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ABSTRACT Prediction of Speech Intelligibility (SI) is a topic of interest for most speech processing
applications, where intelligibility is of any importance, e.g., speech coding, transmission and enhancement.
Traditionally, SI predictors have been based on signal processing methods and heuristics, but more recently,
an increasing number of data-driven SI-predictors have been proposed. Data-driven prediction of SI requires
large quantities of labelled data, ideally from many listening tests. Listening tests differ in factors such as
vocabulary, talker, listener’s task, etc. collectively referred to as the paradigm. A naïve strategy of training
SI-predictors directly on stimuli, pooled from different listening tests, is futile because the exact map from
the stimulus to SI is determined, not only by the stimulus, but also by the paradigm. Data-driven SI-predictors
trained in this way become specialized to the paradigms of the training data by erroneously attributing all
paradigm influences on SI to the stimulus. The problem is fundamental and persists even in the idealized
situation where training data is abundant. We propose a strategy for training data-driven SI-predictors that
is independent of the paradigms, underlying the training data. The proposed strategy is to concatenate an
SI-predictor and a layer of trainable dataset-specific mapping functions, each corresponding to a single
paradigm in the training data. These mapping functions are trained jointly with the SI-predictor and serve
to efficiently approximate the psychometric functions implied by each paradigm. The mapping functions
prevent the predictor from specializing to these paradigms during training. We present an SI-predictor with
a novel architecture that incorporates a convolutional network and an ESTOI back-end, train it with this
strategy, compare it to naïve training and a range of existing non-data-driven predictors. The proposed
training strategy and architecture results in higher performance overall and increased robustness to unseen
paradigms.

INDEX TERMS Neural networks, psychometric functions, speech intelligibility prediction.

I. INTRODUCTION
Speech Intelligibility (SI) is an important concept for speech
communication devices, such as hearing aid systems or
devices for communicating under extreme acoustic condi-
tions, such as aeroplane cockpits or emergency response
situations. Because of this, SI is repeatedly measured during
the development of these devices. The most reliable measure-
ments of SI come from listening tests, where human listeners
respond to examples of the noisy or processed speech in
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question. Since many human listeners need to be involved,
these listening tests are significant time-sinks, slowing down
iterative development of speech processing methods, con-
cerned with SI.

To speed up this development, SI-prediction has become a
popular and valuable tool. SI-prediction refers to algorithms
or models, designed to predict the SI of noisy or processed
speech signals, as it would be rated by a panel of human
listeners. SI-prediction offers fast and reproducible results
and can significantly increase the speed of development for
speech processing systems, when used in place of listening
tests. A potential disadvantage is that SI-predictors, like any
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predictor or estimator, may exhibit variable accuracy, depend-
ing on variations in the signals under study. These variations
include, for instance, the type and intensity of noise or dis-
tortions deteriorating the signals and the type of processing
applied, if any. We refer to a particular combination of these
variations as a listening condition. Applying an SI-predictor
to listening conditions, on which it has not been validated
by a listening test, can give misleading results. Robustness
to a wide variety of listening conditions is thus an important
quality in SI-prediction.

Data driven SI-predictors are designed using machine
learning methods, such as neural networks. These predictors
usually have a large number of parameters, which are opti-
mized through training on labelled speech in different listen-
ing conditions. When data-driven SI-predictors are trained on
speech data from a set of listening test conditions, it makes
sense to refer to these listening conditions as seen conditions
for that predictor. This is in contrast to unseen conditions,
which refers to conditions not represented in the training set.
Data-driven SI-predictors have demonstrated performance
improvements over state-of-the-art classical predictors in
seen conditions, but not in unseen conditions.

Listening test paradigms are important to consider, when
dealing with SI prediction. The paradigm of a listening test
refers to factors other than the physical stimuli, such as
different talkers, languages, vocabulary, sentence structure,
lexical redundancy, test scoringmethods, listening equipment
and more that have an impact on the measured SI. The
effects of a given paradigm can be approximated well by
an s-shaped curve, which maps predictions of SI to absolute
measured SI. This curve is called a psychometric function,
a type of function that relates human responses on a test
to some physical quantity, e.g., the SI experienced by the
listener vs. signal to noise ratio of the stimulus. Psychometric
functions for SI are typically modelled by a sigmoid function,
where the parameters depend on the paradigm and the SI-
predictor [1]. Note that a difference of slope between the
psychometric functions of two listening tests implies that a
similar change in a physical quantity, such as SNR, results in
different changes to SI.

We use the term ‘‘pooling’’ to refer to constructing a dataset
that contains speech stimuli and SI labels from multiple
listening tests. However, naïve pooling of listening test data
may be a questionable approach, because different listening
tests have different underlying paradigms and psychometric
functions associated with them. The speech stimuli alone do
not completely account for the specific SI measurements of a
listening test. For instance, the loudspeakers or headphones,
used in two different listening tests, could make a difference
in the subjective scores of the test subjects. Furthermore,
some languages might be easier or harder to understand,
under certain noise types. Similarly, coherent sentences allow
some words to be inferred by context, which leads to higher
SI scores than randomly constructed sentences, devoid of
context, in the same listening conditions. These influences

on the SI scores of different listening tests result in different
parameters of the psychometric function.

Many studies of classical SI-predictors apply listening test
specific mapping functions to convert the predictor output
to absolute SI in performance tests, e.g., STOI [2], SIIB [3]
and SII [4]. This is done in order to take the psychome-
tric functions specific to each listening test into account,
when evaluating predictor performance, and thus facilitate
comparisons of predictions and performance across different
listening tests. The predictions prior to these mappings are
typically called SI indices, since they are, ideally, related
monotonically to the subjectively measured SI, or absolute
SI. SI indices can be meaningfully compared within the same
paradigm, with a higher index corresponding to a higher
absolute SI, but indices from different paradigms can not,
since the psychometric function, and thus the map from SI
index to absolute SI, changes with the paradigm.

