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ABSTRACT Image matching has been an active research area in the computer vision community over
the past decades. Significant advances in image matching algorithms have attracted attention from many
emerging applications. However, aerial image matching remains demanding due to the variety of airborne
platforms and onboard electro-optic sensors, long operational ranges, limited datasets and resources, and
constrained operating environments.We present two contributions in this work to overcome these challenges:
a) an upgraded cross-platform image dataset built over images taken from an aircraft and satellite and b) a
two-step cross-platform image matching framework. Our dataset considers several practical scenarios in
cross-platform matching and semantic segmentation. The first step in our two-step matching framework
performs coarse-matching using a lightweight convolutional neural network (CNN) with help from aircraft
instantaneous parameters. In the second step, we fine-tune standard off-the-shelf image matching algorithms
by exploiting spectral, temporal and flow features followed by cluster analysis. We validate our proposed
matching framework over our dataset, two publicly available aerial cross-platform datasets, and a derived
dataset using various standard evaluation methodologies. Specifically, we show that both steps in our
proposed two-step framework help to improve the matching performance in the cross-platform image
matching scenario.

INDEX TERMS Scene recognition, image matching, retrieval & classification, visual place recognition (VPR)
and vision based localization (VBL).

I. INTRODUCTION
Remotely-piloted aircraft systems (RPAS) are evolving
rapidly for commercial applications due to regulatory authori-
ties’ relaxation. Remotely-piloted aircraft include Unmanned
Aerial Vehicles (UAV) and drones in general. The role of
UAVs has extended from reconnaissance and surveillance
purposes to remote sensing, search and rescue (SAR) oper-
ations, combat missions, and so on. UAVs are classified
into tactical, medium-altitude long-endurance (MALE), and
high-altitude long-endurance (HALE) categories. However,
drones are relatively lightweight and capable of flying at
low altitudes and for a short duration. UAVs and drones
are divided operationally in terms of Visual Line of Sight
(VLOS), Extended Visual Line of Sight (EVLOS), and
Beyond Visual Line of Sight (BVLOS). The latter two typi-
cally need assistance from a radio link or satellite terminal for
navigation. Navigation sensors are of utmost importance for
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long-range UAVs. However, navigation sensors suffer from
drift issues depending upon the type or class of sensors. This
drift could lead to a deviation from the intended path that
could have catastrophic consequences during long endurance
flights at high speeds. This drift impact is contained with
Global Positioning System (GPS) input at regular intervals.
A typical path correction navigation strategy is using GPS
input at regular intervals.

However, GPS signals become unavailable or unreliable
due to electromagnetic interference, atmospheric effects,
jamming, or countermeasures in hostile territories. GPS loss
is a common phenomenon in the urban environment due
to the interference caused by tall buildings and plenty of
radiation. With these constraints, there is a need for alternate
navigation (NAV) systems that are self-contained and passive.
Image-guided NAV systems that rely on high-resolution cam-
eras are ideal candidates under these constraints. This choice
is further substantiated by recent advancements in comput-
ing resources, vision algorithms, and sensors that provide
close to all-day weather capabilities. This work focuses on
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the aerial image matching problem for color images of the
visible spectrum. Aerial images suffer from quality issues
such as blurring, smearing, etc., caused by the acquisition
platform’s relative motion/angular disturbances and various
atmospheric effects. These quality issues are mitigated to a
certain extent by the high shutter speed offered by Charge-
Coupled Device (CCD) cameras and the low integration time
offered by Infra-Red (IR) cameras. However, these distur-
bances become more troublesome for high maneuvering air-
craft and lightweight drones. A stabilized platform is required
to contain these disturbances. Typical stabilization systems
are built over a gimbal platform using gyros/inertial measure-
ment unit (IMU), leading to drift over and above aircraft nav-
igation sensors. The impact of the resultant drift is not linear.
Control class gyros have higher drift than navigational class
due to more accuracy requirements for the former than the
latter. Image matching, therefore, becomes more challenging
due to the variabilities in the acquisition platform (i.e., speed,
attitude), disturbances (i.e., linear, angular), viewpoints (i.e.,
range, translation, rotation), multiple drifts, sensor charac-
teristics, environmental conditions, time of acquisition, etc.
It points to the need for a self-reliant, robust, and efficient
image matching technique.

Therefore, automatic image-based aerial NAV systems
have become very important, whose performance is depen-
dent on robust and automatic real-time image matching.
A few template images of the destination are required to guide
the automatic aerial NAV systems. Ideally, these templates
should have been acquired by another aircraft or aerial vehicle
using an identical image sensor at the same atmospheric
conditions/appearance and viewpoint. This constraint is chal-
lenging to meet in the case of remote or inaccessible locations
and factors beyond our control. This difficulty is overcome by
using widely available satellite images for template collec-
tion. However, there are a few challenges when working with
satellite image templates. The critical challenges involved
while matching a satellite image with live video (acquired
using a belly-mounted camera on an aircraft) are the varia-
tions in view angle, atmospheric conditions, time-of-day, out-
of-date images, and cross-platform (sensor) data, to name a
few. Further, mismatches in the sensor wavelength and scene
changes motivate us to address this as a cross-platform image
matching problem.

To solve this problem, we present two contributions to this
work. The first contribution is an enhanced cross-platform
HD dataset with multiple image data galleries envisaging real
scenarios and manually labeled ground truth. We present a
methodology to augment an existing single-platform aerial
dataset with cross-platform imagery in addition to an efficient
storage/retrieval mechanism. Our second contribution is a
two-step robust aerial image matching framework consisting
of coarse and fine stages. Coarse-matching builds over amod-
ified pre-trained CNNwith novel use of metadata. In contrast,
fine-matching builds over state-of-the-art image matching
methods to address the associated cross-platform matching
challenges. We show that the proposed framework, though

simple, can significantly improve the performance of image
matching algorithms on our dataset, a derived dataset, and
recently released cross-platform datasets.We demonstrate the
efficacy of the matching framework using several standard
metrics.

The rest of the paper is organized as follows: related
work is discussed in Section II, and the enhanced dataset
is presented in Section III. The proposed two-step matching
framework is presented in Section IV. Results are deliberated
in Section V, followed by concluding remarks in Section VI.

II. RELATED WORK
We briefly survey aerial image datasets and analyze state-of-
art image matching approaches.

A. AERIAL IMAGE DATASETS
1) GENERAL-PURPOSE AERIAL IMAGE DATASETS
A few popular and publicly available aerial image datasets
include HRSC2016 [1], DOTA [2], VHR-10 [3], SSDD [4]
and so on. These datasets are built using satellite imagery [5]
and address the object detection problem. INRIA [6],
EuroSAT [7] and Drone datasets [8] are aerial seman-
tic datasets with 2, 10 and 20+ semantic class labels
respectively.

2) GEO-LOCALIZATION AERIAL IMAGE DATASETS
Recently, there has been significant attention towards
geo-localization of street view images. It implies the warp-
ing of aerial and satellite images over street view images.
To improvise this process and accelerate the development of
deep learning algorithms, several datasets are proposed in the
literature [9]–[13]. Datasets covering the urban environment
for such geo-localization tasks include the Zurich city [9], the
Toronto city [10] and the work by Tian et al. [11]. We want
to mention that these datasets are built over aerial or satellite
imagery with slight cross-domain or cross-platform associa-
tion. We address this shortcoming by proposing an enhanced
version of our cross-platform path planning dataset [14].
Piasco et al. [15] explored the benefits of multiple types of
heterogeneous data such as optical, geometric, and seman-
tic. Our proposed dataset has multiple galleries, manual
points correspondence, and semantic labels to represent each
aspect [15] respectively.

3) CROSS-PLATFORM AERIAL IMAGE DATASETS
Recently, Mughal et al. [16], and Zheng et al. [17] have
released cross-platform Aerial Template Matching and
University-1652 datasets, respectively, in the public domain.
Mughal et al. [16] have created a multi-modal orthomosaic
map by stitching aerial imagery acquired from low alti-
tude MAV platform using a low-frame-rate camera in nadir
view. The dataset comprises 2052 low-resolution aerial
images (224 × 336) over 3 locations with multiple rounds.
Authors [16] retrieved equivalent cross-platform satellite
ortho map images from Bing. The dataset proposed by
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Mughal et al. [16] is similar in scope and aim to our pro-
posed enhanced dataset of this work. However, University-
1652 dataset [17] is intended to bridge the gap between
ground-view and satellite-view by an intermediate aerial
view for viewpoint-invariant feature learning. A synthetic
drone-view camera simulates accurate flight, while images
of 1652 buildings of 72 universities are extracted from the
3D Google Earth Engine (GEE [5]). The synthetic view
camera retrieves 54 images of a building with three spiral
rounds while the height descends gradually from 256 meters
to 121.5 meters.

