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ABSTRACT An effective forest-fire response is critical for minimizing the losses caused by forest fires.
The purpose of this study is to construct a model for early fire detection and damage area estimation
for response systems based on deep learning. First, we implement neural architecture search-based object
detection (DetNAS) for searching optimal backbone. Backbone networks play a crucial role in the application
of deep learning-based models, as they have a significant impact on the performance of the model. A large-
scale fire dataset with approximately 400,000 images is used to train and test object-detection models. Then,
the searched light-weight backbone is compared with well-known backbones, such as ResNet, VoVNet,
and FBNetV3. In addition, we propose damage area estimation method using Bayesian neural network
(BNN), data pertaining to six years of historical forest fire events are employed to estimate the damaged area.
Subsequently, a weather API is used to match the recorded events. A BNN model is used as a regression
model to estimate the damaged area. Additionally, the trained model is compared with other widely used
regression models, such as decision trees and neural networks. The Faster R-CNN with a searched backbone
achieves a mean average precision of 27.9 on 40,000 testing images, outperforming existing backbones.
Compared with other regression models, the BNN estimates the damage area with less error and increased
generalization. Thus, both proposed models demonstrate their robustness and suitability for implementation
in real-world systems.

INDEX TERMS Forest-fire management, deep learning, Bayesian neural network, object detection.

I. INTRODUCTION
Forests contribute to significant ecological and economic
functions in ecosystems [1]. In addition, forests are important
heritage sites for human beings. However, forest fires can
cause tremendous damage to human life and property and
adversely affect forest ecosystems in the long term. There-
fore, forest firesmust be prevented; however, they are difficult
to prevent because of their diverse causes. According to the
Republic of Korea’s Forest Fire Statistics Yearbook [2], the
risk of forest fires increased in 2020 owing to an increase
in the number of dry days and a considerable decrease
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in the number of precipitation days. A total of 620 forest
fires occurred in 2020, causing damage over an area of
2919.84 hectares. The number of forest fires increased by
31% in the last decade (474 cases), and the area of forest being
damaged increased by 161% (1120 hectares). The initial
response to forest fires is an important factor in reducing
accidents. Thus, comprehensive real-time monitoring and
damage assessment are necessary for minimizing forest-fire-
related losses.

Owing to the advancement of deep-learning-based vision
approaches, the limitations of traditional methods for clas-
sification [3]–[7], object detection [8]–[14], and segmenta-
tion [15]–[17] can be overcome. Object-detectionmodels that
exhibit high performance can be categorized into two types,
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based on the model structure. The first type is one-stage
detection models, such as the You Only Look Once (YOLO)
series [18], single-shot detectors [19], and RetinaNet [20].
The second type is two-stage detection models, such as
faster region-based convolutional neural networks (Faster
R-CNNs) [21], DenseNet [22], and Mask R-CNN [23].
In one-stage models, regional proposals and classifications
are performed simultaneously in one step. For example, some
researchers [24] used YOLOv3 [25] with unmanned aerial
vehicle (UAV) images to detect fires and smoke. This model
achieved a recognition rate and frame rate of approximately
8% and 3.2 frames per second (fps), respectively. Other
researchers [26] combined two one-stage models, Yolov5
and EfficientDet [9], for fire detection. The ensemble model
produced an average precision (AP) of 0.79 and latency of
66.8 ms. However, these single-stage models were insuffi-
cient for detecting forest fires covering large areas. Therefore,
we adopt two-stage models in which regional proposal and
classification are performed sequentially in two steps. Two-
stage models, such as ATT Squeeze U-Net [11], which was
recently developed, obtained an accuracy of 0.93 and detec-
tion frame rate of 1.1 fps (0.89 s per image). In addition,
the Faster R-CNN was used with three different base net-
works, AlexNet, VGG16, and ResNet101 [8], for forest-fire
detection. Researchers [27] used the Faster R-CNN with data
from a real monitoring system; the results showed that the
trainedmodel can achieve an F1-score of approximately 80%.
Recently, an efficient convolutional neural network (CNN)
architecture was developed for classifying input images into
eight distinct fire-scenario classes [28]. However, these mod-
els have several limitations.