When a data-driven SI-predictor is trained on a dataset
of pooled listening tests, a fundamental problem arises. The
input signals, used to train the SI-predictor, i.e., the speech
stimuli, do not contain the complete information that deter-
mines the shape of the psychometric functions. With the
information available in the training inputs and labels, the
predictor can learn the specific psychometric functions under-
lying the training data, but it can not learn how to adapt to new
unseen psychometric functions. This means that the predictor
specializes in the paradigms underlying the training data.

We propose and investigate a method for training data-
driven predictors, which allows the use of pooled listening
test data from different paradigms, by taking the differences
in psychometric functions in the training data into account.
In particular, the method introduces trainable mapping func-
tions with dataset dependent parameters. These mapping
functions, which we call Dataset-Specific Mapping Func-
tions (DSMF’s), serve to model the psychometric functions
specific to each individual listening test in the training data.
We apply the training strategy to an SI-predictor1 consisting
of a Convolutional Neural Network (CNN) with a back-end
inspired by ESTOI. This CNN is trained with pooled data
consisting of speech datasets with SI-labels from different
listening tests. The parameters of the trainable mapping func-
tions are learned independently for each dataset. Their pur-
pose is to approximate the psychometric function of each
dataset, separately from the SI-predictor. After the train-
ing is complete, the trained DSMF’s are discarded, because
the information they contain, namely an approximation of
the psychometric functions of the training sets, is gener-
ally not useful, when predicting the SI of unseen datasets
and paradigms. The trained SI index predictor is simply the
remaining CNN-ESTOI network depicted in Figure 1.
We show that training a data-driven SI-predictor with this

strategy prevents it from learning an internal representation of

1The implementation of this SI-predictor can be found at
https://github.com/Mapede/DSMF_SI_Predictor
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the psychometric functions, inherent in the training data. It is
demonstrated that this enables the proposed data-driven pre-
dictor to reach higher performance for seen conditions, and
also to be more robust to new unseen test-paradigms. First,
two SI-predictors are trained using the same architecture and
pooled data, one using the proposed strategy, the other trained
naïvely. This experiment shows that the proposed strategy
leads to higher performance on average. Secondly, a series
of hold-one-out cross validation experiments are conducted,
where SI predictors are trained according to the proposed
strategy, using all the available datasets except for one. The
dataset, held out of training, is instead used for testing.
In these experiments, the average performance of the trained
predictors, on their respective unseen datasets, is higher than
that of the classical predictors used for comparison.

The paper is organized as follows. Section II goes into
detail on existing SI-predictors, both classical and data-
driven. Section III describes the architecture of the proposed
SI predictor and details of the proposed training procedure.
Section IV describes the datasets used to train and test the
proposed SI predictor, as well as the training procedure and
hyper parameters. Section V describes the experiments, and
presents a performance evaluation of the proposed SI predic-
tor. Finally, Section VI contains the conclusions of the work.

II. RELATED WORK
SI-predictors may be roughly divided into classical, or data-
driven methods. Classical SI-predictors, e.g., the Articu-
lation Index (AI) [5], the Extended Speech Intelligibility
Index (ESII) [6], the Speech-to-Reverberation Modulation
energy Ratio (SRMR) [7], the Short-Time Objective Intelli-
gibility (STOI) [2], the Spectro-Temporal Modulation Index
(STMI) [8], the Extended Short-TimeObjective Intelligibility
(ESTOI) [9], the Speech Intelligibility In Bits (SIIB) [3] and
the Hearing Aid Speech Perception Index (HASPI) [10], are
hand-crafted models, often inspired by models of auditory
perception, with only few parameters optimized for listening
data. Data-driven SI-predictors, e.g., Non-Intrusive Speech
Assessment (NISA) [11], a twin hidden Markov model [12],
the data-driven STI estimator proposed by [13], the neural
network proposed by [14], the convolutional neural network
proposed by [15], and the convolutional neural network pro-
posed by [16], learn a prediction model primarily, or in full,
by a process of optimization on a dataset of speech with labels
of measured, or in some cases predicted, SI.

Another mode of classification for SI-predictors is,
whether they are intrusive or non-intrusive. Intrusive pre-
dictors use both the clean reference signal and the
noisy/processed test signal, whereas non-intrusive predictors
only require the noisy/processed test signal. The advantages
of intrusive SI predictors is that they are given more informa-
tion than their non-intrusive counterparts, and can, in princi-
ple, reach a higher accuracy. The advantage of non-intrusive
predictors is that they can be used when the clean reference
is unavailable.

The AI [5] is perhaps the first classical method, and has
served as inspiration for many following predictors. The AI
performs a frequency weighted comparison of the long-term
intensities of the underlying clean speech and the noise to
estimate SI. The primary focus of the AI was speech in
additive noise, and it was also designed for calculation by
hand. The Speech Transmission Index (STI) [17] analyzes a
set of probe signals passed through the transmission channel
or processing algorithm of interest. In particular, the preserva-
tion of the probe signal modulations are measured, and used
to quantify SI. Assuming that the channel is known, the STI
supports non-additive distortions, such as clipping, filtering
and reverberation.

The Speech Intelligibility Index (SII) [4] and Extended
SII (ESII) [6] compute a weighted average of Signal to
Noise Ratios (SNR) of specific frequency bands. The SII
was proposed as an updated version of the AI, suitable for
calculation by computer. In ESII, the SNR is computed in
short time frame averages, rather than the long-term average
used in SII. This improves its performance for speech signals
in fluctuating noise [6]. The STMI [8] decomposes the signal
under study into spectro-temporal components, and makes a
comparison to the clean reference via cross correlation.

STOI [2] and Extended STOI (ESTOI) [9] use averages of
sample correlations between the test signal and clean refer-
ence in short time segments in the 1/3 octave band magnitude
domain. These sample correlations predict SI well when the
time-frequency tiles are independent of each other. Since this
is not generally the case, STOI and ESTOI normalize the
signal segments before the sample correlations are computed.
In STOI each segment is normalized across time, whereas in
ESTOI they are also normalized across the 1/3 octave bands.
This allows ESTOI to better handle temporally fluctuating
noise, compared to STOI, [9]. SIIB [3] provides an estimate
of SI via an estimate of the mutual information between
the clean speech and noisy/processed speech. The idea of
using mutual information to predict SI has been used ear-
lier, see e.g., Speech Intelligibility using Mutual Information
(SIMI) [18], the AI [19], [20] and Mutual Information Varia-
tional Bayes (MI-VB), MI K Nearest Neighbours (MI-KNN)
and MI Expectation Maximization (MI-EM) [21].