B. IMAGE MATCHING ALGORITHMS
With the advent of multiple types of aerial platforms
and satellite imagery, as discussed above, visual place
recognition (VPR) has become more challenging than
image-retrieval due to the increased dimension of appearance
and viewpoints and perceptual aliasing constraints. A com-
prehensive review of VPR and where your place can be
found in the literature [18], [19]. In the human visual system,
place recognition happens by the firing of place-cells [18] or
spatial view cells [19], which get triggered by sensory cues
and self-motion. VPR [18] contains three major components,
an image processing module to interpret incoming visual
data (live query), a map to maintain representation (reference
template), and a belief generation module (match algorithm).
In this work, aerial DTV images constitute the live query
followed by SAT target galleries which serve as the map
reference template and the two-step matching framework,
as the three major components in the same order [18].

To envisage path-planning objective, Courbon et al. [20]
proposed a vision-based navigation strategy for vertical
take-off and landing of UAVs using a single fish-eye camera
and tested for indoor environments. It involves three steps,
and the first is building amemory of key image sequences fol-
lowed by points detection using Harris corner detector [21].
Matching is carried out using a zero normalized correlation
coefficient (ZNCC) around detected points. The authors [20]
find the best fit actual image and follow the visual route in
real-time. The similarity score is in proportion to the number
of points detected by the corner detector. Martinez et al. [22]
generated visual memory by simulating the navigation mis-
sion/path. A virtual model is generated using a robotic arm
with a camera placed over a scene printed on a tarpaulin sheet.
The matching of the onboard image and a desired virtual
image is carried out using two quantitative metrics: the sum
of squared differences (SSD) and mutual information (MI).
Qualitative performance over the texture-less zone and out-
dated model is also discussed in this work. The authors [22]
evaluated performance over different times of the day and ten-
year-old scenes similar to proposed datasets dawn-dusk and
historical galleries, respectively.

1) CLASSICAL IMAGE MATCHING METHODS
Several sparse and dense keypoint matching methodologies
can be classified as traditional methods. There are keypoints

detectors based on gradient, intensity, and blob. Harris [21]
and Shi-Thomasi [23] corner detectors are gradient-based
while FAST [24] is intensity-based. The efficiency of FAST
and reliability of Harris detector formulate ORB detec-
tor [25]. The well-known SIFT [26] and SURF [27] algo-
rithms are based on blob features exploiting second-order
partial derivative (DoG). SIFT features [26] allow robust
matching across different scene/object appearances, while
discontinuity-preserving spatial mechanism allows matching
of objects located at different parts of the scene. SURF is
inspired partly by SIFT and is more robust under image trans-
formations. SURF speeds up implementation by approximat-
ing Laplacian of Gaussian with a box filter and square-shaped
filter for integral images. The SURF feature descriptor is built
with the sum of the Haar wavelet response around the point
of interest.

Classical feature-based descriptors are divided into local
and global descriptors. SIFT, SURF, and FAST are exam-
ples of local descriptors, while color-histograms, HOG [28],
GIST [29] are global descriptors. GIST uses Gabor filters at
different orientations and frequencies to extract the ‘gist’ of
the scene. Feature-basedmethods are relativelymore efficient
and can comfortably handle deformation up to a certain level.
It requires a detection phase to indicate part of the image
containing a detection tuned descriptor. Representative sparse
keypoint detection algorithms include SIFT [26], SURF [27]
and ORB [25]. Keypoints (or image features) are detected
independently in the images, and corresponding keypoints are
paired using the minimum distance between their features.
Outliers are removed using the M-estimator SAmple and
Consensus (MSAC) algorithm [30]. Geometrically trans-
formed parameters are generated using the inliers or retained
points. These geometric transformation matrices are used
to warp one image over the other and calculate overlap
parameters.

A good keypoint descriptor must be reliable, repeatable,
and unique. Further, it must be invariant to rotation and
variations in illumination. Traditional image matching relies
on a local feature descriptor, global descriptor, or both.
Global descriptors are more pose-dependent, while local
descriptors are affected by lighting conditions. Matching
local features [18] of one image with features of another
is an inefficient approach. A bag of features technique is
adopted for image retrieval inspired by the document search
domain. Instead of using actual words/pictures, this method
uses a bag of features/visual words to describe a docu-
ment/image. A bag of words (BoW) captures each feature
in a word form ignoring geometric or spatial structure,
thereby representing it in reduced form. Bag-of-visual-word
(BoVW) improves efficiency by quantizing SIFT or SURF
descriptors into a vocabulary comprised of a finite number
of visual words. Images with BoW description can be effi-
ciently compared with well-established Hamming distance
or histogram comparison methodologies. Further, an inverted
index describing images improves storage efficiency.
Additionally, topological maps with metric information –
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distance, direction, or both further improve retrieval
performance.

Sivic et al. [31] proposed the Video Google concept in line
with the standard text retrieval approach for video object
matching. A set of viewpoint-invariant region descriptors
represents an object in the video. It is analogous to text
retrieval, where descriptors are pre-computed (vector quan-
tized using K-means clustering) using inverted file systems.
It reduces the impact of vector quantization and sealing.
Philbin et al. [32] proposed a novel quantization method
based on randomized trees using an efficient spatial veri-
fication stage to re-rank the results returned from the bag-
of-words model using a 128-dimensional SIFT descriptor.
The authors have manually labeled considering 11 landmarks
images into good, ok (more than 25% present), junk (less
than 25% present), and absent categories. Authors [32] have
demonstrated improved performance across datasets.

Optical flow [33], SIFT Flow [34], DSP flow [35], Pro-
posal flow [36] are a few well-known dense flow techniques
in the literature. Optical flow [33] allows dense sampling
in the time domain enabling target tracking, whereas dense
sampling in space enables scene alignment. SIFT Flow [34]
matches densely sampled, pixel-wise SIFT features between
two images while preserving spatial discontinuities. DSP
Flow [35] uses a deformable spatial pyramid (DSP) matching
algorithm for computing dense pixel correspondences. Dense
matching involves comparing the appearance between pix-
els and geometric smoothness between neighboring pixels.
Unlike semantic flow approaches used in SIFT Flow and
DSP flow, Proposal flow [36] exploits modern object pro-
posals that exhibit high repeatability at multiple scales and
can take advantage of both local and geometric consistency
constraints among proposals. However, dense match algo-
rithms are computationally costly. DeepMatching(DM) [37],
inspired by deep CNN architectures, computes semi-dense
correspondences between images. DM [37] is a robust tech-
nique based on a hierarchical, multi-layer correlation archi-
tecture. Further, it can handle non-rigid deformations and
repetitive textures.

2) DEEP LEARNING-BASED IMAGE MATCHING METHODS
Jiayi et al. [38] presented a detailed survey for image match-
ing from handcrafted to in-depth features. It covers fea-
ture detectors/descriptors to matching methodologies with
applications over Structure from Motion (SfM), Simultane-
ous Localisation and Mapping (SLAM), and image regis-
tration/fusion/retrieval methodologies. Deep learning-based
detectors include LIFT [39] and Superpoint [40]. LIFT [39]
is trained over SIFT with supervision from Structure from
Motion (SfM), while Superpoint explores a fully convolu-
tional model. The choice of the detector is task-specific.
PCA-SIFT is a learning-based descriptor, whereas deep
learning-based descriptor includes Siamese, triplet, and con-
trastive loss. SuperGlue [41] is a neural network that matches
two sets of local features using joint correspondences and
rejecting non-matchable points. Assignments are estimated

by solving differential optimal transport problems using an
attentional graph neural network. Authors [41] have intro-
duced attention (self and cross) based flexible context aggre-
gationmechanism. SuperGlue [41] is capable of workingwell
with classical and learned features. Radiation-variation insen-
sitive feature transform (RIFT) [42] is a feature matching
algorithm that is robust to large Nonlinear Radiation Distor-
tion (NRD). It uses phase congruency (PC) map for corner
and edge points detection. RIFT builds feature descriptions
using maximum index map (MIM). Finally, RIFT analyses
the inherent influence of rotations over MIM for rotation
invariance.

Xingyu et al. [43] presented a progressive filtering
approach for feature matching by gridding the correspon-
dence space and finding motion vectors. Outliers from the
putative match set are discarded with density estimation of
each sample and convolution of motion vectors. A coarse-
fine strategy is adopted to refine motion vectors iteratively.
Jiayi et al. [44] presented a two-class classification problem
termed Learning for Mismatch Removal (LMR) with merely
ten image pairs supervised. The authors [44] have established
a methodology consistent with the consensus of the ratio of
length and angle of motion vectors using an empirically cho-
sen Gaussian penalty. Ren et al. [45] have proposed a Faster
R-CNN approach for real-time object detection with Region
Proposal Networks (RPN). Region proposals in the target
scene are detected and localized with Faster R-CNN [45].
The Faster R-CNN architecture contains the Fast R-CNN as a
detector network and the RPN as a region proposal algorithm.
An RPN is a fully convolutional network that simultaneously
predicts object bounds and objectness scores at each position.
RPNs trained end-to-end to generate high-quality region
proposals. A Siamese network built for unpaired and paired
buildings using contrastive loss function. A graph constructed
using local and global matches, while the final output is
the mean of matched buildings. SimNet [46] is a neural
network-based approach which exploits end-to-end trainable
network to learn non-metric similarity functions for image
retrieval. Features are extracted in a feed-forward manner
by a pre-trained network. These features are fed to a visual
similarity network for content-based image retrieval (CBIR).