1) Nonreasonable Hyperparameters: The original Faster
R-CNN models based on various backbones, such as
ResNet [29] and VoVNet [30], have a problem with
training hyperparameters set based on the experiences
and intuitions of the researchers. This negatively affects
the accuracy and speed of the model.

2) The searched backbone, such as FBNetV3 [31], may
fall into a sub-optimal point when trained on an object-
detection dataset.

3) Low Inference Rate: Two-stage detection models have
an essential problem with slowness. For a real-time
forest-fire detection system, both the detection accu-
racy and rate are important.

In this study, DetNAS [32] is used to search for an optimal
backbone for the smoke and forest-fire detection model. The
NAS-based [33] searching backbone algorithm is considered
as a strong tool for finding an optimal CNN architecture
suitable for domain datasets. ShuffleNet V2 [34], an efficient
light-weight architecture, is used for searchable components.
A publicly available large-scale fire dataset of approximately
350,000 images is used for training. The searched backbone
is evaluated on approximately 40,000 images and compared
with the original Faster R-CNNmodels using the well-known

ResNet [29], light-weight VoVNet [30] and NARS-based
FBNetV3 backbones [31].

Estimating the damage area is critical for providing the
appropriate response. According to [2], forest-fire response
scenarios can be of four levels. The first is the early response
scenario, which represents the case when the estimated dam-
age area is less than 10 hectares, fire duration is less than
3 hours, and wind speed is less than 2 m/s. In this case, local
authorities utilize 50% of their firefighters and equipment
and 100% of their helicopters. The second step is the sce-
nario in which the estimated burned area is between 10 and
30 hectares, duration is between 3 and 8 hours, and wind
speed is between 2 and 4 m/s. In this scenario, all firefight-
ers, equipment, and helicopters are used, along with 50%
of the helicopter and drone capabilities from neighboring
provinces, boosting the response performance. The third is
the scenario in which the estimated damage area is between
30 and 100 hectares, duration is between 8 and 24 hours,
and wind speed is between 4 and 7 m/s. In this case, 50%
of firefighting personnel, 30% of equipment, and 100% of
helicopter and drone resources from neighboring provinces
are used. The fourth is the scenario in which the estimated
burned area exceeds 100 hectares, duration exceeds 24 hours,
and wind speed is greater than 7 m/s. In this case, 50%
of equipment is acquired from surrounding provinces, heli-
copters are acquired from metropolitan areas, and all other
facilities are acquired from local governments.

Fire characteristics that are influenced by environmen-
tal conditions, such as wind speed, air temperature, humid-
ity, ground temperature, and atmospheric pressure, affect
the burned area during a forest fire. Thus, understanding
the relationship between the damaged area, its components,
and the available manpower factors (firefighter and heli-
copter involvement) is critical for providing the best possi-
ble response to these natural disasters. To account for the
interdisciplinary domain knowledge necessary to estimate the
damage area, model frameworks that can consider the inter-
dependencies between the processes involved are required.
Bayesian neural networks (BNNs) are ideal for combin-
ing multidisciplinary models [35]. Bayesian networks (BNs)
were applied in previous studies on tsunamis [36] and
rock fall hazards [35]. Researchers [37] used a BNN to
predict and assess wildfire occurrences and burn severity
and modeled the wildfire spread [38], wildfire ecological
consequences [39], and risk of human fatality from fires
in buildings [40]. In 2017, an approach that utilized BNs
for wildfire economic losses was presented [41]. BNs were
recently used to forecast and analyze the causes of forest
fires [42]. BNs have been employed in various studies. Owing
to the complexity and the involvement of many factors in
forest fires, assessing forest-fire damage is currently prob-
lematic. In this study, historical forest-fire data were used
to establish a baseline for implementing a BNN. Weather
and response variables were included in the input data. The
BNN algorithm was also evaluated and compared with other
machine-learning algorithms.

