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ABSTRACT Technological advancements in medical care have necessitated the development of effi-
cient and miniaturized implantable medical devices. This paper presents an ultra-wide-band implantable
antenna for use in scalp-based biomedical applications covering the industrial, scientific, and medical
(ISM) (2.4—2.48 GHz) band. The proposed antenna is mounted on a 0.1—mm thick liquid crystalline
polymer (LCP) Roger ULTRALAM (tan§ = 0.0025 and &, = 2.9), serving as a dielectric material for both the
superstrate and substrate layers. LCP materials are widely used in manufacturing electronic devices owing
to their desirable properties, including flexibility, conformable structure, and biocompatibility. To preserve
the capability of an electrically small radiator and achieve optimum performance, the proposed antenna
is designed to have a volume of 9.8 mm? (7 mm x 7 mm x 0.2 mm). The addition of a shorting pin
and open-ended slots in the radiating patch, and close-ended slots in the ground plane facilitates antenna
miniaturization, impedance matching, and bandwidth expansion. Notably, the antenna exhibits a peak gain
of —20.71 dBi and impedance-matched bandwidth of 1038.7 MHz in the ISM band. Moreover, the antenna
is safe to use according to the IEEE C905.1-2005 safety guidelines based on low specific absorption
rates. To evaluate the performance of the implantable antenna, finite-element simulation was performed in
homogeneous and heterogeneous environments. For validation, measurements were performed in a minced
pork-filled container. The simulation results are consistent with the measurements. In addition, a link budget
analysis is performed to confirm the robustness and reliability of the wireless telemetric link and determine
the range of the implantable antenna.

INDEX TERMS Implantable antenna, high gain, novel shaped, specific absorption rate, ultra-wide band.

I. INTRODUCTION

Implantable medical devices (IMDs) enable early diag-
nosis of human diseases and play a significant role in
several biomedical applications, such as intracranial pres-
sure detection, glucose monitoring, capsule endoscopy, and
cardiac pacemakers [1], [2]. These devices can be used
to continuously monitor human health and facilitate the
exchange of various physiological information using an
external controller [3]. To integrate wireless capabilities
in an IMD, a small and efficient implantable antenna
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that enables the device to establish a real-time biotele-
metric link is required [4] with an on-body wearable
and body-centric devices with high-performance antenna
systems [5]-[7]. Medical professionals can remotely analyze
this information and provide necessary treatment using high
data rate MIMO-based biomedical devices [8]-[10], thereby
improving the quality of life.

Several frequency bands are regulated by the Federal
Communications Commission (FCC) for use in biomedical
applications, including medical implant communications ser-
vice (MICS, 402 — 405 MHz), improved MICS, called the
medical device radio communication Service (MedRadio,
401 — 406 MHz) [11], and industrial, scientific, and medical
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FIGURE 1. Configuration of the proposed implantable antenna.

(ISM, 433 — 438 MHz; 902 — 928 MHz; 2.4 — 2.48 GHz;
and 5.725 — 5.875 GHz) bands. To extend the device life-
time and battery energy, a sleep-wakeup mode is utilized
at 2.45 GHz [12] as the IMDs consume less power in the
sleep mode than in the wake-up mode [13]. Moreover, the
ISM band of 2.45 GHz is primarily used in biomedical
applications owing to the increased radiated power at high
frequencies [14].

Typically, the implantable antennas are placed inside the
human body, which is heterogeneous and lossy by nature.
The differences in the permittivity and conductivity values
of different human tissues impose serious challenges on
implantable antennas face, such as impedance mismatch-
ing and detuning effects [15]. To address these problems,
an implantable antenna with wide bandwidth is preferred.
Moreover, several additional challenges must be addressed,
following the guidelines reported in [16], to develop an
implantable antenna, including size restriction, bandwidth,
biocompatibility, patient safety, and reliable telemetry.