Basu et al. [47] investigated deep learning methods for
automatically extracting the locations of objects such as
water resources, forests, and urban areas from given aerial
images for applications in urban planning forest manage-
ment, climate modeling, etc. Weyand et al. [48] introduced
the PlaNet model to achieve geo-localization using images.
The authors [48] trained their model over a database of
126M images with Exif geo-locations mined from the inter-
net. It performs well with landmark photos and deliv-
ers good performance with subtle geographical cues. The
authors have experimented with sequence-to-sequence mod-
eling using LSTM variants and reported accuracy improve-
ment by 50%. Yang et al. [49] proposed matching of aerial
images by extracting robust multi-scale feature descriptor
using a CNN. Authors [49] upgraded VGG16 [50] network
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(e.g., the grid structure of 8 × 8), with feature extraction
from the second, third, and fourth layers. Inliers are selected
gradually to improve feature point registration.

A Neighbourhood consensus network (NCNet [51]) is
a consensus network that learns local correspondences for
match points without the need for global geometric con-
straints. It is an end-to-end trainable network built over
features of ResNet50 [52]. Using an exhaustive pairwise
cosine similarity match, it computes the correlation map
(4D correlation tensor). These matches are filtered using
soft mutual nearest neighbor filtering. It trains in a weakly
supervised manner over the PF-Pascal dataset [36]. Recently,
Mughal et al. [16] have proposed a trainable pipeline to local-
ize aerial images in a pre-stored orthomosaic map. Further,
the authors [16] have extended NCNet [51] a fully con-
nected network (FCN)-based regressor for matching aerial
images with satellite imagery. Authors [16] developed a
framework mainly for intra-sensorial registration and tested
for inter-sensorial (cross-platform) too. Cross-platform is a
specific type of multi-modality. Jiang et al. [53] surveyed
multi-modal image matching methods from area/feature-
based to learning-based for various applications, from medi-
cal and remote sensing to vision. Authors [53] have explored
18 types of modalities, including cross-spectral (visible Vs.
IR) and cross-temporal (outdated, time-of-the-day, season,
etc.). Performance was evaluated using precision, recall,
and f-score. Kong et al. [54] proposed a cross-domain image
matching technique using deep feature maps.

Recently, Hausler et al. proposed Patch-NetVLAD [55]
which is multi-scale fusion of locally-global descriptors for
place recognition for street-view dataset with viewpoint and
seasonal/time-of-the-day (e.g. dawn, dusk, night) appearance
variation. The authors use the original NetVLAD [56] based
descriptor to retrieve top-k matches and then compute patch
descriptor using IntegralVLAD, followed by reordering of the
initial match. The patch descriptors implicitly contain seman-
tic information of the scene (e.g., building, window, tree, etc.)
by covering a larger area. The authors proposed Rapid Spatial
Scoring, which is an alternative to RANSAC [57] without the
need for sampling.

Our proposed two-step matching strategy, which is a sig-
nificant contribution to this work, combines global features
followed by local features. There are a few similar contri-
butions in the literature [58]–[61]. Djenouri et al. [58], [59]
proposed Decomposition Convolution Neural Network and
vocabulary Forest (DCNN-vForest), where the first step does
the extraction of regional and global CNN features. In the
second step, these features are clustered using the K-means
algorithm. The vocabulary tree vForest was formulated for
each cluster’s GPS-unavailable indoor industrial environ-
ment. Bai et al. [60] introduced a combination of Bag-of-
word and deep neural network (BoWDNN). Yang et al. [61]
proposed Hierarchical Deep Embedding (HDE) incorpo-
rating local features (SIFT), regional and global fea-
tures (CNN) to construct a vocabulary tree of image database.
Sunderhauf et al. [62] utilized ConvNet features as holistic

image descriptors to analyze the robustness of different layers
against appearance and viewpoint variance. The authors [62]
concluded that mid-level features have robustness against
appearance change. This work proposes a two-step matching
framework in which the first step uses global features and the
second exploits local features.

III. PROPOSED ENHANCEMENT OF CROSS-PLATFORM
DATASETS
A. ENHANCEMENTS TO OUR PATH PLANNING DATASET
We first present the enhancements to our cross-platform
aerial path planning dataset originally proposed in [14]. The
reader is referred to [14] for a detailed description of the
data collection experiment and the procedure for generating
cross-platform aerial path planning data. For completeness,
we briefly describe the experiment again, followed by an
analysis of the proposed dataset. We acquired aerial imagery
from a human-crewed aircraft at an altitude of about 4000’–
5000’ with an HD camera mounted at the aircraft’s belly.
This camera can acquire frames at a resolution of 1920 ×
1080 at 60 frames per second (fps) and record in compressed
form. We mounted navigation sensors to get instantaneous
flight parameters. Instantaneous flight parameters include
latitude, longitude, roll, pitch, heading, and aircraft altitude.
We use heading and altitude as extrinsic parameters during
the coarse-match step, as will be described in section IV-A.
This trajectory was transmitted to the ground via an RF
link. Due to RF transmission, the data had a few noisy tran-
sients for various parameters. These transients are filtered
with the expected profile of the aircraft sensor parameters.
For cross-platform image generation, these filtered sensor
parameters are used to generate the aircraft’s trajectory that is
encoded in a KML file. Historical data is retrieved from the
Google Earth Engine (GEE) for the desired path. This satellite
imagery will be referred to as Satellite (SAT) in the rest of our
discussion.

The enhancements to our path planning dataset [14]
are in terms of improved alignment, resolution, and mul-
tiple historical galleries (offset, drift, and dawn/dusk gal-
leries). These enhancements make the dataset well-suited for
classification/VBL/VPR tasks in the cross-platform setting.
We generated the aircraft trajectory by processing the meta-
data. We extracted corresponding images from GEE for the
years 2009–2020. These historical images capture the effects
of urbanization and atmospheric changes over the period.
Images in the proposed dataset were acquired in the year
2016 by an aerial platform. To confirm this phenomenon
with acquired aerial images from the year 2016, we applied
standard 2D correlation and SSIM index [63] with SAT
year-wise galleries (for grey and color images) as shown in
Table 1. However, SSIM values were not consistent due to a
lack of registration in our dataset [14]. The same is rectified
up to a certain extent with fine manual alignment in this
work. To further validate, we apply the keypoint matching
algorithms (NCNet [51], RIFT [42], Patch-NetVLAD [55]).
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We report percentage of correct keypoints (PCK) in Table 2
for respective default thresholds (last column). It can be
visualized from both tables 1 and 2 that correlation and PCK
values degrade as we move away from the year of acquisition
of DTV imagery (which is the year 2016). We describe these
enhancements next.

1) SAT-Year-wise-Warped: Our existing dataset [14] has
a qualitatively (i.e., visually) aligned set of images.
In the existing dataset [14], we have carried out the
fine-grained alignment for a few DTV query images
over the SAT gallery. In this work, we have gener-
ated finely aligned frames for the entire gallery of
2500 images. We have manually marked points for
a set of frames (DTV and SAT) at an interval of
10 frames. These points are tracked using a KLT-based
points tracker over the frames and manually verified
over each set. Then, the best five corresponding points
are retained based on minimal re-projection error. The
homography matrix is estimated and used to gener-
ate warped images with these correspondence points.
The matching performance of warped images over the
years is presented in Table 1. The average correlation
for warped images improved significantly from around
0.15 [14] to 0.6 over the years. Similarly, the average
SSIM score also improved over the years.

2) HD-DTV: This is the HD version of the three VGA
DTV galleries in our path planning dataset [14] with
2500 frames per year.

3) HD-SAT-year-wise: This is the HD version of
SAT-Year-wise [14] gallery. It is similar to historical
or outdated imagery of [22].

4) HD-Offset: Inertial navigation sensors (e.g., head-
ing/yaw sensor) have bias issues. This gallery envis-
ages positive and negative bias over the flight path.
We have generated this gallery by adding constant
shifts of 3.5 micro radians to the latitude. It has a
constant offset with the SAT-Year-wise gallery of our
path planning dataset [14] and the HD-SAT-year-wise
gallery of this dataset.

5) HD-Dawn-Dusk: Dawn and dusk galleries are rep-
resentative of morning and evening time-of-the-day.
Time-specific reference images are practically not fea-
sible in real scenarios. In the existing dataset [14],
DTV live query images are acquired at noontime, and
it may happen that reference SAT images are available
only for the morning or evening time. To envisage
this scenario, we have created this HD-Dawn-Dusk
gallery. This gallery is in the same spirit as learning
representation from morning to the late afternoon by
Lowry et al. [64].