HASPI [10] computes an intelligibility score based on an
auditory model, including both spectral envelope features
and coherence. HASPI is also able to account for hearing
impairment.

Data driven SI-predictors can be categorized by the type of
labels used for training. The predictors proposed in [14]–[16]
and [22], which are all different types of neural networks, are
trained to estimate actual listening test results. Other data-
driven SI-predictors are trained to emulate existing classical
predictors in circumstances, where the classical predictor in
question can not be used. In these cases, the labels are SI
predictions produced by the classical predictor. For instance,
the Non-Intrusive Speech Assessment (NISA) method [11]
is trained to predict the outcome of STOI, without the
clean reference that STOI normally requires. The important
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FIGURE 1. Proposed SI prediction architecture. From left to right are the 1/3 octave band inputs S[t, f ] of clean speech and X [t, f ] of noisy/processed
speech, the dataset selection vector, d , used to choose the mapping function matching the listening test, the CNN layers which are applied to both S[t, f ]
and X [t, f ] using the same kernels, yielding S̃[t, f ] and X̃ [t, f ], the ESTOI back-end consisting of normalization and correlation performed on a sliding
window, and an average across frames resulting in the SI index prediction, ρ. In the training phase, the SI index, ρ, i.e., the output of the ESTOI back-end,
is mapped to a prediction of absolute SI using the logistic function indicated by d .

distinction is that NISA is trained using labels generated by
STOI rather than a listening test. This circumvents the limi-
tations imposed by the scarcity of listening test data, but also
imposes the performance of STOI as an upper bound on the
performance of NISA. Other examples include the predictors
described in [13], a convolutional neural network emulating
the STI, and [12] a hidden Markov model emulating STOI.

The data-driven methods proposed by [12], [14], and [16]
are not evaluated on unseen conditions. The methods pro-
posed by [11] and [13] are tested on unseen conditions,
though these conditions are in the same category as the
seen data, additive noise for [11], and reverberation from
convolution with room impulse responses for [13]. Further-
more, these methods were trained using labels generated by
classical predictors, STOI and STI for [11] and [13] respec-
tively, rather thanmeasured SI. Finally, the methods proposed
in [15] and [22] were tested on unseen datasets, revealing
highly dataset dependent performance.

III. ARCHITECTURE AND MAPPING FUNCTIONS
The data-driven SI-predictor proposed in this paper is a Con-
volutional Neural Network (CNN) with inspirations from
ESTOI [9]. The architecture is shown in Figure 1. The model
takes two inputs: a potentially noisy and/or processed speech
signal, X [t, f ], and the corresponding time-aligned clean
speech signal, S[t, f ]. In the training phase the model is also
given a third input, the paradigm selector vector, d , which is
a vector with a 1 in the entry corresponding to the listening
test from which the training sample, i.e., X [t, f ] and S[t, f ],
was drawn, out of a total set of D listening tests used for
training. This vector is used to select the appropriate mapping
function. SpectrogramsX [t, f ] and S[t, f ] are 1/3 octave band
representations of the time-domain speech signals x[τ ] and
s[τ ], respectively. To obtain X [t, f ] and S[t, f ], both x[τ ] and
s[τ ] are resampled to 20 kHz. Then a Short-Time Fourier

Transform (STFT) is performed, followed by a 1/3 octave
band transform, similar to that of ESTOI, yielding X [t, f ]
and S[t, f ]. For the STFT a 50% overlapping Hann window,
W samples in length, and zero padding to 2W samples is
used. The input signals are processed in a number of CNN
layers, followed by an ESTOI back-end, which performs the
comparison between the signal under study and the clean
reference. During network training, the output of the ESTOI
back-end is mapped to absolute SI by the mapping function
corresponding to the listening test from which the inputs and
SI label were obtained.

A. NETWORK DESIGN
The goal in designing the network is to increase robustness to
unseen datasets. The architecture is designed to be relatively
small, in order to mitigate overfitting to the seen datasets. The
proposed architecture has fewer than 104 trainable parame-
ters, whereas network sizes used in [22] range from 105 to
106 parameters. These large models showed signs of over-
fitting, as the performance was drastically lower for certain
unseen datasets. This is also the reason why we have chosen
to incorporate part of ESTOI into the network, i.e., to reduce
the required number of trainable parameters.

We choose ESTOI, specifically, because of its simplicity
and performance. The ESTOI back-end provides an anchor
point of performance, in that the network should be able to
perform at least as well as ESTOI on the training set. Hence,
with this network design we expect performance on par with
or better than ESTOI for seen conditions. The trainable part of
the network, i.e., the CNN layers, is placed before the ESTOI
normalization for a number of reasons. First, it guarantees
that when the studied signal is in fact clean, i.e., x[τ ] = s[τ ],
the predicted SI is maximized. This is due to the fact that
x[τ ] and s[τ ] are subject to the exact same mathematical
operations, because they share the same CNN layers.
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A CNN architecture was chosen, because it allows pro-
cessing of variable lengths of input signals [15], and because
CNN’s have proven efficient for speech processing tasks
in general, see e.g., [15], [22]–[24] or [25]. In a prelimi-
nary experiment we tested other architectures, particularly
including a trainable weighted averaging across frequency
bands in the back-end. This weighted average was found to
have no significant impact on performance. The proposed
training procedure is not limited to the architecture described
here. It can be applied to the training of any data driven
SI-predictor.