Recently, numerous implantable antennas have been devel-
oped for biomedical applications. A multiple-input multiple-
output (MIMO) antenna with an electromagnetic bandgap
structure was proposed in [17]. Despite the isolation attained
by the EBGs and large structural dimensions (18.5 x 18.5 x
1.27 mm?), the antenna exhibited a simulated bandwidth
of 440 MHz and a peak gain of —15.18 dBi in the ISM band.
Moreover, the MIMO technique is an unrealistic approach to
IMD owing to its limited power resources. An implantable
antenna for the MedRadio band was designed in [18]. How-
ever, the structure had a large area of 66.89 mm? and
exhibited a comparatively low bandwidth (139.6 MHz).
A circularly polarized (CP) implantable antenna was
designed at the 2.4 GHz ISM band for cardiac pacemaker
applications [19]. Although the gain (—15.87 dBi) and band-
width (890 MHz) were satisfactory, the antenna had a large
footprint (40 x 40 x 1.27 mm?®). In [20], a triple-band
implantable antenna for multiple biomedical applications was
proposed in the ISM (915 MHz and 2.45 GHz) and mid-
field (1824 — 1980 MHz) bands. However, it exhibits lower
bandwidths and gain values in the ISM and midfield bands.
Similarly, a dual-band implantable antenna operating in the
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FIGURE 2. Simulation setup for the proposed antenna.

ISM and MedRadio bands was proposed in [21]. The antenna
offered an unsatisfactory bandwidth and had a large footprint.
In [22], a single-band implantable antenna operating in the
ISM (2.4 — 2.48 GHz) band was designed for glucose mon-
itoring. Although the gain (—17 dBi) was high, the structure
had a large volume (91.7575 mm?) and a lower bandwidth
(300 MHz). A novel shaped antenna operating in the ISM and
MICS bands was proposed for pacemakers [14]. However, the
antenna had a complex geometry, large dimensions, and low
gain values. In [23], a flexible slot antenna integrated with
a metamaterial (MTM) array was proposed for biotelemetry
applications. To enhance the gain of the antenna, an MTM
array with epsilon very large (EVL) properties was utilized
in the superstrate of the antenna. Although the EVL-based
MTM array improved the gain by 3 dBi, it increased the
overall volume of the antenna. Similarly, in [24], a CP
implantable microstrip patch antenna (MPA) operating in the
ISM band was presented. Two high-order degenerate modes
were excited in the MPA to generate CP radiating waves
at low-gain values. In addition to the complex geometry of
the antenna, its dimensions were large. These observations
indicate that antennas developed for biomedical applications
at various frequencies have several limitations and are unsuit-
able for use in IMDs. Therefore, further research is required
to develop an efficient implantable antenna with a small
volume, high gain, large bandwidth, low SAR, and reliable
telemetric capability.

This study developed an ultrawideband implantable
antenna for biotelemetric IMDs implanted under the scalp.
The proposed antenna has a volume of 9.8 mm?’ and is
characterized by its single operating mode: data teleme-
try in the ISM band (2.4 — 2.48 GHz). To achieve opti-
mum performance on a miniature structure comprising a
radiating element and ground plane embedded in the LCP
Rogers ULTRALAM substrate and superstrate layers, several
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TABLE 1. Comparison with the previous work.

Ref Volume | Frequency | SAR (W/Kg) | Bandwidth Gain Dielectric Patch Shorting
[mm3] [GHz] 1-g [MHz] [dBi] Material Shape Pin
[1] 17.15 0.402 588 148 -30.5 Rogers RT/ Zig Zag Yes
1.6 441 171 —22.6 Duroid 6010
2.45 305 219 —18.2
[19] 21 2.45 217.849 890 —20.47 Rogers RT/ Zig Zag No
Duroid 6010
[20] 66.41 2.45 217 80 —10.3 TMM 13i Zig Zag Yes
2.8 115 —10.3
[21] 31.5 2.45 778.1 246 —21.2 Rogers 6010 Spiral Yes
[22] 91.75 2.45 — 300 —17 Rogers 3210 Circular No
[25] 52.5 0.405 665.35 64 —40.8 Rogers 6010 Zig Zag Yes
0.915 837.69 91 -329
4.45 759.72 105 —22.3
[26] 67.8 2.45 238.9 980 —19.2 Rogers 3010 Rectangular Yes
[27] 161.29 2.45 213 190 —22 Rogers 3010 Rectangular No
[28] 434.65 2.45 1.5 440 —15.8 Rogers Spiral Yes
6010LM
[29] 254 2.45 382 60 —15 Roger 3210 Pi-Shape Yes
[30] 203.6 0.915 679.797 40 —16 Rogers RO3010 | Meandered Yes
[31] 127 245 254.74 390 —17.2 Rogers 3010 wafinCe No
Proposed 9.8 2.45 289.76 1038.7 —20.71 Ultralam Square Yes
Work