6) HD-Drift: Gyros suffer from drift issues. Drift has a
trade-off with accuracy/sensitivity, i.e., higher accuracy
leads to increased drift. This gallery envisages a typical
gyro’s positive and negative drift over the flight path.
We have generated this gallery by adding incremental
shifts to the latitude over the path. We have maintained

FIGURE 1. Cross-platform – SAT [5] and aerial [65] image matching [42].
An example of automatic match failure. Green and red lines imply true
and false matches respectively. Best viewed with zoom and color display.

a typical drift rate of 0.5 deg per hour over the SAT-
year-wise gallery of our path planning dataset [14] and
the HD version presented in this work.

7) HD-1000-cross-platform: This is a set of 1000 HD
DTV and SAT images. These images are derived from
sequential video frames at regular intervals (every
30 frames), and equivalent SAT images are retrieved
and visually aligned for each DTV query from GEE.
We have carried out manual keypoints correspondence
for each set of images, similar to the generation of warp
gallery for existing dataset images. With this, we can
generate fine-aligned warped images. The 30 frames
spacing enables the exploration of path planning for
resource-constrained platforms.

8) HD-1000-segments: Semantic labels are marked man-
ually for DTV and SAT images in 20+ classes. The
labeling method is the same as described in our prior
work [14].

B. ENHANCEMENTS TO THE OPEN-SOURCE UAV123
DATASET
In addition to enhancing our aerial path planning dataset,
we present improvements to the open-source UAV123
dataset [65]. We work with this dataset since aerial imagery
(which we call DTV) is available from a drone platform
for a known location. It has images of HD-ready resolution
(1280× 720 pixels). This database was originally developed
for tracking applications with over 110K images. It has nine
major classes, including bike, boat, building, car, person,
group of people, truck, UAV and wakerboard. Each major
class (totaling 90) has sub-classes ranging from 3 to 26. The
building class has five buildings or sub-folders. We selected
three landmark images and retrieved equivalent images from
GEE for these scenes with historical data for a few years.
These three satellite images become the reference template
for our matching framework. On further analysis of the
dataset, we found that the classes are not independent. For
example, the same scene appears in building and car cate-
gories. This is probably because images are acquired in the
same region, and the dataset was originally meant for tracking
applications where bounding boxes are needed. This mixed
nature of objects makes it hard for image classification. Seg-
regating the entire dataset manually for selected landmarks
building is a tedious exercise that becomes evenmore difficult
due to perceptual aliasing (similar buildings).We have carried
out a semi-automatic procedure to circumvent these issues
efficiently.
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TABLE 1. Standard match of DTV query with SAT-year-wise [14]/Augmented SAT-year-wise warped data. Correlation and SSIM values improve
significantly with warped images and degrade as we move away from year of query DTV acquisition (as expected).

TABLE 2. Performance of keypoint match algorithms over the years. First and second rows have threshold of 10 and 50 pixels respectively, while third
row has both 10/50 pixels. PCK values degrade as move away from year of query DTV acquisition (as expected).

FIGURE 2. False scene match [42] due to perceptual aliasing from the
UAV123 dataset [65]. Similar building both sides of center building.
Yellow lines indicate locally correct match but globally incorrect. Best
viewed with zoom and color display.

The steps in the semi-automatic procedure are described
next. In these steps, the SAT images (GEE) form the query,
and the DTV images [65] are the target galleries.

1) Manually select landmarks in the DTV target
gallery [65] and retrieve the corresponding query SAT
images from GEE [5].

2) Manually search best proxy match for selected land-
marks in target DTV galleries. This step is manual due
to the failure of automatic cross-platformmatching car-
ried out using algorithms such as RIFT [42] as shown
in Fig. 1.

3) Once the proxy images are found, use an automatic
matching method like RIFT [42] to find the best
matches in the DTV target galleries. Automatic match-
ing works here since images are taken from the same
sensor.

4) Manually segregate the gallery into classes that best
match the query SAT images. This step is manual to
discard adversarial scenes (like similar buildings on
both sides) as shown in Fig. 2.

We provide historical SAT imagery for landmarks. It is a test
case for augmenting a standard dataset to have cross-platform
capability.

C. DATASET ANALYSIS
A summary of the proposed enhancements and improvements
over the baseline [14] are given in Tables 3 and 4 respectively.
We now analyze the dataset to identify challenges involved
in matching aerial imagery. We generate query-match pro-
file curves for a few DTV query images manually. We first
manually find the target-bin region for each query image, i.e.,
the set of frames in the SAT gallery containing the scene.
A query and target image [65] are shown in Figures 3a and 3b

FIGURE 3. Manual marking of corresponding points (colored dots) and
overlap representation. (a) Query image with colored manual points
(b) Target image with corresponding manual points (c) Blended query
image over target image (d) Blended image with checker representation.
Best viewed with zoom and color display.

respectively. We marked corresponding match points manu-
ally (colored dots). We use these points to find homography
and generate the overlap image shown in Fig. 3c. This overlap
image can be visualized with the checkerboard in Fig. 3d for
patchwise clarity.

VPR [19] is the ability to recognize the overlap between
two observations/images underlying match threshold con-
straints. This overlap score for a query image against each
SAT image in the target-bin region forms the query-match
profile (also referred to as ‘‘normalized surface over-
lap’’ [66]). An example query-match profile curve with Gaus-
sian fit is shown in Fig. 4 over the target-bin region. This is
similar to representation of ‘‘ok’’ categorized images [32].
As can be seen, the best match score is 90% for a DTV
query image over SAT gallery. It is normalized for better
interpretation. An important takeaway from this query-match
profile is that the overlap region varies smoothly over the
SAT gallery frames and falls off almost symmetrically about
the best fit. Query-match profile is normalized overlap over
the target-bin region. Target-bin and query-match are the
baselines for coarse and fine match performance evaluation,
respectively.

To further analyze the matching complexity of the pro-
posed dataset, we applied various image matching meth-
ods over our SAT target gallery for one DTV query image.
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TABLE 3. A summary of the various galleries in the proposed enhancements to the datasets in [14] and [65].

FIGURE 4. Query-match profile with Gaussian fit over target-bin.
Normalized overlap curve built over manually marked corresponding
points.

The performance of contemporary traditional and deep
learning-based image matching methods for a DTV query
image over the entire SAT gallery is shown in Fig. 5a
and 5b respectively. Fig. 5a shows the performance of the
Bag of visual words (BoVW) built over traditional descrip-
tors. Fig. 5b represents the cosine distance between a DTV
query and SAT target galleries. At the same time, the mean
absolute error (MAE) for points deviation in the target-bin
region for standard classical keypoints algorithms is shown
in Fig. 5c. The difficulty with the existing traditional and
deep learning methods is that they all have multiple max-
ima/minima over the search region. This necessitates the pro-
posed coarse-fine matching technique, which exploits both
methodologies appropriately. It provides the primary motiva-
tion for the proposed two-step image matching framework.

D. STORAGE/RETRIEVAL MECHANISM
The proposed dataset has multiple types of SAT galleries with
historical information (12 years). Handling and storing HD
images is very cumbersome. For ease [18], we propose to
compress in video format along with embedding metadata
in a structured manner. Image quality is retained reason-
ably with Spatio-temporal compression of sequential frames.
We propose using time-stamp information for each frame

indicating the type of gallery, year of acquisition, and frame
number (in turn coordinates). Although this information is
available as metadata in standard video format (e.g., avi)
and image format (e.g., GeoTIFF) but requires more space
and an add-on utility. There are two components for embed-
ding in the enhanced dataset: low and high frequencies. The
low-frequency component includes the type of gallery and
year number, while the high-frequency component involves
frame indices. We embed low-frequency components in pix-
els and high-frequency components in bar patterns consider-
ing compression artifacts. We allocate four contiguous pixels
per bar (per bit). High intensity (grey value of 235) and
low intensity (grey value of 16) represent a logic ‘1’ and
logic ‘0’, respectively.With this embedding, images extracted
in png/jpg/BMP format will contain relevant information to
automate frame processing for path, etc. The same embed-
ding can be extended further for other extrinsic parameters.

IV. PROPOSED TWO-STEP IMAGE MATCHING
FRAMEWORK
The dataset generation process revealed several challenges in
matching aerial imagery across different platforms or sensors.
The most daunting of these include a lack of registration, mis-
matches in resolution, luminance, time of the day, perspective
view variation, etc. Further, since the matching is to be done
on low-resource aerial vehicles such as drones, this poses a
further practical challenge. As we have seen in Figures 5a
and 5b, the matching performance of traditional and deep
methods, is not convincing. Based on discussions ( [43],
[44], [58]–[62]), global features describe the entire image and
have more pose in-variance in contrast with local features
describing patches (group of pixels).With this motivation and
associated challenges, we present a two-step image matching
framework, the first of which is a fast coarse-matching stage
followed by a fine-matching stage. The formerwas built using
a pre-trained CNN and the latter using off-the-shelf state-of-
the-art matching methods.