66062 VOLUME 10, 2022



D. Q. Tran et al.: Forest-Fire Response System Using Deep-Learning-Based Approaches

FIGURE 1. Faster R-CNN architecture.

To summarize, the main contributions of this study are as
follows:

1) Propose an approach for forest-fire response systems
by using deep learning.

2) Search for optimal light-weight backbones on a
large-scale fire and smoke dataset.

3) Implement a BNN for estimating the damage area using
six years of forest-fire records and weather data.

The remainder of this paper is organized as follows.
Section II provides an outline of the theoretical back-
ground. Section III explains the proposed system. Section IV
describes our experiments. Section V presents a summary of
the findings. Finally, Section VI highlights the outcomes.

II. THEORETICAL BACKGROUND
A. DetNAS-BASED OBJECT DETECTION
Themethod for detecting forest fires using closed-circuit tele-
vision (CCTV) footage is primarily based on object detection.
Figure 1 shows the architecture of the Faster R-CNN. The
model receives an image as the input, and the image then
passes through the backbone of the model. After convolution
in the backbone, the feature maps of the image are extracted.
Then, a region proposal network (RPN) is applied to the
feature maps. The output values of the RPN are proposals,
such as the red boxes in the RPN. These proposals and feature
maps from the backbone are used to perform a region-of-
interest pooling to create a fully connected layer. Finally,
object detection is completed using softmax and bounding
box regression. Object detectors rely heavily on the back-
bone [10]. However, the backbone, which is hand-crafted
and optimized for image classification datasets, is frequently
applied directly to the object detection model. This operation
may have a negative impact on performance [43]. Recent
advances in deep learning have resulted in state-of-the-art
models in various fields by using neural architecture search
(NAS) [33]. NAS was intended to address the issues asso-
ciated with early models that occur when researchers build
models based on their experience. NAS enabled the creation
of a model architecture without human interaction.

Many studies on backbones and hyperparameters were
conducted to improve the performance of object detection
models. In the case of MobileNetV2 (Fig. 2.(a)), both the
backbone network and parameters were determined by many
experiments, not by NAS. Models based on human experi-
ence are potentially problematic in terms of rate and accu-
racy. In the case of FBNet-C (Fig. 2.(b)), deep learning
creates the backbone network, but the hyperparameters are

FIGURE 2. Visualization of backbone networks. The rectangular boxes
represent blocks for each layer. We used two colors to represent the
kernel size of each layer; orange - 3, purple - 5, and blank indicates a
skip [31], [44].

also determined experimentally. However, in the case of
FBNetV3 [31] (Fig 2.(c)), deep learning determines both the
backbone and hyperparameters. Fig. 2 shows the backbone
and expansion values of each block. The expansion values
of MobileNetV2 and FBNet-C have 3 or 6 that are fixed by
a human. However, the expansion values of FBNetV3 are
continuously distributed using deep learning. Consequently,
FBNetV3 outperforms other networks [31].

Numerous studies were conducted for automatically deter-
mining backbones, but a limits exist as to what can be applied
for forest fire detection, including FBNetV3. The majority
of previous studies attempted to identify a backbone net-
work for image classification by using ImageNet, a dataset
for image classification. They then attempted to apply these
image-classification backbones to an object detection task.
Because of this mismatch, performance is limited. DetNAS
[43] is the first study to investigate NAS for determining the
object detection backbone. The researchers applied a single
path one-shot method [45] for NAS and split the search pro-
cess into 3-steps: supernet pretraining, supernet fine-tuning,
and an evolution search on the trained supernet.