B. 1/3 OCTAVE BAND TRANSFORM
The 1/3 octave band transform is applied as presented in [2].
First, the STFT, given by:

X̂ [t, k] =
1
√
2π

W−1∑
s=0

x
[
tW
2
+ s

]
w [s] e−jks, (1)

is applied, where X̂ [t, k] is the STFT of x at time t , and
frequency k , w [·] is a Hann analysis window of length W ,
and j denotes the imaginary unit. Then, the magnitudes of
each 1/3 octave band are computed as follows:

X [t, f ] =

√√√√√ kh[f ]∑
s=kl [f ]

|X̂ [t, s]|2, (2)

where X [t, f ] is the 1/3 octave band representation of x at
time t , and 1/3 octave band f , and where kl[f ] and kh[f ] are
the indices of the lowest and highest frequency bands of X̂
within the f ’th 1/3 octave band. Similar operations are applied
to s[τ ] to obtain S[t, f ]. For more details we refer to [2].

C. CNN LAYERS
The 1/3 octave band transformed signals, X [t, f ] and S[t, f ],
are now run independently through the same CNN layers, cf.
Figure 1. We use L CNN layers of K kernels with Rectified
Linear Unit (ReLU) activation functions. The signals are zero
padded to preserve their size after each convolution.

D. ESTOI BACK-END
The CNN layers produce K outputs,
X̃ [t, f , 0], . . . , X̃ [t, f ,K−1], each corresponding to one ker-
nel in the final layer. These K outputs are concatenated along
the frequency-axis:

X̃ [t, f ′] =
[
X̃ [t, f , 0] . . . X̃ [t, f ,K − 1]

]
, (3)

where f ′ is used to index the new concatenated frequency
axis. This concatenation results in a computationally con-
venient representation of X̃ for the next step. Following the
CNN layers are a series of operations from ESTOI, as illus-
trated in the details of the ‘‘ESTOI Back-end’’ in Figure 1 [9].
A sliding rectangular window, N samples wide, is applied
along the temporal axis, splitting the input spectrograms into

short overlappingmatrices. The n’th of thesematrices is given
by:

X̃n[t, f ′] =
[
X̃ [n, f ′]> . . . X̃ [n+ N − 1, f ′]>

]>
. (4)

For each n, X̃n[t, f ′] is normalized across time and frequency
as follows. First, the mean is subtracted across time:

X̃n,2[t, f ′] = X̃n[t, f ′]−
1
N

N−1∑
s=0

X̃n[s, f ′]. (5)

Then, the variance is normalized across time:

X̃n,3[t, f ′] = X̃n,2[t, f ′]
/√√√√N−1∑

s=0

X̃2
n,2[s, f

′]. (6)

Now, the mean across frequency is subtracted:

X̃n,4[t, f ′] = X̃n,3[t, f ′]−
1
N

F−1∑
s=0

X̃n,3[t, s]. (7)

Finally, the variance is normalized across frequency:

X̃n,5[t, f ′] = X̃n,4[t, f ′]
/√√√√F−1∑

s=0

X̃2
n,4[t, s]. (8)

S̃n,5[t, f ′] is computed similarly. The correlation coefficient
between each corresponding matrix of the noisy/processed
and clean speech signals is now given by:

ρn =
1
N

N−1∑
t=0

F−1∑
f=0

X̃n,5[t, f ′]S̃n,5[t, f ′]. (9)

The average across frames, ρ, of these correlation coefficients
is the output of the network.

E. DATASET-SPECIFIC MAPPING FUNCTIONS
Ideally, the trained SI index predictor should be independent
of the paradigms specific to the listening tests included in the
training data. To achieve this, we append a number ofDSMF’s
to the architecture used exclusively for the network training
and validation phases. This is marked as ‘‘Training phase
only’’ in Figure 1. During network training, an additional
input is given. This input, d , is a vector with a 1 in the entry
corresponding to the index of the dataset from which the
inputs s[t] and x[t] originate, and 0’s in all other entries. The
DSMF’s used in this study are logistic functions, defined as:

σ (x) =
1

1+ e−(ax+b)
, (10)

where x is the input, and a and b are the trainable parameters.
Conveniently, computing these functions corresponds to a
single fully connected layer, with a number of nodes equal to
the number of listening tests, followed by a sigmoid activation
function. The parameters a and b then, respectively, corre-
spond to the weights and biases of the fully connected layer.
This layer is designed to apply all the DSMF’s to the net-
work output in parallel during training, which is represented
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TABLE 1. Overview of the datasets used for training and testing of the proposed SI predictor. The datasets have been split into files of equal duration of
approximately 6.6s of speech. The column labelled #subj. list the number of participating listeners, and the column labelled #cond. lists the number of
different listening conditions resulting from the various noise types and SNR’s as well as processing types and settings.

by the block filled with s-shaped curves in Figure 1. The
inner product is now taken between the outputs of the fully
connected layer and the selector vector d , in order to select
the relevant DSMF. Thus, only the DSMF corresponding to
the dataset indicated by d is passed through this operation.
This particular implementation was chosen because it is dif-
ferentiable, which allows for back propagation. In this way,
the network can be simultaneously trained onmultiple pooled
datasets, while the mapping functions absorb the different
psychometric functions, which the network could otherwise
only account for by over-fitting. The choice to use logistic
functions as DSMF’s is inspired by the fact that logistic
functions are often used to model psychometric functions
for classical SI-predictors, see e.g., STOI [2], ESTOI [9],
SIIB [3], CNN [15], SII [4] or the survey of psychometric
functions for SI in [1]. Importantly, because of the choice to
train with logistic DSMF’s it can be expected that the network
outputs SI-indices that are logistically related to absolute SI.

The DSMF training procedure is designed to give the net-
work a parameter efficient way to represent the psychometric
functions that arise from the training data. The psychometric
functions are thus learned separately from the CNN, which
means that the internal parameters of the network can be
utilized more efficiently, leading to better SI-prediction per-
formance even though the DSMF’s themselves are discarded
in the end.

The result of the proposed DSMF training procedure is a
network that outputs an unmapped SI-index, ρ, which cor-
relates highly with absolute SI. In practice, for unseen data,
ρ would be used as the SI-prediction. In general, SI-indices
produced by this network are not predictions of absolute
SI, because the network does not account for psychometric
functions. In special cases, however, where the listening test
paradigm is known, i.e., when the data comes from a known
listening test, the corresponding DSMF could be appended to
produce predictions of absolute SI. In the interest of facili-
tating a fair comparison with competing predictors, however,
we will not be using the trained DSMF’s in the test phase.