Our two-step matching framework is pictorially repre-
sented in Fig. 6. SAT images and features for the expected
flight path and possible drifted paths are pre-loaded on the
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TABLE 4. Dataset specific contribution.

aerial vehicle as shown in the upper part of Fig. 6. SAT
galleries are divided into bins (or temporally contiguous
frames). The real-time query images from the onboard cam-
era (called DTV images) are first fed to the coarse-matching
stage. The coarse-matching stage indicates whether or not the
input DTV query image is similar to the SAT target image.
DTV frames whose classification indices (with the majority)
correspond to the expected target-bin region or time instant
are passed to the fine-matching stage. Standard keypoints
matching algorithms are applied over the target-bin region
to regress over the fine-match region. Outliers are discarded
by exploiting spectral, temporal, and flow consistencies fol-
lowed by cluster analysis.We describe this two-stepmatching
framework in algorithm 1 and each of the stages in detail in
the following sub-sections.

Algorithm 1 Proposed Two-Stage Matching Algorithm
Input: Pre-trained model, GEE SAT image gallery of
intended flight path, target_bin, and continuous
stream of DTV data and extrinsic parameters.
while input DTV data stream available do
Apply coarse-matching on incoming DTV frame and
extrinsic parameters
current_bin = output of coarse-matching stage
if current_bin = target_bin then

Apply fine-matching stage
Output: Top-M matches and Confidence Score

end if
end while

A. COARSE-MATCHING
The coarse-matching stage is designed to perform two func-
tional tasks – reduce the overall computational complexity
of matching and compare the actual flight path with the

expected flight path. There are no constraints regarding the
need for very recent SAT imagery [5]. The coarse-matching
step involves two phases – classifier fine-tuning carried out
pre-flight (on the ground or off-line) followed by inference
during the flight (onboard or real-time).

A deep learning classification model is fine-tuned pre-
flight using the expected-flight path over SAT image gal-
leries. These frames are first partitioned intoN classes withM
images in each class. Each class corresponds to frames from
a temporally contiguous region in the flight path. We also
designate the class(es) that contain the target or destina-
tion image(s) since this information is available pre-flight.
We have experimented with different architectural modifi-
cations over pre-trained VGG16 [50] and ResNet50 [52]
models. The pioneering work [62] concludes that mid-level
CNN features exhibit robustness against appearance changes.
In contrast, high-level features carry more semantics infor-
mation and are more robust against changes in view-
point. With this motivation of robustness against appearance
changes and viewpoint, we empirically found that fine-tuning
ResNet50 [52] with four appended dense layers (i.e., towards
the end) and matching with features of a dense layer (fourth
from last) performs reasonably well. The block diagram is
shown in Fig. 7. Upper and lower branches of Fig. 7 represent
pre-flight (ground-based or off-line) training activity and live
(onboard or real-time) inference activity, respectively. The
number of classes N is chosen so that each class has a
sufficiently unique set of frames. In our experiments, we have
chosen N to be 125 while the total number of images in the
SAT gallery is 2500 (i.e., M = 20). The choice of N is
dependent on factors including the flight speed and the frame
rate. Once the fine-tuning is complete, we perform coarse-
matching in the feature space of this fine-tuned model. The
input DTV query image (onboard or real-time) is matched
with a stored sequence of satellite images by extracting the
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FIGURE 5. Performance of existing methods for a DTV query image over
the SAT target gallery. The dashed box implies the target-bin region. The
key takeaway from these plots is that none of the existing methods show
satisfactory performance. Best viewed with zoom and color display.

features from the first appended dense layer. Themean square
error (MSE) between the input DTVquery image features and
the satellite image features is then computed.

To further improve performance, we incorporate the real-
time camera’s extrinsic parameters available from the aircraft

into our coarse-matching process as shown in Fig. 8. As dis-
cussed earlier, the DTV/airborne video is acquired along with
extrinsic parameters (e.g., metadata) in real-time. The extrin-
sic parameters (altitude and rotation) complement the image
level information. It is essential to consider this information
to make the proposed approach more robust. We first relate
the intrinsic parameters to the extrinsic parameters. To relate
the camera field of view (FoV) to altitude, we generate an
image for a typical altitude (with fixed known FoV). After
that, we simulate incremental altitude in steps of 10m and
generate images from GEE [5]. For typical and incremen-
tal altitude images, we detect SURF keypoints followed by
standard outlier removal (e.g., RANSAC [57]) and generate
the transformation matrix and the scale factor. This procedure
generates an altitude to scale factor (zoom number) for the
typical altitude. Similarly, rotation is the function of camera
mounting and aircraft heading. We followed the same proce-
dure as the altitude to scale factor for generating heading to
rotation angle. Therefore, we have two extrinsic parameters
per frame: altitude and rotation. For these extrinsic parame-
ters to be effective, we found that they need to be projected
to a higher dimension. This is found empirically using a
dense network that progressively increases the dimension
from 2 to 256. Specifically, this network has two hidden
layers of sizes four and sixteen, followed by an output layer
of size 256. We concatenate these extrinsic parameters along
with the features from the pre-trained ResNet50 model [52]
to fine-tune the model further. The block diagram of the
proposed coarse-matching approach is shown in Fig. 8. The
performance of the coarse-matching without and with extrin-
sic parameters is discussed in the next section.

B. FINE-MATCHING
The coarse-matching stage achieves two goals – one of check-
ing the flight’s expected trajectory and the other of identifying
the target-bin region. Once the coarse-matching stage classi-
fies the input frames belonging to the target-bin region, all
such frames are passed to the fine-matching stage. Additional
checks are applied to such frames by comparing them with
all SAT frames in the target-bin before declaring an overall
match. The steps in the fine-matching stage include identify-
ing corresponding match keypoints using a baseline method,
performing consistency checks on the matched keypoints,
clustering, and finally, confidence scoring. The fine-matching
stage fundamentally leverages the temporal correlation in the
gallery of images in the target-bin to prune out extraneous
matching points. It helps the proposed method deliver match
indices consistently and with higher confidence. We describe
each of these steps next.

1) KeyPoints MATCHING
As the first step to finding matching keypoints, we apply the
DeepMatching (DM) algorithm [37] to the DTV query image
and the SAT images in the target-bin region of the SAT target
gallery. Specifically, we find matching keypoints over five
channels of the input image pair. These are the three color
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FIGURE 6. Proposed overall coarse-fine matching approach. Solid blue and dashed black lines imply expected and drifted trajectories, respectively.
Coarse classifier-E fine-tuned over expected paths while coarse classifier-L/R are fine-tuned over left and right drifted paths, respectively.
Fine-matching has points analysis followed by cluster analysis. Best viewed with zoom and color display.

FIGURE 7. Proposed coarse-matching method with a modified
ResNet50 [52] architecture (4 dense layers). Features are taken from first
dense layer for testing.

FIGURE 8. Proposed coarse-matching method (with extrinsic
parameters). A combination of modified ResNet50 [52] architecture and
extrinsic parameters are fine-tuned. Coarse-matching happens in the
feature domain using MSE between the input DTV query image and target
images of SAT gallery image features.

channels (Red, Green, and Blue), the average color channels,
and luminance. DM [37], a semi-dense matching algorithm
is applied to the corresponding pair of channels. DM [37]

match for luminance channel are shown in the first column
(1) of Fig. 9. We work with the semi-dense matching results
to illustrate the proposed pruning strategy. The semi-dense
matching can easily be replaced by sparse matching methods
such as SuperGlue [41], or RIFT [42] to find a sparser set
of matching keypoints. We can even use a dense matching
method like Deep Flow [67]. However, we have not tested
the proposed strategy with dense matching methods given
the resource-constrained environment where we expect our
algorithm to be deployed. The semi-dense keypoints match
correspondence becomes the input to the consistency check
stage of our pruning strategy.

2) POINTS ANALYSIS
We apply a series of consistency checks to prune further
the keypoints identified by the semi-dense matching algo-
rithm. The first of these is a check for spectral consistency.
We hypothesize that for a keypoint to be consistent, it has
to appear in a majority of the channels. In other words,
a keypoint is declared consistent if it appears in at least
three of the five channels over which DM [37] is applied.
The resulting keypoints are used to create a mask which is
then applied to the luminance channel keypoints. This set
of masked luminance channel keypoints is used for further
processing. Spectrally consistent points are shown in the
second column (2) of Fig. 9.

