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ABSTRACT Passive technologies like ambient backscatter communication (AmBC) and intelligent reflect-
ing surface (IRS) hold enormous potential for ubiquitous connectivity of Internet of Things (IoT) devices
in future wireless networks. However, despite many research efforts, AmBC has so far been unable to
fulfil its potential for widespread deployment, due to the weakness of backscatter signal in the presence
of strong direct-link interference from the original RF source. This limits the bit error rate (BER) and hence
the transmission rate and range of AmBC systems. Meanwhile, the IRS offers new degrees of freedom
in enhancing a variety of systems by transforming their propagation medium and signals. In this work,
we devise a novel scheme to improve the detection performance of an AmBC system using an IRS located
in its proximity. The IRS augments the backscatter signal quality at the receiver by adjusting its phase
shifts to balance signal strengths, ultimately improving the performance of energy detection at the receiver.
Our results clearly show that an IRS of reasonable size can considerably improve the BER performance of
ambient backscatter, which is an important improvement for low power IoT systems.

INDEX TERMS Ambient backscatter communication, intelligent reflecting surface (IRS), interference
cancellation, bit error rate, multiple antennas, Internet of Things (IoT).

I. INTRODUCTION
A. MOTIVATION
With the evolution and expansion of the Internet of Things
(IoT), pervasive connectivity among an exceedingly large
number of people and devices is inevitable. Consequently,
technologies that keep power consumption and RF emissions
in check are highly desirable [1]. In this regard, ambient
backscatter communication (AmBC) has been envisioned as
a promising technology with the potential to realize energy
efficient ubiquitous connectivity among the large number of
devices for the Internet of Things (IoT).

In AmBC systems, a tag or backscatter device (BD) lever-
ages existing modulated ambient signals in its surroundings
(generated from RF sources like TV towers, Wi-Fi access
points or a base stations from the cellular network) to con-
vey its own information [2], [3]. The BD modulates the
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backscattered signal by switching between the following two
states: a backscattering state, when the BD antenna is short-
circuited, and a transparent state, when the BD antenna is
open-circuited [2]. These states correspond to bit ‘0’ and
bit ‘1’. Typically, an energy detector (ED) [4] is used at
the backscatter receiver (RX) to detect the AmBC symbols,
by calculating the received power levels at the RX and then
mapping them to corresponding transmitted signals from the
BD. Consequently, the AmBC system is energy efficient as
it does not require active RF signal transmission and also
spectrally efficient as it shares the spectrum of the ambient
RF source.

Despite the research efforts in the area of AmBC, the
reliability in terms of bit error rate (BER) of such systems
is still limited. This is due to the fact that the backscatter
signal suffers double fading and when it arrives at the RX,
it is very weak as compared to the ambient signal from the
original RF source, also known as direct-link interference
(DLI). The DLI is an unknown, already modulated signal,
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much stronger than the information signal of interest from
the BD. It has been shown that, even in line-of-sight (LOS),
the DLI and the AmBC signal can combine such that the
received signals corresponding to bit ‘0’ and bit ‘1’ differ only
in phase, but have very close values in terms of power [5].
In such a scenario, the ED performs poorly and BER is high.

To improve the performance of the ED, it is imperative
to strengthen the backscatter signal and also to maximize
the contrast between the received powers at the ED corre-
sponding to bit ‘0’ and ‘1’. In this regard, the work in [6]
created a hot-spot on the BD and a good reception spot on a
RX using massive MIMO at the ambient source. The work
in [7] suggested frequency shifting, which is not desirable
at the low-power BD. Other methods have been proposed
like training sequence design [8] or general signal processing
techniques [9], [10]. The work in [11] discussed minimizing
the BER of AmBC systems and proposed optimal beam-
forming in terms of SINR maximization and zero-forcing
beamforming based solutions. However, with practical sys-
tem parameter values affecting backscatter signal strength,
the BER is still high for these two schemes.

Another promising technology, intelligent reflecting sur-
face (IRS) has recently emerged and is expected to revolution-
ize and transform future wireless networks [12]–[16]. An IRS
is an array of reconfigurable reflecting elements that can
interact directly with impinging signals in a controlled man-
ner to apply a particular set of phase-shifts, thereby control-
ling the direction of reflection. Thus, the coordinated design
of phase shifts for a large number of IRS reflectors allows
reflected signals to be received constructively (or destruc-
tively) at a receiving node [17]–[19]. This allows the IRS
to mitigate the inter-user interference or improve the signal
quality at some specific and localized network locations. It is
noteworthy, that the IRS technology is nearly passive, as it
is completely based on the scattering of the electromagnetic
waves. Therefore, the IRS can improve the signal reliabil-
ity and overall efficiency and coverage of the network in a
cost-effective and energy-efficient manner, without the need
for additional densification of the network elements and/or
active antennas at the transmitters and receivers [12].