IV. DATASET DESCRIPTION AND TRAINING PROCEDURE
A. DATASETS
The experiments described in this paper are based on a pooled
dataset consisting of the results from ten listening tests.

Table 1 describes the datasets with a few keywords pertaining
to the speech material, noise types and processing in each
listening test. The noisy/processed speech stimuli, x[t], and
the clean reference signals, s[t], from each noise/processing
condition in each listening test were extracted. The label for
each pair of signals was taken to be the average fraction of
correct words across all listeners within the given condition.
It would have been desirable to use more granular SI-labels,
e.g., binary labels indicating whether each individual word
was correctly identified in the corresponding listening test.
However, for the vast majority of the datasets we use, partic-
ularly DS3 through DS9, only the average SI is available. For
the sake of consistency, we use the average SI labels for all
datasets.

All ten listening tests were conducted with normal hearing
native speakers. The listening tests were either conducted
with a closed set, which allowed participants to select each
word from a list, or an open set, which required the partic-
ipants to either write down or repeat each word without a
list of candidate words. For more detailed descriptions of the
datasets and listening tests, we refer to the respective sources
listed in Table 1. In Table 1, Dantale II refers to the Danish
matrix test speech corpus described in [32]. ADD refers to
Akustiske Databaser for Dansk,2 which contains meaningful
Danish sentences. CLUE refers to the Danish speech corpus
described in [33]. The Dutch Hagerman matrix test speech
corpus is described in [34], and the IEEE database contains
English speech. These speech datasets each contain speech
signals from a single talker, apart from ADD, which contains
speech signals from multiple talkers. The Noisex database
is described in [35], and contains various recorded noise
types. Speech shaped noise (SSN) refers to white Gaussian
noise, filtered to match the long term spectral envelope of
speech. Babble (BBL) noise refers to the mixture of a num-
ber of competing talkers. The number of competing talkers
varies from 2 to 20 depending on the dataset. Bottle fac-
tory noise (BFN) refers to recorded noise of bottles clinking
against each other on a conveyor belt. ICRA is a database
of noise signals, constructed to mimic the short term modula-
tions of speech [36]. Ideal time-frequency segregation (ITFS)
is a method for enhancing a signal in the time-frequency

2http://www.nb.no/sbfil/dok/nst_taledat_dk.pdf
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domain by utilizing the true signal to noise ratio (SNR) for
each time-frequency tile, in order to, for example, compute
ideal gains or cut-off thresholds [37]. The signals in DS6
have been recreated using a different speech database than
the one used in the original listening test, the full details and
verification experiments can be found in [15, Sec. III].

B. TRAINING
Each dataset was split randomly into 80% training, 10%
validation and 10% test data. This was done to ensure that
all datasets would be represented in the test set. The data was
partitioned into training samples of equal duration, to enable
the construction of mini batches. The duration of 512 frames,
corresponding to approximately 6.6 seconds, which is long
enough to accommodate one to two sentences, was chosen.
This fixed duration resulted in some training samples span-
ning two listening test conditions. The labels for these sam-
ples were computed as the weighted average of the measured
SI for those two conditions, with weights equal to the number
of frames from each condition in that training sample. A batch
size of 32 was found to give the best compromise between
GPU-memory, training speed and end-performance. The net-
work was trained on batches from the training dataset using
the Adam optimizer [38], and theMean Squared Error (MSE)
loss function. An early stopping scheme was used, where
the learning rate was halved for every 25 epochs without a
new global minimum in validation cost, and the training was
stopped early if this continued for 35 epochs. Training was
allowed to proceed for a maximum of 300 epochs. Training
of the models with DSMF involves forward passing training
samples, i.e., triplets of X [t, f ], S[t, f ] and d , through the
CNN layers, the ESTOI back-end and finally the DSMF’s,
after which the loss function is evaluated. For the test phase,
the trained DSMF’s are discarded. To take the psychometric
functions into account for the evaluation, logistic functions
are fitted for each listening test in the test data by least
squares for all the evaluated predictors. This is done in order
to facilitate a fair comparison between the DSMF trained
networks and the classical predictors. This also allows the
DSMF trained networks to be tested on unseen datasets. The
architecture was implemented using Tensorflow 2.1 [39].

C. NETWORK PARAMETERS
We trained the networks with the following parameters. The
window length of the 1/3 octave band transform is W =

512. A preliminary experiment showed that L = 3 CNN
layers with K = 20, 3 × 3 kernels resulted in the best
performance. Networks with 1, 2, 3 and 4 CNN layers and 5,
10, 15 and 20 kernels per layer were tested. Due to memory
constraints, we were unable to test higher numbers of kernels.
The window length of the ESTOI back-end is N = 30,
cf. [9]. The lowest 1/3 octave band is centred around 150 Hz,
and the highest around 6050 Hz, for a total of F = 17 bands.
This is an increase from the conventional ESTOI, which
uses 15 bands. According to the band importance function
of the SII, [4], this frequency range accounts for most of

the intelligibility of speech. In total the architecture has
7, 460 trainable parameters.

V. PERFORMANCE EVALUATION
Two experiments, A and B, are performed to investigate
the properties of the proposed DSMF training strategy and
the resulting SI predictor. In Experiment A the goal is to
validate that the DSMF’s absorb the information related to
the different psychometric functions, and result in improved
prediction performance over plain pooling with no DSMF’s.
In Experiment B the goal is to investigate the robustness of the
network and training method to new or unseen listening con-
ditions and test paradigms. The Spearman and Pearson corre-
lation coefficients, alongwith theMean Squared Error (MSE)
values, are used as evaluation metrics.