We then apply a temporal check, which is based on the
fact that matching keypoints must appear in the gallery for
an expected number of frames depending on the speed of the
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aircraft, altitude, camera field of view (FoV), and the look
angle of the acquisition platform. In our experiments, the
vertical FoV of the camera is 25 deg and is looking downwith
a tilt of around 60 deg from the horizon due to mounting con-
straints (as stated earlier) with a target slant range of around
4000’. The aircraft speed is approximately 60 m per second,
leading to the temporal displacement of around 1 m per frame
at a camera frame rate of 60 fps. Due to resource constraint
environment, we have down-sampled to VGA resolution [14]
leading to a displacement of 2-3 pixels per frame. The same
displacement is ascertained while finding a match between
sequential frames. This displacement indicates scene or point
appearance for 2.5 seconds on an average of 150 frames (at
60 fps). These 150 frames form the target-bin regions for
the scene. In the target-bin region, a spectrally consistent
point is expected to be appearing for at least 50% of the
target-bin region temporally. All keypoints that do not satisfy
this condition are pruned. Temporally consistent points are
shown in the third column (3) of Fig. 9.
After the spectral and temporal checks, we apply a local

motion check that is somewhat similar in essence [43],
[44]. These works [43], [44] discard putative matches in the
neighborhood by gridding correspondence space and consen-
sus of length/angle using an empirical penalty, respectively.
We claim that the optical flow at keypoints must be consistent
with the average flow in their local neighborhood and propose
a simple check for it. The optical flow of the entire satellite
images in the target-bin is found a priori. The mean and
variance of the optical flow magnitude (denoted µr , σ 2

r ) and
phase (denoted µθ , σ 2

θ ) around each pixel is then found over
a voxel of size 8 × 8 × 8. We find consistency in voxel
in contrast with [44]. We check if the flow vector at the
corresponding match keypoint in the SAT image is consistent
for every keypoint in the DTV image. By consistent, we mean
that the magnitude and phase at the keypoint must lie within
µr ± 6σr and µθ ± 6σθ respectively. All keypoints that fail
this check are pruned. Flow consistent points are shown in the
fourth column (4) of Fig. 9.

The corresponding improvements over the sequence of
frames are shown in Fig. 10. Points analysis exploits spec-
tral, temporal, and flow consistencies. The total number of
consistent points and the accuracy over the frames at each
stage is shown in Fig. 10 respectively. The number of match
points reduces as we go away from the best match index due
to the common region on either side. Base algorithm [37]
has maximum points over the frames and reduces relatively
with spectral/temporal/flow stages as shown in Fig. 10. The
efficacy of remaining points, in target-bin region (i.e. frame
no 135-255) is lowest over the frames for base algorithm [37]
than spectral/temporal/flow consistent stages as shown in
Fig. 10.

3) CLUSTER ANALYSIS
The matching keypoints identified as consistent in the pre-
vious stage are clustered in the DTV query image using
k-means Clustering. Clustering is motivated by the fact that

matches will occur in a bunch of patches (specific features
etc.) due to changes (appearance and viewpoints) over the
period. We have empirically chosen the number of clusters
to be 15 for our DTV query image in this stage. Consistent
match keypoints in the SAT image are chosen to form another
set of clusters (without applying k-means). Clustered points
are shown in the fifth column (5) of Fig. 9.

Let the cluster index be denoted by c, number of keypoints
in this cluster be Nc, and the keypoint locations in each DTV
cluster be denoted by the matrix Kc

= [kc1, . . . ,k
c
Nc ] where

kci is the i
th 2D keypoint location in the cth cluster. Further,

let the centroid of this cluster be k̄c. Similarly, let the corre-
sponding SAT keypoint locations be denoted by the matrix
K′c = [k′c1, . . . ,k

′c
Nc ] and the centroid of this cluster be k̄′

c
.

Also, letDc
= [dc1, . . . ,d

c
Nc ] = [(kc1−k̄

c), . . . , (kcNc−k̄
c)] be

the displacement matrix composed of the displacement vector
of each keypoint in the DTV cluster relative to its centroid.
The displacement matrixD′c is defined in an identical fashion
for the corresponding SAT image keypoints. The error matrix
is defined to be Ec = Dc

−D′c. This matrix captures the error
between the displacement vectors corresponding to the DTV
query and SAT target image keypoints. In the ideal case, this
should be a matrix with all zero entries for every cluster c.
However, this ideal case is very rare for oblique aerial and
top-view outdated satellite imagery.

We propose the following strategy to identify the best
matching keypoints clusters. The eigenvalues λcmax, λ

c
min of

the covariance matrix corresponding to the error vectors in
Ec are found for each cluster c. We then pick those clusters c
whose minimum eigenvalue λcmin is lower than a threshold
τ that is found by applying the Otsu’s algorithm over the
set of minimum eigenvalues {λ1min, . . . , λ

15
min}. This choice

is guided by the fact that the minimum eigenvalue deter-
mines the ill-conditioning of a symmetric matrix and that
the skewed displacement error matrix condition results in a
highly ill-conditioned covariance matrix. Otsu’s threshold is
used since it helps in finding clusters that have minimum
intra-class variance or, equivalently, maximum inter-class
variance. Intra-cluster consistent points are shown in the
sixth column (6) of Fig. 9. Once the best matching clusters
are found, the corresponding keypoints are used to find the
homography between the DTV query image and the SAT
target image. The amount of overlap between the registered
DTV image and the SAT image is the final matching score
output by the proposed framework.

4) CONFIDENCE SCORE
We present our approach to find the confidence score of the
proposed matching framework. As discussed earlier, each
query image has a target-bin region and a non-target-bin
region in the SAT gallery. The confidence score is expected
to be higher for the target-bin than the non-target-bin region.
The keypoints passed from the previous step are used to find
the confidence score. We cluster all passed keypoints into
a few clusters in the DTV query image and corresponding
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FIGURE 9. Image matching outputs at various stages of the proposed algorithm. The algorithm proceeds sequentially from left to right. The top row
corresponds to DTV images, and the bottom row corresponds to satellite images. Note the progressive improvement in the matching output along with
the reduction in spurious matches. Best viewed with zoom and color display.

group points in the SAT target image. The centroid of each
cluster forms the vertex for the polygons in both images,
as shown in the last column (7)of Fig. 9. We analyze across
clusters (inter cluster analysis) by forming polygons in both
the images. The polygons are unfolded [68] to calculate the
turning radius [69]. The turning radius provides the mean
squared error for the unfolded polygon but suffers from the
issue of upper bound limit [69]. We experimented with a few
ways of finding the score of turning radius and found that the
weighted sum of the cosine of difference of turning angles,
as shown in Eq. 1, outperformed the baseline [69] as shown
in Table 5.

Score =
1
M

M∑
i=1

Wi ∗ cos(θci − θ
′c
i ), (1)

where θci , θ
′c
i are the turning angles for the DTV and SAT

cluster i; weightWi: Points proportion for ith cluster;M is the
total number of clusters. Cosine of difference of subtended
turning angles are weighed with points proportion of each
cluster. This weighted sum is normalized for the number of
clusters. From table 5, we can see an improvement in confi-
dence score for the passed points over target-bin region than
non-target-bin region. This significant improvement is due to
false points being discarded by our procedure as described
above.

V. RESULTS AND DISCUSSION
The proposed two-step aerial image matching framework
is applied over the frames from the incoming DTV video
sequence described previously. Given that our framework’s
first stage (coarse-match) performs standard image retrieval,
it is evaluated using traditional image retrieval metrics (e.g.,
Top@N, mAP). The second stage, however, proposes meth-
ods to reduce outliers in state-of-the-art matching algorithms
( [37], [41], [42], [55]). Therefore, we measure the perfor-
mance of the second stage in terms of the improvement
over baseline state-of-the-art matching methods (Naive/with
RANSAC [57]). Further, the sequential aerial image match-
ing application imposes additional matching requirements
such as the percentage of overlap for the match and the
Spatio-temporal accuracy of the match. Since there are
no readily available metrics to measure this performance,
we have adopted evaluation metrics [40] typically used in

FIGURE 10. Improvements with proposed consistency analysis.
(U) Number of consistent points over the frames. (D) Accuracy over the
frames. We observe improvement in the accuracy over the baseline due
to spectral/temporal/flow based filtering.

image matching and quality assessment. These evaluation
metrics are briefly described as follows:

1) Top@N: Top N images retrieved for an input query
image is widely used in the content-based image
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TABLE 5. Performance of passed points using proposed methodology.

retrieval (CBIR) literature. It implies at least one cor-
rect match among the top N matching results from the
SAT gallery. It is an increasing and monotonic function
of N .

2) Mean average precision (mAP): mAP is the average
precision over a bin. This is calculated over the full SAT
target gallery.

3) F-score: Precision and recall represent a class’s proba-
bility of correct detection. High precision and recall are
desired in matching algorithms. The F-score provides
a combination of precision and recalls for unbalanced
classes (i.e., target-bin region smaller than non-target
region), and a higher F-score implies better perfor-
mance. Searching for an image or short clip in a long
video makes our classes imbalanced.

4) Percentage of correct keypoints (PCK): PCK is the
standard way to designate the probability of correct
keypoint [41], [70] on a set of matching images.
It makes the underlying assumption of the threshold
of correct match (e.g., the number of pixels/euclidean
distance = α ∗ max(width, height). α is a constant.
A transformation matrix derived using the manual
labeled keypoints are used as ground truth. PCK5 and
PCK10 is described in Eq. 2 for x = 5 and 10 pixels
respectively. This methodology is similar to Repeata-
bility [40], [42].