miniaturizing techniques were employed in the design.
In addition to the increment in the electrical length,
impedance improvement and bandwidth extension at the
desired frequency band are achieved by the addition of cir-
cular slots, rectangular open-ended slots, and a shorting pin.
First, the proposed antenna was designed and analyzed using
a homogeneous skin phantom (HSP) with dimensions of
100 mm x 100 mm x 100 mm. Next, the performance of the
proposed antenna was validated in a heterogeneous medium
containing multiple human body tissues. To validate the com-
putational results, the fabricated prototype of the implantable
antenna was tested in a human tissue-mimicking realis-
tic environment comprising container-filled minced pork.
Notably, the structure attained an impedance-matched band-
width of 1038.7 MHz and a peak gain of —20.71 dBi with
omnidirectional radiation characteristics. The SAR safety
analysis revealed that the antenna is safe to use. A communi-
cation range of 12 m can be reliably achieved at a bitrate of
200 kbps owing to its high-gain performance, as determined
by the link budget calculations. Table 1 lists the results of
the comparative analysis between the proposed antenna and
those proposed in previous studies, indicating the superiority
of the proposed antenna over the other antennas in terms of
structural simplicity, volume, antenna material, bandwidth,
gain, and SAR patient safety.

The remainder of this paper is organized as follows.
Section I describes the methodology and design of the
antenna, and the parametric analysis. Section III presents
the results and discussion in terms of antenna performance.
Section IV presents a link budget analysis, and Section V
concludes the study.

Il. METHODOLOGY
This study aims to develop an ultra-wideband implantable
antenna for scalp-based biomedical applications that
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performs effective biotelemetric communication with an
external controller and satisfies several requirements for its
implantation inside the human body, such as small size,
biocompatibility, good radiation characteristics, and patient
safety.

A. ANTENNA DESIGN

Fig. 1. shows the configuration of the proposed miniaturized
implantable antenna with the dimensions of 7 mm x 7 mm x
0.2 mm. The antenna comprises a central radiator, ground
plan, shorting pin, superstrate, and substrate. As is evident
from the figure, several rectangular and circular open-ended
slots are etched on both the ground plane and radiator of
the rectangular patch antenna to achieve bandwidth enhance-
ment, elevated gain, and miniaturization.

To achieve biocompatibility, Roger ULTRALAM 3850HT
(tand = 0.0025 and &, = 2.9) was used as the dielectric
material for the substrate. The ground plane was used as the
lower conductive layer of the substrate, whereas the upper
layer served as the main radiator. A superstrate layer of the
same material was used to insulate the antenna and eliminate
short circuits induced by lossy human tissues. The thick-
ness of both the superstrate and substrate was restricted to
0.1 mm to reduce the overall volume. Roger ULTRALAM
is a liquid crystalline polymer (LCP) material that provides
constant electrical properties for tightly controlled impedance
matching and is used to manufacture electronic devices [32].
Owing to its minimal dielectric and tangent losses, Roger
ULTRALAM is preferred for biomedical applications [33].
A 5082 coaxial feed port with a diameter of 0.6 mm was
used to excite the antenna. The parameters of the proposed
ultra-compact implantable antenna are listed in Table 2.
These parameters are obtained by optimizing the radiating
structure to operate at the central frequency of 2.45 GHz with
a compact footprint.
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TABLE 2. Parameters of the proposed antenna. (Units: mm.)