Figure 3 shows each step in NAS for searching for a
forest fire detection backbone. First, supernet pretraining is
determining the supernet, which is a set of many subnets. The
supernet is trained using ImageNet. In this step, a path-wise
method is applied for ensuring the relationship between the
supernet and subnets. Second, the supernet, which includes a
head and metrics, is fine-tuned. This supernet fine-tuning is
trained using the coco-dataset, which is an object detection
dataset. To customize the backbone, we must change the
detection dataset and hyperparameters. Third, determine one
subnet from the supernet. During this search, an evolutionary
algorithm is used to select a candidate in the supernet.

B. BAYESIAN NEURAL NETWORK
As discussed earlier, the final aim was to build a model
capable of estimating the damage area of forest fires based
on current weather conditions and historical weather records.
Therefore, the damaged areas were divided into classes, each
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FIGURE 3. NAS process for object detection backbone [43].

with increasing values. Consequently, the problem can be
classified as a regression problem from a machine-learning
perspective. An artificial neural network (ANN) is a pow-
erful tool for classification and regression problems [46].
This point-estimate approach, on the contrary, tends to lack
reasonability and may generalize in an unexpected and over-
confident manner on data points from outside the training
distribution [47]. As mentioned earlier, BNNs are widely
used in risk-assessment fields. A BNN is a common type
of stochastic neural network, which can better understand
the uncertainty of underlying processes [48]. Figure 4 shows
the distinction between a point-estimate neural network and
BNN, that is, instead of adopting fixed numbers as model
weights, a distribution represents each weight in the BNN.

A BNN can be summarized as follows:

θ ∼ p (θ) , (1)

y = NNθ (x)+ ε, (2)

where θ represents the model parameters, and ε represents
random noise. The following step selects a neural network
architecture. p(θ) and p(y|x, θ) are a prior distribution over
the possible model parameters, and the prior confidence in
the predictive power of the model must be selected. Thus, the
Bayesian posterior can be written as

p(θ |D) =
p(Dy|Dx , θ)p(θ )∫

θ
p(Dy|Dx , θ ′)p(θ ′)dθ ′

∝ p(Dy|Dx , θ)p(θ ), (3)

where D, Dx , and Dy are the training set, training fea-
tures, and training label, respectively. In practice, computing
this distribution is typically difficult. Thus, the sampling
method (Markov chain Monte Carlo) and variational infer-
ence approach are applied as approximation methods. Refer
to this reference for a more detailed discussion of these

FIGURE 4. Point-estimate neural network (a) and stochastic coefficient
neural networks (b); weights are learned as a probability distribution [48].

techniques [48]. The TensorFlow probabilistic deep-learning
framework is used in this study to implement a BNN.

III. PROPOSED METHOD
The four phases of forest-fire management [49] are miti-
gation, preparation, response, and recovery. The focus of
this study is on the implementation of a forest-fire response
system with two primary aspects: detection and damage
estimation. As shown in Figure 5, if smoke or fire occurs,
AI-powered CCTV cameras detect smoke and fire in the
forest in real time and then send the results to a database
server. Subsequently, the server sends a UAV to the forest
fire location to scan for damage. Then, the regression model
gathers data on the extent of the damage area and weather
data from the fire location to estimate and visualize it in an
integrated system.

The most critical aspect of a forest-fire response system is
the rapid and accurate detection. To achieve this, we propose
a novel forest fire detection backbone network derived from
NAS. Previous research on forest fire detection has relied
exclusively on various object detection models that perform
well on the COCO dataset [50], not on a forest fire detection
dataset. Because our backbone is tailored to the large-scale
forest fire dataset, our detection model with a searched back-
bone outperforms other fire detection models. Additionally,
ShuffleNetV2 block is used as a searchable component for
searching for the backbone. Therefore, the searched back-
bone can be considered as a light-weight model capable of
real-time inference and deployable on edge devices [34].

After a forest fire is detected early, the next step is to
estimate the damage area in real time. To estimate the damage
area, a BNN-based regression model is constructed using
historical forest fire records and weather data. BNNs are
well-known for handling uncertainty in datasets. Conse-
quently, the trained model can generate a distribution rep-
resenting the probability of the damage area. Additionally,
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FIGURE 5. Proposed deep-learning-based forest fire management system.

using a UAV and segmentation algorithm, we could estimate
the total damage area and create a 3D forest fire damage map
using our previous research [17].