PCKx =

∣∣∣{∥∥Q1
i −HS2i

∥∥ < x
}ni
i=1

∣∣∣
N

, (2)

where H is the manually determined ground truth
transformation between query Q and search S images;
Q1
i and S

2
i are the output paired coordinates ofmatching

algorithm. N is a total number of paired points, and ni
is the pair index.

5) Mean Absolute Error (MAE): Li et al. [42] have used
MAE for quantitative evaluation. It is the deviation
concerning the homogeneous matrix. It is formulated
in Eq. 3 with the transformation matrix built over man-
ually marked correspondence points.

MAEj =

∑N
i=1

∣∣Q1
i − HjS

2
i

∣∣
N

, (3)

where, Hj is manual transformation matrix for query
image with jth index image in target SAT gallery. Q1

i
and S2i are the output paired coordinates of matching
algorithm. N is the total number of paired points and
i is the pair index. This methodology is similar to
Localisation error [40].

6) Ratio-metrics (RM): Ratio-metrics [42] is calculated
over the match pairs temporally. It describes the ratio
of the number of image pairs with correct match pairs

above 50% (PCK threshold of 10) over the entire
gallery. It is described in Eq. 4. It gives a quick idea
about the performance of a query image over the
target-bin region (the majority of correct matches in
image pairs).

RM , rPCKx>50% =

∣∣∣{PCKx > 50%}NG1

∣∣∣
NG

, (4)

where NG is no of images in target-bin region of a
gallery and x is 10 pixels.

7) Overlap: The amount of overlap [71] between query
and target image is another way of evaluation. This
overlap is derived from the homography of matched
points. This methodology is similar to homography
estimation [40]. Query-specific query-match profile
curve is the ground truth. The overlap is quantified
using the following metrics.
a) Positional accuracy (PA): PA represents how

close the match index (i.e., time instant) is to
the peak of the query-match profile curve (Best-
Match index) as shown in Fig. 4. This curve
is the basis for finding the score for the given
index. Predicted indices close to the peak of the
query-match profile will have better positional
accuracy.

b) Pearson’s Linear Correlation Coefficient (PLCC):
PLCC indicates a linear correlation between two
sets of values. It is also termed the normalized
correlation coefficient. It varies between +1 and
−1. Correlation between predicted query-match
profile in the SAT gallery is compared with man-
ual query-match profile curve (Ground truth as
shown in Fig. 4).

c) Spearman Rank Ordered Correlation Coefficient
(SROCC): SROCC is the non-parametric mea-
sure of rank correlation. It measures the temporal
relation between predicted and ground truth data.
It finds a correlation in the rank order given by
the matching algorithm against the query-match
profile. Higher SROCC is indicative of better per-
formance.

A. RESULTS
We present the results of our proposed matching framework
stage-wise with coarse-matching results followed by those
for fine-matching. We have divided the SAT galleries into
two parts, target-bin region and non-target-bin region, for
query image presence and absence, respectively. This rep-
resentation is similar to the ‘OK’ and ‘absent’ categories
of [32]. Coarse-matching performance is evaluated over the
entire SAT gallery (i.e., 2500 frames) consisting of both
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regions. In contrast, fine-matching performance is evaluated
over a target-bin region as indicated by the dashed box
in Fig. 5a and 5b.

1) PERFORMANCE OVER ENTIRE GALLERY
We evaluate the performance of the proposed coarse classifier
with state-of-the-art methods. These contemporary methods
have demonstrated excellent Performance on several stan-
dard image matching datasets. We evaluate Performance
using standard matching methodologies as described earlier.
A match is considered valid when the Match index from the
matching algorithm lies in the target-bin region of the query
image.

Specifically, we carried out a standard image search exper-
iment (Fig. 5) for a few query images (DTV) in several
example target galleries (SAT). We have considered a few
state-of-the-art image matching algorithms for comparison.
These include both conventional and recent deep methods.
For conventional methods bag of visual words with descrip-
tors, [25]–[27] are used for comparison. Pretrained models
(VGG16 [50] and ResNet50 [52]) are used in the inference
mode to find the difference between the query and target
images. For SimNet [46] and CNN-registration [49], we used
the available online implementations.

Top@1, Top@5, Top@10, Top@20 and mean Average
Precision (mAP) for the proposed and contemporary methods
are summarized in Table 6. We have used 9 DTV query
images and tested with SAT year-wise target galleries [14].
The mAP is calculated for Recall 1. Performance of BoVW
vocabulary built over local features ( [25]–[27]) and global
features ( [31], [32]). BoG spatial ( [31], [32]) performs
a bit better in terms of mAP but poor for all Top@N
retrievals. Baseline, VGG16 [50] pretrained network per-
forms better than ResNet50 [52] for all parameters. CNN-
registration [49] and SimNet [46] work reasonably well
for Top@10 and Top@20 but have low mAP. The pro-
posed classifier with extrinsic parameters demonstrates con-
sistent improvement concerning Top@N retrievals and mAP.
As stated in the coarse-matching description (section IV-A),
we empirically found that fine-tuning ResNet50 architec-
ture [52] performed well. The proposed fine-tuned architec-
ture without/with extrinsic parameters performs considerably
better than the baseline model. Recall and F-score curves
for Top@N retrieved indices considering baseline, fine-tuned
architecture without and with extrinsic parameters are shown
in Fig. 11a and 11b respectively. Similarly, Precision-Recall
showed in Fig. 11c. The fine-tuned architecture is better than
the baseline and further improves with extrinsic parameters.
Extrinsic parameters are readily available (metadata) for any
aerial journey, and the role of extrinsic parameters in improv-
ing overall performance is clear from these results.

2) PERFORMANCE OVER TARGET-BIN REGION
With clues from coarse-matching stage, fine-matching is car-
ried out over expected target-bin region as shown in Fig. 6.
The former outputs a few probable frames (i.e. indices)

which are validated by the latter one. As stated, we built
over standard matching algorithms (DeepMatch [37], Super-
Glue [41], RIFT [42], Patch-NetVLAD [55]). We compare
against baseline ( [37], [41], [42], [55]) without/with standard
outlier [57].

To evaluate the performance of the fine-matching stage,
we test it over the target-bin region and apply standardmetrics
like PCK, MAE, ratio-metric (RM), etc. In the entire target-
bin region, the query image is assumed to be available at
least partially (i.e., OK [32]). PCK5 and PCK10 imply des-
ignated deviation within 5 and 10 pixels, respectively, from
the ground truth correspondence. Fine-matching performance
over target-bin region is tabulated in table 7. We notice a
clear improvement in PCK5 and PCK10 over the baseline
and with standard outlier (RANSAC [57]) implementation.
PCK10 is expected to be better than PCK5. The same is
validated from columns 3 and 4 of table 7 for base meth-
ods ( [37], [41], [42], [55]), along with RANSAC [57] and
proposed outlier removal methodology. The mean deviation
error for matched points is shown in Fig. 12 for DTV query
image in SAT target gallery [14]. This deviation increases
as we go away from Best-Match index in the target-bin
region. For SuperGlue [41], baseline deviation error increases
further with RANSAC outlier as depicted with PCK values
reduction in table 7. For the proposed outlier removal, the
mean deviation curve is reasonably low and flat for the entire
target-bin region, as shown in Fig. 12a. Matched points pre-
cision for varying euclidean distance threshold is shown in
Fig. 12b. Precision is a monotonically increasing function
with an increase in the threshold for all methods as expected.
Improvement is clear for proposed methodology over multi-
ple baselines( [37], [41], [42], [55]).

Matchpoints (pairs) are used to generate overlap using
homography. A higher overlap is indicative of a better match.
To search a DTV query image in a target SAT gallery,
the ideal output should have an inverted ‘V’ shape, i.e.,
a clear peak (corresponding to the highest overlap) at the
correct matching location. It should quickly taper off as we
move away from this ideal location. The proposed method
is compared with contemporary methods in terms of overlap
percentage over the target-bin region as shown in Fig. 12c.
From this figure, we see that baselines ( [37], [41], [42],
[55]) overlap and have multiple peaks/valleys towards the
endpoint (right side of curves), which is subdued by the
proposed outlier removal approach. Additionally, the inverted
‘V’ shape output (query-match profile) with a peak close to
the Best-Match index is also very evident for the proposed
method.We use PLCC and SROCC to quantitatively quantify
this overlap performance relative to the manual ground truth
(query-match profile as shown in Fig. 4). Despite the poor
performance of SuperGlue [41] with RANSAC [57] in terms
of PCK, it performs well in terms of PLCC and SROCC.
PA relates predicted best frame (i.e., time instant) deviation
from Best-Match index as shown in Fig. 5b, 12a, 12c. PA for
DM [37] with RANSAC [57] is reasonably high relative to
the other methods.
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TABLE 6. Performance of coarse-matching over SAT-year-wise galleries. (Higher is better.)

TABLE 7. Fine-matching performance over the target-bin region. Bold numbers imply the best performance for the given baseline. Except for the last
column, higher is better.