Parameters ~ Values  Parameters  Values Parameters  Values
w 7.0 w15 1.5 hia 1.0

H 7.0 wie 5.0 his 2.0
w1 5.0 w17 1.0 hi4 1.5
wa 2.7 w1 3.0 his 1.0
w3 1.5 w19 1.5 hie 2.0
w4 2.5 hi 0.5 hi7 1.5
ws 1.5 ha 0.5 dy 1.0
we 0.8 h3 1.0 da 0.6
wry 0.5 ha 0.5 ds 1.6
wsg 1.24 hs 0.5 dy 1.5
wg 0.45 he 0.5 ds 1.3
w10 2.9 h7 1.5 dg 1.64
w11 2.0 hg 0.8 P 2.85
w12 2.0 ho 0.2 Py —2.85
w13 1.64 hio 1.5 Vg —1.4
w14 4.5 h11 2.0 Vy —3.18

B. SIMULATION SETUP

The initial simulation setup for the designed antenna is illus-
trated in Fig. 2. The proposed antenna was simulated in a
HSP with dimensions of 100 mm x 100 mm x 100 mm
in Ansoft HFSS. The antenna was placed at the center of a
single-layer HSP model enclosed by an airbox that served
as a radiation boundary. According to [22], the dielectric
properties of human tissues are dependent on the operating
frequency, which was 2.45 GHz in this study. A relative per-
mittivity (&) of 38 and an electrical conductivity of 1.46 S/m
at 2.45 GHz were assigned to the HSP to mimic human skin
tissue.

C. DESIGN STEPS

The antenna was developed in four steps to obtain optimum
performance at the required resonance band (Fig. 3). Several
rectangular slots and cuts were added to the patch and the
ground plane to extend the electrical length of the antenna
and achieve compactness.

A comparison of the reflection coefficients (S11) for the
different design steps utilized to develop the proposed wide-
band implantable antenna is shown in Fig. 4. The resonant
frequency is in the 4.2 GHz region in the initial phase, with
poor impedance-matching characteristics (S;; > —10 dB).
At this stage, the frequency can easily be shifted to the lower
region by increasing the dimensions of the antenna. However,
large antennas are unsuitable for biomedical applications.
Therefore, a few rectangular slots were created in the patch
and ground plane to achieve the desired resonance. Despite
having identical dimensions, an elongated path is established
for the currents to flow over the surface of the radiating
patch and ground plane, thereby shifting the frequency to a
lower band [34]. This phenomenon can be observed from
the S1;1 graphs, which exhibit a dual resonance at 1.2 and
3.4 GHz achieved in the second and third steps with similar
impedance-matching features. In the final design process,
more slots were added to the center of the radiating patch.The
insertion of slots creates small capacitive gaps on the radi-
ator and ground plane, which improve impedance-matching
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FIGURE 4. Return loss (S;;) of the successive designing steps.

characteristics. Moreover, parasitic capacitance aids in shift-
ing the resonance to the lower side of the frequency
spectrum [35]. Notably, the proposed antenna exhibited
a perfectly matched impedance with minimal reflections at
the desired 2.45 GHz ISM band, covering a large bandwidth
of 874.3 MHz (from 1945 MHz to 2829 MHz).

D. PARAMETRIC ANALYSIS

The performance of an antenna is greatly influenced by the
size and length of various parameters. Therefore, a parametric
analysis was performed to optimize and tune the final antenna
design. A few essential parameters were considered for per-
formance evaluations, such as slot w; in the ground plane,
circular cut with a diameter (de) and slot wis in the radiating
element. Furthermore, the effect of the shorting position was
investigated. In the simulation environment, the values of
the critical parameters were varied to analyze their impacts
on S;1, which was used to fine-tune the antenna.