IV. EXPERIMENTS
In this study, we proposed to perform forest fire detection and
damage area estimation to establish a forest-fire response sys-
tem.We conducted two experiments, based on each proposal.
For forest fire detection, we prepared a fire image dataset
for training. In this process, we analyzed and preprocessed
the training dataset to solve the unbalancing problem between
classes. The DetNAS algorithm was then used to search for
an optimal backbone. In addition, we compared our model
with ResNet, VoVNet, and NAS-based FBNetV3 models.
For damage area estimation, we matched the weather API
to collect the time-series numerical dataset. Subsequently,
we trained and validated our BNN-based damage area esti-
mation model.

A. FOREST FIRE DETECTION
1) DATASET
The AIHub1 fire detection dataset was used in the experi-
ments. As shown in Figure 6a), 349774 images were used to
train themodel, and the remaining 39243 images were used to
evaluate its performance. The number of instances per class
from the training and testing datasets is shown in Fig. 6b).
This dataset was divided into four distinct categories: black
smoke, gray smoke, white smoke, and fire.

Figure 7 depicts the data sample with its corresponding
classes. The data were created in a naturalistic environment,
near a mountain, similar to a forest fire. Consequently, this

1https://aihub.or.kr/aidata/34121

FIGURE 6. Public dataset distribution. (a) Total number of training and
test images. (b) Number of instances per class for training and test
images.

dataset was well-suited for developing a model for the early
detection of forest fires using CCTV data.

2) PREPROCESSING
We employed image augmentation techniques, such as ran-
dom rotation, vertical and horizontal flipping, and their asso-
ciated labeling for two reasons. First was the irregularity in
the smoke shape. Figure 7) shows smoke with various shapes.
Unlike fixed-shape objects, such as people and cars, smoke
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FIGURE 7. Examples of images with their associated labels.

adopts various shapes and directions. Therefore, image aug-
mentation can be used effectively for training data augmen-
tation because smoke is not a fixed-shape object. Second
was the unbalanced distribution of the training dataset for
each class. Figure 6.(b) shows that the number of instances
for each class is uneven. To solve this, we performed image
augmentation with different numbers of instances depending
on each class. Using image augmentation in this manner
improves the reasonability of the detection model.

3) METRICS
The COCO AP (average precision) was used to evaluate the
model. The COCO AP is computed from the precision-recall
(PR) curve based on true positive (TP), false positive (FP),
and false negative (FN) results. Because our goal is to detect
fire and not classify the colors of smoke or fire, we use the
mean average precision (mAP), which is the most commonly
used object detection model metric [10].

4) IMPLEMENTATION DETAILS
For the model architecture, we used the Faster R-CNNmodel
with ResNet, VoVNet, FBNetV3 and our model with the
searched backbone. The network with a feature pyramid net-
work (FPN) attached to its name has a modified structure
that creates feature maps step-by-step in the existing net-
work layer, combines features in top-to-bottom manner, and
proceeds with object detection. For training configurations,
the batch size was 16, number of iterations was 10K, and
initial learning rate was 0.15. The input image was resized
to 512 × 512 pixels without changing the aspect ratio using
bilinear interpolation.

In our experiment for NAS, as shown in Figure 3, the
ImageNet dataset was used in step 1, nearly 350000 images
were used to fine-tune the supernet, and 10000 images were
used to search the subnet. We used an evolution algorithm
to determine the best subnet from the candidates. During
the evolutionary search, we used a candidate pool size of
50 and mutation number of 20. After determining the subnet,
we retrained the Faster R-CNN model using the subnet on
ImageNet and fine-tuned on 350000 forest fire images. All

FIGURE 8. Matching process.

searching processes ran based on the MMRazor Opensource
library [51]. In all steps, we used a 512 × 512 image-size
to compare backbones. The input image was normalized
and augmented with a random flip (p = 0.5). Stochastic
gradient descent, using a learning rate (lr = 0.001), was
used as an optimizer. Other configurations were adopted from
the original research [43]. The models were implemented in
Pytorch and ran on CentOS Linux 8 with two NVIDIA Tesla
V100 graphics processor units, each with 32 GB of memory.
Approximately 8 dayswere required for the twoGPUs to train
and fine-tune all DetNAS processes.

