multiplier for Goldilocks-Curve448,’’ IET Comput. Digit.
Techn., vol. 14, no. 4, pp. 149–157, Jul. 2020.

[13] M. B. Niasar, R. Azarderakhsh, and M. M. Kermani, ‘‘Efficient hardware
implementations for elliptic curve cryptography over Curve448,’’ in Proc.
Int. Conf. Cryptol. India. Cham, Switzerland: Springer, 2020, pp. 228–247.

[14] A. A. Karatsuba and Y. P. Ofman, ‘‘Multiplication of many-digital num-
bers by automatic computers,’’ Doklady Akademii Nauk, vol. 145, no. 2,
pp. 293–294, 1962.

[15] R. Salarifard and S. Bayat-Sarmadi, ‘‘An efficient low-latency point-
multiplication over Curve25519,’’ IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 66, no. 10, pp. 3854–3862, Oct. 2019.

[16] A.M. Awaludin, H. T. Larasati, and H. Kim, ‘‘High-speed and unified ECC
processor for generic weierstrass curves over GF(p) on FPGA,’’ Sensors,
vol. 21, no. 4, p. 1451, Feb. 2021.

[17] G. H. Khachatrian, M. K. Kuregian, K. R. Ispiryan, and J. L. Massey,
‘‘Fast multiplication of integers for public-key applications,’’ in Proc. Int.
Workshop Sel. Areas Cryptogr. Berlin, Germany: Springer, 2001, pp. 245–
254.

[18] M. Scott, ‘‘Missing a trick: Karatsuba variations,’’ Cryptogr. Commun.,
vol. 10, no. 1, pp. 5–15, Jan. 2018.

[19] D. B. Roy, D. Mukhopadhyay, M. Izumi, and J. Takahashi, ‘‘Tile before
multiplication: An efficient strategy to optimize DSP multiplier for accel-
erating prime field ECC for NIST curves,’’ in Proc. 51st Annu. Design
Automat. Conf., 2014, pp. 1–6.

[20] P. M. C. Massolino, P. Longa, J. Renes, and L. Batina, ‘‘A compact and
scalable hardware/software co-design of sike,’’ IACR Trans. Cryptograph.
Hardw. Embedded Syst., vol. 2020, no. 2, pp. 245–271, 2020.

[21] A. Langley, M. Hamburg, and S. Turner, Elliptic Curves for Security, doc-
ument RFC 7748, Internet Requests for Comments, RFC Editor, Jan. 2016.

[22] P. L. Montgomery, ‘‘Speeding the Pollard and elliptic curve methods of
factorization,’’Math. Comput., vol. 48, no. 177, pp. 243–264, Jan. 1987.

[23] B. Devlin, ‘‘Blockchain acceleration using FPGAs—Elliptic curves, zk-
SNARKs, and VDFs,’’ ZCASH Foundation, Richmond, VA, USA, 2019.

[24] Xilinx. (2020). 7 Series FPGAs Data Sheet: Overview. Accessed:
Jan. 26, 2022. [Online]. Available: https://www.xilinx.com/support/
documentation/data_sheets/ds180_7Series_Overview.pdf

[25] T. B. Preußer, M. Zabel, and R. G. Spallek, ‘‘Accelerating computations
on FPGA carry chains by operand compaction,’’ in Proc. IEEE 20th Symp.
Comput. Arithmetic, Jul. 2011, pp. 95–102.

[26] Xilinx. (2018). 7 Series DSP48E1 Slice User Guide. Accessed:
Dec. 28, 2020. [Online]. Available: https://www.xilinx.com/support/
documentation/user_guides/ug479_7Series_DSP48E1.pdf

[27] W. Schindler and A. Wiemers, ‘‘Efficient side-channel attacks on scalar
blinding on elliptic curves with special structure,’’ in Proc. NIST Workshop
ECC Standards, Gaithersburg, MD, USA, 2015.

[28] S. A. Cook and S. O. Aanderaa, ‘‘On the minimum computation time of
functions,’’ Trans. Amer. Math. Soc., vol. 142, pp. 291–314, Aug. 1969.

[29] S. Srinath and K. Compton, ‘‘Automatic generation of high-performance
multipliers for FPGAs with asymmetric multiplier blocks,’’ in Proc. 18th
Annu. ACM/SIGDA Int. Symp. Field Program. Gate Arrays (FPGA), 2010,
pp. 51–58.

[30] S. Gao, D. Al-Khalili, N. Chabini, and P. Langlois, ‘‘Asymmetric large size
multipliers with optimised FPGA resource utilisation,’’ IET Comput. Digit.
Techn., vol. 6, no. 6, pp. 372–383, Nov. 2012.

[31] F. de Dinechin and B. Pasca, ‘‘Large multipliers with fewer DSP blocks,’’
in Proc. Int. Conf. Field Program. Log. Appl., Aug. 2009, pp. 250–255.

[32] P. Koppermann, F. De Santis, J. Heyszl, and G. Sigl, ‘‘Fast FPGA imple-
mentations of Diffie–Hellman on the Kummer surface of a genus-2 curve,’’
Cryptol. ePrint Arch., Tech. Rep., 2017.

[33] D. J. Bernstein, ‘‘Batch binary Edwards,’’ inProc. Annu. Int. Cryptol. Conf.
Berlin, Germany: Springer, 2009, pp. 317–336.

ASEP MUHAMAD AWALUDIN received the
B.Sc. degree from the University of Indonesia,
in 2015. He is currently pursuing the Ph.D.
degree with the Department of Computer Sci-
ence and Engineering, Pusan National University,
South Korea. His current research interests include
VLSI design for digital signal processing and cryp-
tographic engineering.

JONGUK PARK received the B.S. degree from
the Department of Computer Science and Engi-
neering, Pusan National University, South Korea,
in 2021, where he is currently pursuing the M.S.
degree. His major research interests include cryp-
tography, hardware security, and AI accelerator.

RINI WISNU WARDHANI (Member, IEEE)
received the M.Eng. degree in electrical engineer-
ing from the University of Indonesia, in 2011.
She is currently pursuing the Ph.D. degree with
the Department of Computer Science and Engi-
neering, Pusan National University, South Korea.
She was at National Cyber and Crypto Agency,
Indonesia, from 2003 to 2021. Her research inter-
ests include hardware security, information secu-
rity, cryptography, and quantum computing.

HOWON KIM (Member, IEEE) received the
bachelor’s degree from Kyungpook National Uni-
versity (KNU) and the Ph.D. degree from the
Pohang University of Science and Technology
(POSTECH). He is currently a Professor with
the Department of Computer Science and Engi-
neering, the Chief of the Energy Internet of
Things (IoT) IT Research Center (ITRC), and
the Chief of the Information Security Education
Center (ISEC), Pusan National University (PNU).

Before joining PNU, he worked as the Team Leader of the Electronics and
Telecommunications Research Institute (ETRI), for ten years beginning in
December 1998. He was a Visiting Post-Doctoral Researcher at the Commu-
nication Security Group (COSY), Ruhr-Universität Bochum, Germany, from
July 2003 to June 2004.

VOLUME 10, 2022 67481