1) EFFECT OF VARYING THE PARAMETER w

Fig. 5 shows the effect of the variation in the slot parameter
w1 on the reflection coefficient. Increasing the value from
4 mm to 5.5 mm in steps of 0.5 mm, the resonance frequency
is shifted towards the lower band. Further increments in
wp cause the close-ended slot to become open-ended and
split the current path in two directions near the feed port
on the ground plane—one in the upward direction towards
the shorting pin and the other in the lower-right direction.
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When wj is extended to 5.5 mm, parameter w; vanishes.
The two resonances occur at 1.7 GHz and 3.3 GHz in this
case, implying that the length w; exerts a more significant
influence on impedance matching and antenna tuning in the
appropriate frequency band.

2) EFFECT OF VARYING THE PARAMETER d

Fig. 6 shows the effect of the circular cut (d3) on S11, which
ranges from 1.2 mm to 1.8 mm. Evidently, increasing the
value of ds results in improved impedance matching. How-
ever, at d3 = 1.8 mm, the resonance splits into two bands,
eliminating the wideband characteristics of the proposed
antenna. Therefore, the value of d3 is set to 1.6 mm to obtain
ultra-wide bandwidth.

3) EFFECT OF VARYING THE PARAMETER w5

The width of the rectangular cut wys has a significant effect
on the impedance matching and stability of the designed
antenna. Fig. 7 shows the effect of the variation in the width
of the side strip wis on S11 of the antenna. First, return loss
is observed without the side strip. The antenna resonates
at 3.5 GHz, with a dip of <—10 dB in the Sj;. Subse-
quently, a strip with a width in the range of 0.5—1.5 mm
is added. At the lower values of the strip wis, the desired
band is not achieved, and S1; exhibits a peak dip at 3.3 GHz.
By increasing the size of wis, impedance matching is gradu-
ally improved, and the frequency is shifted to the lower side
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of the spectrum. Further increments in the width of the strip
elongated the current path, and the required frequency band
was achieved by setting wis to 1.5 mm.

4) EFFECT OF VARYING THE SHORTING PIN LOCATION

The effect of the shorting pin on the performance of the pro-
posed antenna was also analyzed at four different locations
(Fig. 8). Evidently, the shorting pin facilitates impedance
matching and tuning of the implantable antenna. The antenna
is completely mismatched when the shorting pin is placed
near the feed port at the location Py. The currents experience
a small path on the main radiator shorted with the ground,
causing a poor resonance at 4.5 GHz. When the shorting
pin was moved to the location P, multiple current paths
were created, causing weak (S;; > —10 dB) resonances at
multiple undesired frequencies. At P3, where the shorting pin
is moved to the upper-right corner of the antenna, dual bands
are produced at 900 MHz and 3.15 GHz. Finally, the shorting
pin is optimized at position P4 where the antenna exhibits
perfectly matched impedance and wideband characteristics
at the desired frequency of 2.45 GHz. Generally, a shorting
pin is added in the structure to short the radiator with the
ground plane. Typically, the shorting pin is smaller in radius,
which is usually between 0.1 to 0.3 mm. This radius is taken
according to the trace width on the radiator. As long as the
diameter of a shorting pin is not greater than the maximum
width of the trace on which it is added, there is no affect on
the S1; and gain of the implantable antenna. However, when
the diameter of shorting pin is increased in such a way that it
occupies two or more traces, there is effect on the S11 and gain
of the implantable antenna. As more traces on the radiator
are shorted with the ground plane, the frequency response
is deteriorated. Therefore, in this study, the diameter of a
shorting pin is restricted to 0.6 mm in diameter so that it can
short a single trace on the radiator with the ground plane.