A. EXPERIMENT A
In order to evaluate the efficacy of the DSMF training pro-
cedure, models were trained both with and without DSMF.
Both models have the same number of parameters in the
CNN layers, but since the DSMF’s should be able to repre-
sent the psychometric functions of each dataset, we expect
the DSMF trained model to utilize these parameters more
efficiently. As a result, the DSMF trained model is expected
to reach higher performance than the one without DSMF.
These models are both tested against each other, and against
a variety of classical predictors, i.e., ESTOI, SIIB, HASPI,
STOI and SI-SDR. We remind the reader that the trained
DSMF’s are not used in the test phase. Instead, as part of
the evaluation of the performance of each predictor on the
test data, logistic psychometric functions are fitted to the test
data using least squares, and used to transform the outputs of
the predictors to absolute SI, before computing the Spearman
and Pearson correlations as well as the MSE values. These
logistic functions should not be confused with the trained
DSMF’s, and we stress that they are solely used as part of the
evaluation of the SI-predictors, facilitating the comparison
between predictions and measured absolute SI. This has no
impact on the Spearman coefficient, because it is invariant
under monotonically increasing transforms, i.e., the fitted
logistic functions. It does affect the Pearson correlation and
MSE, however, since the logistic fitting attempts to map
predictions onto a straight line, which should increase the
Pearson correlation, and reduce the MSE. This facilitates a
fair comparison between the trained and classical predictors,
and better reflects the performance that can be expected in
practice. Specifically, if-hypothetically-the trained DSMF’s
were used in the test phase, the proposed network might have
an advantage specific to the datasets used in this work, but
this advantage would not generalize, since trained DSMF’s
only exist for seen datasets.

Table 2 shows the Spearman correlations, as computed
dataset-wise, for each predictor. The predictors trained in this
experiment are marked with (seen) in Table 2. The prediction
for each listening test condition was made by concatenating
all the speech signals available in the test set for that particular
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TABLE 2. Spearman correlations between the mapped predictions and the measured SI of the 10 datasets. In the (unseen) rows, each column represents
a different permutation of training, validation and test data, where the corresponding dataset has been excluded from training and validation. The
rightmost column shows the average of the Spearman coefficients across the datasets.

TABLE 3. Pearson correlations between the mapped predictions and the measured SI of the 10 datasets. In the (unseen) rows, each column represents a
different permutation of training, validation and test data, where the corresponding dataset has been excluded from training and validation. The
rightmost column shows the average of the pearson coefficients across the datasets. The values marked with * are not significantly different compared to
the best predictor on the given dataset.

TABLE 4. Mean squared error between the mapped predictions and the measured SI of the 10 datasets. In the (unseen) rows, each column represents a
different permutation of training, validation and test data, where the corresponding dataset has been excluded from training and validation. The
rightmost column shows the average mean squared error across the datasets. Note that all mean squared errors in this table have been scaled by a factor
of 100 for better formatting.

condition, resulting in one pair of inputs for each condition.
These pairs were given to the predictors as inputs yielding one
scalar SI-prediction per condition as output. The correlations
between the predictions of all conditions within each dataset
and the corresponding measured SI from the listening tests
were then computed. The performance in terms of Pearson
correlations is computed in a similar way and seen in Table 3.

Additionally, the mean squared error of each predictor is
reported in Table 4. We noticed no loss in performance as
a consequence of the relatively longer test signals. This is
likely because the architecture has a very small receptive field
because of the small kernels in the CNN layers.

As expected, the DSMF trained network reaches a higher
performance than the non-DSMF trained network in terms of
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FIGURE 2. Experiment A: Absolute measured SI vs. raw SI indices output by the networks and classical predictors, i.e., with no fitted logistic functions.

both Spearman and Pearson correlation. Since the only differ-
ence between these two networks is the presence of DSMF’s
during training, it is clear that training with DSMF’s has a
positive effect on the final performance of the SI-predictor,
indicating that the DSMF’s are working as intended. In par-
ticular, the performance average across datasets is higher
with DSMF. The exceptions, where the non-DSMF model
performs better are DS2 and DS7. A possible explanation
for this could be that networks sacrifice performance for
some datasets in order to perform better on average. DS2 is a
difficult dataset for many SI-predictors, because it contains
temporally modulated noise [9]. Note also that STOI per-
forms poorly, whereas ESTOI does particularly well on this
dataset. This is an expected result, as ESTOI was proposed
in order to improve STOI’s performance on speech in tempo-
rally modulated noise, and evaluated using DS2 [9]. Figures 2
and 3 show scatter plots of measured SI and predictions,

each point representing one listening test condition. Figure 2
shows the raw predictions, or SI indices, i.e., before logistic
functions are fitted, vs. measured absolute SI for the vari-
ous SI predictors. From Figure 2, the proposed SI predic-
tor, ESTOI and SIIB manage to produce fairly concentrated
clusters of predictions, whereas STOI and HASPI struggle
to do so. This is also reflected in Tables 2 and 3. For DS2
specifically, the predictions show a much wider spread at
the high end of the SI-spectrum. This is consistent with the
observations in [9] that many SI-predictors tend to under-
estimate the SI in this dataset. In DS7 there are very few
conditions at the extreme ends of the measured SI spectrum,
i.e., 0 and 1, where prediction errors are generally smaller.
This could explain why many of the SI predictors score
relatively low on this dataset. In Figure 2 it can be seen that
the network trained without DSMF produces indices with
an approximately linear relation to absolute SI, whereas the
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network trained with DSMF produces indices with separate,
approximately logistic relations to absolute SI. This clearly
illustrates the difference between training with and without
DSMF; the non-DSMF trained network must necessarily be
dedicating internal parameters to recognizing and mapping
each of the datasets to absolute SI, i.e., the network has
specialized to the training data. Recall that the psychometric
functions cannot generally be determined from the network
inputs alone. The network trained with DSMF, however, does
not appear to have any internal representation of the psycho-
metric functions of the datasets, since each dataset forms a
separate s-shaped cluster, indicating that the DSMF’s were
able to absorb the different psychometric functions of the
training data.