TABLE 8. Matching performance over the UAV123 dataset [65]. Bold numbers imply the best performance for the given baseline. Except for the last
column, higher is better.

TABLE 9. Computational complexity break-up of the coarse and fine matching stages of the proposed algorithm.

The points passed by the proposed approach for a
query image in the target-bin region are shown in
Figures 13a, 13b, 13c, 13d over standard methods [37], [41],
[42], [55] respectively. True and false matches are repre-
sented with green and red colors, respectively, to visualize
the efficacy of the proposed approach for a query image in
the target-bin region. These figures show that the remain-
ing (leftover) false matches (PCK5 constraints) are very few.
As expected, false matches (red color) are further reduced
with PCK10 constraints. The performance of the proposed
and contemporary methods can be visualized qualitatively in
Fig. 14 and Fig. 15 for Top@1 retrieved image of coarse-
match and fine-match respectively over the years. Coarse-
matching retrieved images are distributed all over the gallery,
and the same is depicted from Fig. 14. These figures show
that the retrieved images for a query image over the years

are relatively consistent with the proposed approach. Fig. 15
represents a fine-match performance over the target-bin
region, and therefore, the retrieved images are pretty similar
for all methods. It is clear again that retrieval performance
improved for the proposed outlier rejection over the years.
This improvement is relatively hard to visualize since the
retrieval is within the target-bin region. These figures and
scores clearly show that the proposed coarse-fine matching
method delivers improved performance.

Further, we evaluate the proposed approach over the mod-
ified [14] UAV123 dataset [65] and report the performance
in table 8. We want to reiterate that the query image is
SAT, and the target image is DTV [65] here. Generated
forward and backward galleries [14] have only target-bin
region; hence only fine-matching performance is evaluated.
Table 9 quantifies the typical computational complexity of
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FIGURE 11. Recall, Precision-Recall, and F-score curves. Comparison of
baseline proposed fine-tuned without/with extrinsic parameters. The
improvement due to the proposed method is clear from all the curves.

various associated modules. The computational efficiency of
the proposed approach can be seen from these numbers for
coarse and fine match components.

For further validation, we have conducted initial exper-
iments with a recent Aerial Template Matching [16] and
synthetic dataset [17]. As discussed earlier, dataset [16] has
low resolution and low frame rate aerial images (DTV). The

FIGURE 12. Points performance curves for a DTV query image within an
SAT gallery in the same order as table 7. The proposed fine-matching
stage improves the overall performance of the considered metrics – MAE,
PCK, and Overlap. Italic legend implies the proposed approach. Best
viewed with zoom and color display.

TABLE 10. Matching performance over the aerial template matching
dataset [16]. Except for the last column, higher is better.

target-bin region contains 4 or 5 frames. Originally, the SAT
image [16] was a map from Bing, whereas we retrieved
SAT image for the same area from GEE and named it a
query SAT image. The aerial images from [16] are named
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FIGURE 13. An illustration of the fine-matching stage applied to various
baseline methods. Green and red lines imply inliers and outliers,
respectively. Best viewed with zoom and color display.

as target images/galleries. As discussed earlier, we marked
corresponding points manually for the target-bin region (4-5
frames) to generate a query-match profile. Due to the small
target-bin region, we apply the proposed cluster-analysis of
the fine-match step using RIFT [42]. The University-1652
dataset has many buildings with 54 views for each in a syn-
thesized manner. We manually marked corresponding points
for a few buildings. As above, we apply cluster analysis
of proposed fine-matching using RIFT [42]. Performance is
evaluated against baseline [42] without andwith standard out-
lier [57], for aerial template [16] and university [17] datasets
in table 10 and 11 respectively. Improvement is clear from
these tables regarding PCK, MAE, and RM.

B. DISCUSSION
This section briefly discusses our dataset enhancement and
the two-step matching framework. We enhanced the dataset
with more realistic scenarios (HD images, manual labels,
drift, offset, and dawn/dusk galleries) as summarized in

TABLE 11. Matching performance over the University dataset [17]. Except
for the last column, higher is better.

Table 3. Enhancements over our earlier dataset [14] is pre-
sented in Table 4 to clearly highlight the contributions
of this work. Offset and drift galleries are generated by
adding latitude since aircraft had to travel longitudinally (run-
way ‘‘East-West’’ constraints). We have compared proposed
enhancement with publicly available cross-platform aerial
datasets ( [16], [17]) in Table 12.

The corresponding sets of images are finely aligned with
manual point marking, and its efficacy is shown in Table 1.
Due to the aligned nature of SAT-Year-wise-Warped and
HD-Dawn-Dusk galleries, the same can be used to train the
network [64] to generate unseen galleries. From Figs. 14
and 15, we see that the proposed dataset covers urbaniza-
tion over the period, atmospheric distortions (for e.g., small
clouds) and so on. As an improvement, the dataset can
be further enhanced with topological-metric [18] describing
objects and their interrelations. Seasonal and night galleries
may be further appended. For storage and retrieval, semantic
compression with metadata embeds and inverted matrix [31]
shall be explored.

VPR research is challenging due to the lack of a stan-
dard definition of ‘place’ and various datasets with vary-
ing metrics. Typically, the VPR problem revolves around
landscape/landmark/place while missing the aerial image
aspect. The proposed two-step matching framework presents
a coarse-fine approach for aerial image matching. The
CNN-based coarse-matching stage is fast, efficient, and accu-
rate and is ideally suited for the low resources feasible
onboard platforms. The tunable parameters include the num-
ber of classes N and bins M (and, therefore, the number
of images K in a bin). These parameters can be chosen
based on the speed and altitude of the aircraft. Extrinsic
parameters are a step toward multi-sensor data fusion for
real-time applications. As a baseline, we have built over a
stable, popular, and well-accepted network [52]. It can be
further improved by using the latest models. Optimal arbi-
tration logic to use indices of multiple classifiers shall be
explored. The fine-matching stage builds on state-of-the-art
imagematchingmethods ( [37], [41], [42], [55]).We leverage
over the points and cluster analysis to improve matching per-
formance. We exploited 3D information for outlier removal
in contrast with 2D based [43], [44]. We have demonstrated
the efficacy of both stages using several evaluation metrics.
Instead of sticking to image features [16], we have lever-
aged spectral, temporal, and flow features. The state-of-art
datasets [16], [17] have been tested as an initial step using one
matching algorithm [42] as a baseline. We plan to extend this
for the entire framework with multiple matching algorithms.
Additionally, 3D scene modeling along with metadata shall
be explored. Matching a satellite image with a thermal image
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FIGURE 14. Qualitative performance of the coarse-matching approach. Top@1 searches in dataset for DTVCity query (round
2). Rows are in the same order as table 6. The last row shows the matching results for the proposed approach. The results
in this row are consistently better than most of the other methods in this comparison. Best viewed with zoom and color
display.
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FIGURE 15. Qualitative performance of the fine-matching approach. Top@1 searches in dataset
for DTVBlue query. Rows are in the same order as table 7. Italic numbered text rows display
output of proposed outlier/fine-match approach. Best viewed with zoom and color display.

is another line of research (due to drastic texture variation) for
practical applications (day-night applications). Aircraft with
gimballed cameras give flexibility to focused surveillance,

but nonlinear combination results in a wide variation of
instantaneous scale and rotation factors. Further, methodolo-
gies can be explored to use it as metadata appropriately.
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TABLE 12. Cross-platform dataset comparison.

VI. CONCLUSION
We presented two contributions in this work – enhance-
ments to the cross-platform aerial Path-planning dataset and
a two-step framework for robust aerial image matching. Our
proposed enhancements address shortcomings in the liter-
ature, such as the lack of cross-platform aligned scenes,
multiple types of historical galleries, points correspondence,
semantic segmentation, etc. The proposed enhanced dataset
is very helpful for the evolution of aerial image matching
algorithms. Additionally, we demonstrated a test case of
augmenting an open-source aerial dataset for cross-platform
classification. It includes a semi-automatic approach to data
segregation and enhancing it with cross-platform historical
satellite images. We plan to make our enhanced dataset avail-
able at https://www.iith.ac.in/∼lfovia/downloads.html as part
of this publication.

Our two-step framework for robust aerial image matching
employs a CNN-based light-weight first step that reduces the
load on the fine-matching and helps in tracking the flight path.
We developed a methodology for augmenting non-imaging
sensor information called metadata or extrinsic parameters.
In the second step of the framework, we leverage the spectral,
temporal, and flow consistencies followed by cluster analy-
sis for outlier removal for robust matching. We have tested
the proposed framework over our dataset, a recent Aerial
Template Matching dataset, a synthetic university dataset,
and the derived dataset. We have shown efficacy over stan-
dard baselines (without and standard outlier). In summary,
we have qualitatively and quantitatively compared our frame-
work against conventional and deep learning-based matching
methods.We perceive that it is a timely contribution given the
increased use of UAVs for a wide variety of applications.
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