E. FABRICATION AND MEASUREMENTS

As previously mentioned, initial simulations were performed
in FEM-based homogeneous model. To further inspect
the sensitivity of antenna, numerical computations were
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FIGURE 9. (a) Fabricated Antenna prototype. (b) 3-D human body model
and antenna implant position. (c) Return loss S;; measurement setup in
minced pork meat. (d) Radiation chamber to measure of radiation
efficiency of the proposed antenna in minced pork meat.

conducted in the heterogeneous environment, such as head
model comprised of multiple human tissues. In both cases,
the antenna was implanted at depth of d = 12 mm. For
experimentation, the fabricated prototype of antenna is devel-
oped using photolithographic technique in which the metal-
izations of the slots and cuts on the radiating element and
ground planes were chemically etched off. Afterward, the
soldering process was adopted to connect an SMA cable with
the fabricated antenna. To evaluate the simulated attributes,
the real-time performance was analyzed by measuring the
reflection coefficient and radiation pattern in a minced
pork emulating human biological tissues. The realistic duke
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FIGURE 10. return loss S;; of the proposed antenna in different implant
situations.

model, fabricated antenna, and measurement setup are shown
in Fig. 9.

Ill. RESULTS AND DISCUSSION

The performance of the proposed implantable antenna was
analyzed with respect to the reflection coefficient, far-field
gain pattern, patient safety, and link budget. |S71| of the
proposed antenna in a HSP, homogeneous brain model,
realistic heterogeneous head model, and minced pork are
compared in Fig. 10. Evidently, that the proposed antenna
exhibits ultra-wideband performance at a resonant frequency
of 2.45 GHz. The antenna offers a —10 dB bandwidth
of 874 MHz (1.945 — 2.829 GHz) and 792 MHz (1.801 —
2.593 GHz). A slight shift in the frequency spectrum and dip
in the return loss were observed because of the high permit-
tivity of the brain compared to the skin. The antenna exhibits
a band coverage of 801.2 MHz (1.881 — 2.6817 GHz) in a
heterogeneous head environment. The complex and diverse
electrical properties existing in a realistic human head model
cause a slight shift in resonant frequency. The antenna offers
a —10 dB bandwidth of 1038.7 MHz (1.868 — 2.925 GHz)
in this realistic environment. Owing to fabrication tolerances
and human procedural errors, a slight shift in the simu-
lated and measured values was observed. However, these
effects are negligible, as the antenna covers the desired band
(2.45 GHz) in all scenarios.

The current distribution in the proposed antenna in the
four successive phases is shown in Fig. 11. 8 = 0° and
180°, the currents flow primarily around the feed point;
however, the polarity is opposite in both cases. The flow
of currents from the feed towards the shorting pin on the
ground plane increases at & = 90° indicating that the charge
is coupled between the ground plane and radiator, thereby
elongating the current path. The same phenomenon was
observed at & = 270° wherein the currents flowed in the
opposite direction to that at & = 90°. Notably, a half-
wavelength dipole mode was observed at 2.45 GHz in all
cases.

Owing to signal transmission through lossy tissues in the
human body, the gain of implantable antennas is substan-
tially lower than that of free-space antennas. Fig. 12 shows
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FIGURE 12. simulated and measured radiation efficiency of the proposed
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the radiation patterns of the proposed implantable antenna.
The H-plane and E-plane radiation patterns of the designed
antenna depend on the human body tissue in which the
antenna is implanted [34]. Realized peak gain values of
—19.06, —19.57, —19.36, and —20.71 dBi were attained in
the skin, brain, head, and minced pork, respectively. The
realized gain in different environments corresponds to the
desired gain of implantable antennas in the ISM band [36].
Furthermore, the E- and H-plane gain patterns were omnidi-
rectional in the HSP.

The implantable antenna uses electromagnetic (EM) waves
to transfer biotelemetric data. Therefore, considering SAR is
crucial for measuring the EM power absorbed by the body
per unit mass. According to the two IEEE standards, IEEE
C95.1-1999 and IEEE C95.1—-2005, the safety limits are
1.6 and 2 W/kg averaged over 1 and 10 g of human tissues,
respectively. By setting the input power to 1 W, a peak
SAR value of 350.81 W/kg (1 g) was obtained at 2.45 GHz
(Fig. 13). To maintain the radiator under the safety limit, the
net input power to the antenna should not exceed 4.56 mW,
as it is the critical value at which the peak SAR value
reaches the critical limit of 1.6 W/kg. The results of the safety
analysis performed using the proposed implantable antenna
listed in Table 3 indicate that the SAR is not an issue of
concern.
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TABLE 3. 1-g peak special SAR and maximum allowable power at ISM
(2.45 GHz) band.