Among the classical predictors, ESTOI and SIIB have
the best performance, which is in accordance with existing
studies, see e.g., SIIB [3] or ESTOI [9]. While the classical
predictors are not primarily data-driven, some of the datasets
we test on, were used in the development of the classical
predictors. Specifically DS3, DS5 and DS9 were used in the
development of STOI, DS2, DS3 andDS9 in the development
of ESTOI [9], and DS3, DS4 and DS9 in the development
of SIIB [3]. This is reflected in the performance of these
predictors on those respective datasets, as seen in Tables 2, 3
and 4, where e.g., STOI reaches a Spearman correlation
of 0.54 on DS5. These observations are well in line with
conclusions drawn in [40] that SI-predictors tend perform
better on datasets used during their development. HASPI and
SI-SDR show the lowest performance on average. SI-SDR
shows drastic variation in performance from one dataset to
the next, with high performance on DS1, DS5, DS7 and DS9,
and low performance on DS0, DS2, DS3, DS4 and DS8.
Note in particular the negative Spearman coefficients on DS0.
This negative correlation could be due to the relatively few
conditions in DS0, which means that fewer discordant pairs
are necessary to significantly reduce the score. Note that high
correlations with different signs may be detrimental to any
SI-predictor: In order to be reliable in practice, it must be
clear whether an increase in predictor output is indicative of
an improvement or a decline in SI.

In the case of HASPI this can be attributed to slightly lower
scores onmost of the datasets and very low scores onDS0 and
DS8 in particular. HASPI’s very low score onDS8,might also
be explained by the fact that DS8 has few conditions.

Figure 2 demonstrates the difference between training
with and without DSMF’s. In particular, the network trained
without DSMF’s attempts to force predictions from all the
datasets onto the same line between (0, 0) and (1, 1). This
is a clear indication that the network has learned an internal
representation of the psychometric functions specific to the
training datasets. As a consequence, the predictions show
a substantial variance. When trained with DSMF’s, how-
ever, the outputs related to different datasets form separate
s-shaped clusters. The differences between these clusters
are a result of the paradigm differences, meaning that the
network has not learned an internal representation of the

psychometric functions of the training data. It is evident
that this has resulted in substantially reduced variance in
the predictions. Note that the clusters corresponding to each
dataset, appear similar for this DSMF trained network and for
ESTOI, which could be a result of the similarities between
the proposed architecture and ESTOI. These similarities are
further evidence that the different clusters represent differ-
ent psychometric functions, since ESTOI does produce SI
indices that map to absolute SI via a logistic psychometric
function [9]. Given the similarities between the proposed
architecture and ESTOI, it is not surprising to see similarities
in their psychometric functions as well.

Figure 3 shows the same results, but each dataset has now
been mapped to absolute SI using logistic psychometric func-
tions fitted by least squares. Note that these logistic functions
are not the trained DSMF’s. These logistic functions are fitted
to the test data, as opposed to the DSMF’s that are fitted to
the training data. The DSMF’s are also trained jointly with
the network, whereas these logistic functions are only fitted
after the network has been trained. Thus, the predictions now
ideally cluster around the diagonal line from (0, 0) to (1, 1).
From this figure it is easier to compare the performance
across the different predictors because the predictions can
now be considered absolute SI predictions, rather than SI
indices. For instance, the DSMF network appears to be better
at predicting low intelligibility than the non-DSMF network,
as the clustering is tighter near (0, 0). This could be because
DSMF allows training to focus on tightening each dataset
cluster, tighter clusters being equivalent to higher precision
in predictions, rather than spending degrees of freedom on
bringing all the clusters together. In other words, the DSMF
network learns to predict SI indices for each dataset, rather
than absolute SI, and reaches better performance, because this
task is simpler. As a result, the network trained with DSMF
reaches the highest performance among the tested predictors.

The listening conditions associated with three sets of pre-
dictions with notable errors are listed in Table 5. The con-
ditions are labelled 1-12 in Figure 3. These predictions come
from datasets DS2, DS5 and DS6. In the case of DS2 there are

TABLE 5. Marked points from the scatterplot ‘‘Network w. DSMF’’ in
figure 3.
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FIGURE 3. Experiment A: Absolute measured SI vs. SI-predictor output transformed by logistic functions fitted to each of the test datasets and
predictors for both networks and classical predictors.

three listening conditions, all with the noise type Sinusoidal
Noise Amplitude Modulation (SNAM) at various modulation
frequencies and low SNR. A possible explanation for why
the network struggles with this noise type could be that it
is similar to the stationary noise type SSN, which appears
very frequently in the training set. However, speech in SNAM
may be significantly more intelligible than speech in SSN [9],
because the modulated noise allows the listener to ‘‘listen in
the dips’’, see e.g., [41] for more details. Looking at the points
from DS5, they all come from the same processing scheme
involving Ideal Binary Masked (IBM) speech. In particular,
this listening test investigated the effect of artificial errors
in an IBM speech enhancement system. In this context the
Type I error listening condition, cf. Table 5, refers to IBM’s
where spectro-temporal gains of zero were converted to one,
i.e., the enhancement system preserves too much of the noise.
It is possible that the network overestimates the impact on

SI of this extra noise, especially considering that this noise
only appears in spectro-temporal regions which were noise
dominated in the first place. For DS6 there does not appear
to be any pattern in the listening conditions. The errors here
could be due to the fact that the stimuli in this dataset were
recreated using a different speech corpus from the original
listening test [15].

B. EXPERIMENT B
In general, SI predictor networks should ideally be appli-
cable to other types of listening conditions than the ones
used during the training phase. The generalizability of the
network proposed in this study is tested in a cross-validation
experiment. In this experiment we train the network with ten
different initializations on ten different partitions of training,
validation and test data, i.e., one hundred networks trained
in total. More precisely, we move the training and validation
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FIGURE 4. Boxplots of the trained DSMF parameters a and b described in eq. (10). The left figure shows a and right shows b,
from the DSMF’s of 90 differently initialized models. The green triangles denote the mean and the orange lines denote the
median. The bottom and top of the boxes mark the 25% and 75% percentiles respectively. The black dots are outliers.

data from one listening test at a time entirely to the test set.
This means that each listening test is excluded from the train-
ing and validation phases of ten models, and that the dataset
is unseen when testing those models. For each partition, the
model with the lowest validation loss was selected for the test
phase. As such, this experiment gives an indication as to how
the networks will perform in unseen conditions, and how they
react to unseen listening conditions and test paradigms. As in
Experiment A, we expect that the DSMF trained models will
reach higher performance than the non-DSMF trained mod-
els. This is because the non-DSMF trained models learn an
internal representation of the psychometric functions related
to the training datasets. Since the psychometric functions
related to unseen test data may be completely different from
those related to the seen training data, such internal represen-
tations are undesirable.