B. DAMAGE AREA ESTIMATION
1) DATASET
In this study, we used three datasets from the Korea For-
est Service Organization [2]. The first is a forest fire out-
break dataset that includes a record of 2,128 forest fires
from 2014 to 2020. The second is a topographic dataset, and
the last is a mountain weather dataset from the 365-weather
observation source API. Because these three datasets have
different observation points, preprocessing should be imple-
mented. Figure 8 shows the preprocessing. First, we dis-
carded the rows with NaN and then integrated the three
datasets based on the distances between the closest observa-
tion points. If the nearest event distance is less than 10 km,
we regard it as having the same event point. After filtering, for
the integration of fire outbreaks and weather data, we aver-
aged the weather data based on the fire outbreak time and
duration. We used 11 variables, as shown in Figure 9, namely,
the month, duration, number of helicopters involved, num-
ber of firefighters, temperature, surface temperature, pres-
sure, humidity, wind speed, altitude, and daily weather index
(DWI).

The raw dataset contains all categories with the corre-
sponding ranges shown in Table 1. This procedure was
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FIGURE 9. Forest-fire historical recorded events.

FIGURE 10. Distributions over variables in the data.

performed in accordance with the corresponding variable dis-
tribution and guideline from the forest-fire response level [2].
Figure 10 shows the number of instances for each variable.
The sample distribution for the damage area class is uneven.
Only a few samples are present in classes 8, 9, and 10, which
correspond to significant forest-fire losses. The SMOTE [52]
approach was used to oversample the minority class.

2) METRICS
The mean square error (MSE) and root mean square
error (RMSE) were chosen as the loss and training metrics,
respectively. The k-fold cross-validation technique was used
to evaluate the model performance.

FIGURE 11. Curve of evolution search for a subnet on the trained
supernet.

3) IMPLEMENTATION DETAILS
For the decision tree, the maximum depth was specified
such that the tree could increase indefinitely until all leaves
were pure. For the ANN, the input value was initially nor-
malized using a batch normalization layer, followed by two
hidden layers with eight hidden units; the model was then
trained using an optimizer using root mean square propaga-
tion (RMSprop) with a learning rate of 2×10−3. The standard
BNN architecture was used in this study. The Gaussian prior
with mean 0 and diagonal covariance θ2I on parameter θ of
the network was used as follows:

p(θ) = N (0, θ2I ) (4)

A Gaussian prior was used to select the Gaussian approxi-
mate posterior. After the input value was normalized by using
a batch normalization layer, two dense variational layers with
eight hidden units were created. The training model was
optimized using an RMSprop optimizer with a learning rate
of 0.01.
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FIGURE 12. Searched architecture.

TABLE 1. Description of training variables.

FIGURE 13. Ground truth and predicted results from Faster R-CNN with searched backbone.

V. RESULTS AND DISCUSSION
A. FOREST FIRE DETECTION
Figure 11 shows the mAP curve of the search for the subnet
in the trained supernet. We used 20 epochs and 50 candidates
for each epoch. The highest candidate score in each epoch
increased as the evolutionary search proceeded. From this, the

best architecture performance was selected. Figure 12 shows
the selected architecture. The searched backbone is a combi-
nation of ShuffleBlock, which is a unit of ShuffleNetv2 [34].
The ShuffleBlock is a light-weight block based on the infer-
ence rate, not the FLOPs. Therefore, the ShuffleNetv2 shows
the best performance in light-weight object detection models,
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FIGURE 14. Ground truth and predicted results from Faster R-CNN with searched backbone.