Body phantoms | Peak SAR Max. allowable
(W/kg) input power (mW)
Skin tissue 289.76 5.52
Head tissue 350.81 4.56

FIGURE 13. SAR and gain of the proposed antenna.

IV. LINK BUDGET ANALYSIS OF THE PROPOSED
ANTENNA

A link budget analysis was performed to exchange physiolog-
ical data between the implantable antenna and the external
controller. The development of a robust and reliable link
based on link budget calculations proves a challenge because
of the presence of different types of attenuations, including
cable and connector losses, path loss, and antenna losses
(mismatch and material) [37]. For a stable biotelemetric
link, the difference between the antenna power (Ap) and the
required power (Rp), known as the link margin, should be
greater than 0. However, this study considered a link margin
of 10 dB for improved reliability. The required antenna power
is calculated as follows:

Ep
RP=]7+KT+Br, (1)

o
where Ep/N, is the ideal phase-shift keying with a value of
9.6 dB, K is the Boltzmann’s constant (1.38 x 10_23), T, is
the temperature (K), and B, is the bit rate in Kbps/Mbps. The
important parameters in the calculation of the link budget
are listed in Table 4. According to IEEE safety limits, the
input power to the implantable device is restricted to 25 uW
(—16 dBm). To ensure safety, the effective isotropic radiated
power (EIRP) of the implanted antenna must be less than
or equal to EIRP;,,. The EIRP,,,, for the ISM (2.45 GHz)
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TABLE 4. Link budget parameters of the proposed antenna).

Symbol Quantity Bit Rate (200 Kbps)
P, Transmitter power (dBm) —16
N, Noise power density:(dB/Hz) —20.93
T Temperature (Kelvin) 273
f Resonating frequency 2.45 GHz
Ga Transmitter antenna gain (dBi) Tissue dependent
Gy, Receiver antenna gain (dBi) 2.15
L Free space loss (dB) Distance dependent
Ap Available power (dB) Distance dependent
Rp Required power (dB) —155.9
Ap —Rp,  Margin (dB) Fig. 18
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FIGURE 14. Link budget at ISM (2.45 GHz) band.

band is 20 dBm [38]. In this study, the transmitted power
P, was assumed to be -16 dBm. Similarly, a bit rate B,
of 200 Kbps was assumed to ensure an extended battery life
to drive the circuitry of the implantable device integrated with
the antenna. The available power of the proposed antenna is
calculated as

Ap(dB) = P; + G4+ Gp — L, @

where P, is the transmitted power (dBm), G, represents
the gain (dBi) of the transmitter antenna, Gy, is the receiver
gain (dBi), and Ly is the free space loss (dB). For the pro-
posed antenna, G, is the tissue-dependent gain, and G, is
the constant gain (2.15 dBi) of an ideal dipole receiver. The
free-space loss (L) is calculated as

4md
L(dB) = 2010g(T). 3)

The distance versus link margin graph is shown in Fig. 13.
Evidently, a maximum communication range of 12 m
is achieved at a bitrate of 200 kbps and input power
of —16 dBm.

V. CONCLUSION

This paper presented a novel ultra-wideband implantable
antenna operating at 2.45 GHz for biomedical applications,
particularly for skin implantation. A shorting pin and rect-
angular and circular slots were added to the ground plane in
addition to patches for antenna miniaturization. Several key
parameters were analyzed to obtain the final design with a
volume of only 9.8 mm? in the ISM band. Moreover, the

VOLUME 10, 2022

SAR analysis results indicate that the proposed antenna can
be safely implanted in patients. The antenna exhibits several
essential features, including ultra-compact size, ultra-wide
bandwidth, perfect impedance matching, high gain, omnidi-
rectional radiation pattern, patient safety, and biotelemetric
capability. Furthermore, the results of the comparative anal-
ysis demonstrate that proposed antenna offers superior per-
formance compared to existing state-of-the-art implantable
antennas.
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