Tables 2, 3 and 4 contain Spearman correlations, Pearson
correlations and mean squared errors for the models. For
any given dataset, the correlations and MSE values in
the rows marked as Net (unseen) are computed for pre-
dictions made by a model with that dataset excluded
from the training and validation sets. This means that
each column describes a separate instance of the model,
trained without access to the dataset corresponding to that
column.

As expected, the performance for most of the datasets is
lower when the dataset is unseen. The models experience
the largest drops in performance on DS3, DS5 and DS6
as compared to when the datasets are seen. The reason for
this could be that DS3 and DS6 are the largest and most
diverse in terms of listening conditions. The exclusion of
any of these datasets is a large reduction in the total amount
of training data, which could result in the relatively larger
loss of performance. Furthermore, large test sets also make
it harder to produce a good ranking of a larger number
of diverse conditions, as there are more opportunities for

mistakes. As for DS5, judging by the relatively low scores,
which the classical predictors achieve, it appears to be one
of the hardest of these datasets for SI predictors in general.
Despite the performance drop when this dataset is left out of
training, the given model achieves higher performance than
the classical predictors. Exceptionally, DS0, DS1 and DS8
have higher scores on the unseen models compared to the
seen. These datasets all consist of few listening conditions,
20 or fewer. The explanation could be similar to the one for
the large datasets, i.e., that the models simply perform better
in general, when the training set is larger. Removing a small
dataset from the training set, would then have only a small
impact on performance.

Williams’ t-test [42] was used to test for significant differ-
ences between the SI-predictors. This is a pairwise hypothesis
test designed to detect significant differences in Pearson cor-
relations. The null-hypothesis is that two different predictors
have the same Pearson correlation with measured SI. Fol-
lowing the same procedure used in [9], we tested the highest
performing predictor on each dataset against the others, and
marked those not significantly different with * in Table 3.
A significance level of α = 0.05 with Bonferroni correction,
to account for multiple tests, was used. Note that DS0, DS1,
DS8 and DS9 contain 20 or fewer datapoints, i.e., listening
conditions, which means that the t-tests could be unreliable
on these datasets, according to [42].

On average, the unseen models score slightly higher than
the classical predictors, which suggests that the proposed
architecture and training scheme generalizes well and pro-
duces predictors which perform on par with, or better than the
existing classical predictors for listening conditions, onwhich
it has not been trained. We attribute this robust performance
to two main factors. First, the proposed network contains as
few as 7, 460 trainable parameters, which mitigates overfit-
ting. Secondly, the use of DSMF during training facilitates
pooling of training data obtained from different listening
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tests, effectively increasing the amount of listening test data
available for training.

Performance of the proposed SI predictors, when tested
with signals from listening conditions similar to those used
for training the SI-predictor, is substantially better than exist-
ing methods. This improved prediction performance may be
advantageous for replacing some listening tests in iterative
development of speech processing systems. Assuming that
the processing scheme, or the stimuli, are not changed too
drastically, then the SI-predictor network can be validated or
even retrained in order to benefit from the high performance
on seen conditions.

Looking at DS5 in Table 2, there is a larger gap in per-
formance between the (seen) and (unseen) models without
DSMF’s compared to the models with DSMF’s. In partic-
ular, the difference in Spearman correlation is 0.0278, for
the DSMF trained model and 0.1039, for the non-DSMF
trained model. Noting that DS5 is the only dataset which con-
tains English speech, this might be interpreted as the DSMF
training successfully increasing the model’s robustness to an
unseen language. It should be noted, however, that language
is not the only paradigm difference in DS5, so the drop in
performance of the model without DSMF’s might not only
be due to the unseen language.

Figure 4 contains box-plots of the trainable parameters,
a and b described in eq. (10), of the DSMF’s belonging
to the seen datasets, i.e., 90 maps per dataset. While there
are significant outliers, depending on the initialization, the
majority of the DSMF’s for each dataset are very similar.
This is evident from the boxes which contain the parameters
from 50% of the initializations. This is more evidence that the
DSMF’s are in fact consistently used by the network to model
specific information about each dataset. Since the DSMF’s
are trained jointly with their respective CNN’s, variations in
DSMF’s can be compensated for by the CNN and vice versa,
whichmeans that a large spread of parameters, a and b, across
initializations is not necessarily indicative of a similar spread
in output predictions.

VI. CONCLUSION
We proposed and investigated a training strategy for
data-driven speech intelligibility predictors, using dataset-
specific mapping functions. The proposed strategy allows the
use of pooled listening test datasets during network train-
ing, without specializing to the paradigms of those listening
tests. Solving this problem is important, because training
of data-driven SI predictors almost inevitably involves the
use of listening test data obtained from multiple listening
tests employing different paradigms. Without these proposed
dataset-specific mapping functions, data-driven SI-predictors
trained on pooled listening test datasets undesirably learn an
internal representation of the psychometric functions particu-
lar to the listening test paradigms included in the training data.
This can cause the trained SI-predictor to perform poorly,
or even fail, when employed on new unseen data. To demon-
strate this, ten listening test datasets were used to train,

validate and test instances of a data-driven SI predictor using
this training strategy. The dataset-specific mapping functions
consisted of trainable logistic functions at the output of the
architecture, which were designed to absorb the different
psychometric functions of the datasets, thus preventing an
inefficient internal representation of these functions from
being learned. Experiments were designed to test the efficacy
of training with these dataset-specific mapping functions,
along with the generalizability of the predictor. Using the
dataset-specificmapping functions for training and validation
improved the test performance of the network. A cross vali-
dation experiment, where each dataset was excluded from the
training set one by one, demonstrated that the network gener-
alized well to new listening conditions and test paradigms,
with performance on par with state of the art classical
speech intelligibility predictors, for datasets that were not
seen during training, and improved performance for seen
datasets.
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