FIGURE 15. RMSE comparison between Decision Tree, ANN and BNN.

such as MobileNetv2, DenseNet, Xception, NASNet. In this
study, we define the search space using shuffleBlock. Each
layer of our search space is a ShuffleBlock with different
kernel sizes or skip layers. As shown in Figure 12, in early
stage 1, the searched backbone exhibits a large kernel, and
at the middle and final stages, a small kernel remains. This
pattern indicates the feature extraction, the important part of
object detection. As much information as possible must be
extracted from input images to create a pattern useable for
detection.

Table 2 lists inference results from different backbones.
The test data contain nearly 40,000 forest fire images.
Our searched backbone shows the highest mAP score
for light-weight backbone networks. This shows that our
searched backbone specialized in smoke or fire detection.
That is, we avoided the limit on the accuracy of previous
models using NAS.

Figure 13 shows the inference images and ground truth
images from each prediction image using our searched back-
bone. Most prediction images are similar with the ground
truth, but Figure 14 presents some exception cases.

Figure 14 shows why our model has a limited mAP score.
As shown in the bounding boxes of the prediction images,
in one image, the model can detect many classes, because
of the visual similarities of smoke. The different prediction
results in one object can lower the mAP score, which is
affected by the false positive rate. However, the intention is
to detect the risk factors of forest fires. From this perspective,

FIGURE 16. Estimated results.

FIGURE 17. Web-based visualization.

our model can detect the risk factors well for a forest-fire
response system despite its low mAP score.

B. DAMAGE AREA ESTIMATION USING WEATHER DATA
With the BNN, the model produces a conditional probability
instead of a point-estimate prediction, from which an optimal
estimate can be retrieved. Compared to other algorithms, the
trained model predicts over 300 iterations and then averages
the results. As illustrated in Figure 15, the decision trees with
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TABLE 2. Inference results.

an RMSE of approximately 2.6 for each fold indicate that the
model is likely to overfit the training set and provide incorrect
predictions on the test set. This issue arises because of the
lack of training data and inherent uncertainty in capturing
forest fire history. Thus, while the ANN andBNN can achieve
better results, approximately 1.7 RMSE for each fold, they
still struggle with overfitting. As discussed earlier, whether
the BNN has a higher accuracy or can improve performance
is unclear, but it can deal with uncertainty in datasets, partic-
ularly in small datasets, similar to our approach.

To evaluate the proposed approach, a real-world forest fire
occurrence - 2020 March 19 forest fire at Ulsan, South Korea
- was used. According to the records, the estimated damage
area of this fire was approximately 519 ha. As shown in
Figure 16, the damaged region can be approximated using a
distribution. This results in the following four levels of forest
fire response: initial level - 0.6%, level 1 - 10%, level 2 -
34.69%, and level 3 - 54.7%. This allows for the deployment
of the relevant response scenario.

VI. CONCLUSION
An appropriate forest-fire response is critical for mitigating
losses and providing authorities with an effective solution.
The first two stages of a forest-fire response system are
early fire detection and damage area estimation. Because
of the advantages of the DetNAS-based searching backbone
algorithm for object detection models, the searched backbone
outperform existing backbones: from hand-craft backbones,
such as ResNet and light-weight VoVNet, to NAS-based
FBNetV3. With an acceptable mAP of 27.9, smoke type
and fire can be detected. In addition, ShuffleNetV2 blocks
are considered as light-weight and effective backbones for
real-time object detection. Owing to these characteristics, the
searched backbone can be implemented on real-timemonitor-
ing systems. Furthermore, the damaged area can be assessed
in real time using a BNN model and weather data. As illus-
trated in Figure 17, a web-based visualization platform was
created, and weather data were updated in real time using a
weather station API. When a forest fire occurs and is detected
using an early fire detection model, the damaged area is
approximated using the current state of the forest.
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