B. RELATED WORK
Due to the promising potential of IRS, its usefulness in
solving key issues of existing technologies like multiple-
input multiple-output (MIMO) systems, millimeter-wave
(mmWave) communications, terahertz (THz) communica-
tions, UAV communication and mobile-edge computing for
enhancing the performance of future wireless networks has
gathered a lot of interest [12], [17], [20]–[23]. Similar
to these 6G technologies, passive communication systems
like backscatter communication are expected to be widely
deployed in IoT technology for pervasive connectivity. As a
result, there will be an increased probability of an IRS being
present nearby. Therefore, it is only natural to explore the
opportunities afforded by IRS-aided backscatter systems as
evidenced by [24]–[31].

Some of the above cited works have considered IRS-aided
monostatic backscatter systems, e.g., [24] presented perfor-
mance analysis, but for a simplified system model with the
direct reader-to-tag link blocked while the work in [25]
proposed a channel estimation scheme for the reader-tag
direct channel and reader-IRS-tag reflecting channel by con-
trolling the IRS reflection over time. An IRS-aided bistatic
backscatter system was introduced in [26], solving the trans-
mit power minimization problem while considering multiple
signal reflections at the IRS due to the coexistence of the IRS
and backscatter systems.

Ambient backscatter is inherently more attractive con-
ceptually, yet more challenging as compared to monostatic
and bistatic setups, as mentioned in the previous subsection.
However, IRS-aided AmBC systems have the potential to
efficiently overcome these limitations, due to the ability of
an IRS to strengthen the signal of interest as well as per-
form interference mitigation. The utility of IRS for ambi-
ent backscatter is corroborated by the recent spike in the
research efforts in this area [27]–[32]. In this regard, [27]
presented a scheme to improve bit error rate (BER) perfor-
mance for short-range backscatter communication, by using
IRS phase shifts to compensate for the multipath effect of
the propagation channel but for the specific case of OFDM
based ambient signals. The work in [28] proposed a joint
optimization scheme to use an IRS to assist a symbiotic
cognitive backscattering communication system, while the
work in [32] presented a channel estimation scheme for a
system in which an IRS itself performs ambient backscatter.
Another work [29] used a deep reinforcement learning (DRL)
based framework to optimize the AmBC detection without
any knowledge of CSI. Recently some experimental works
have also emerged, with [30] demonstrating experimentally
that by tuning the beam and the phase-shift of the IRS, the per-
formance of ambient backscatter systems can be improved.
Specifically, a ‘‘hot spot’’ is created on the tag or ‘‘coherent
spots’’ are created both on the tag and the reader, so that all
the direct and IRS-reflected waves combine coherently at the
reader, thereby improving performance. The work in [31] is
another experimental work, that presented a prototype of an
IRS and its simple voltage dependent model to optimize the
phase of the scattered field and substantiated the application
of IRS in assisting AmBC systems.

Previously, one of the seminal papers in IRS literature [33],
presented the joint optimization of the active transmit beam-
forming and the passive IRS phase shifts in conventional
point-to-pointMISO system and and provided a semi-definite
relaxation (SDR) based centralized solution and an alter-
nating optimization (AO) based solution. However, in an
IRS-aided backscatter system, the signal model and the
design of IRS phase shifts becomes a lot more challenging
as the coexistance of these two reflection-based systems lead
to multiple reflections at the IRS being significant [26].
Recently, the work in [28] has dealt with joint optimization
of the IRS with AmBC but under the special case of a
symbiotic, cognitive ambient backscatter system where the
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original ambient signal and the backscatter signal are both
jointly decoded at the RX.

As mentioned before, it is vital to strengthen the backscat-
ter signal and to maximize the contrast between the received
energies at the ED corresponding to the two backscatter
symbols, for improved performance of the ED. In this work,
we study a general IRS-aided ambient backscatter scenario.
We propose a novel scheme to address the fundamental aspect
of improving the detection of ambient backscatter signal at
the RX. We accomplish this by designing the IRS phase
shifts to improve backscatter signal strength and performing
eigenvector beamforming (EBF) assisted energy detection at
the RX to maximize the ratio of the two received energies.

C. OUR CONTRIBUTIONS
The main contributions of this paper are as follows:

• We study the BER minimization problem in an
IRS-aided AmBC system. We present the system and
signal model considering two significant reflections at
the IRS and formulate a general optimization problem
for BER minimization. As the general problem is diffi-
cult to solve, we propose a simpler two-step approach
that is computationally less intensive.

• We find the optimal value of the IRS phase shifts that
maximize the received backscatter signal strength at the
RX. Since this optimization problem is non-convex we
use the minorization-maximization (MM) algorithm to
obtain approximate solutions for the IRS phase shifts.
Despite being suboptimal, the IRS phase shifts effec-
tively boost the strength of the backscatter signal arriv-
ing at the RX.

• Our results show that the IRS phase shifts obtained from
the proposed scheme effectively boost the strength of
the backscatter signal at the energy detector. With a
stronger backscatter signal, the eigenvector beamformer
maximizing the relative difference in received energies
of bit ‘0’ and bit ‘1’ leads to an improved BER under
realistic channel parameters as compared to the previous
schemes, which is an important improvement for IoT
systems.

D. NOTATION AND PAPER ORGANIZATION
The following notation is used in this paper. j =

√
−1

denotes the complex unit, and R and C denote the set
of real and complex numbers, respectively. |·| and Re{·}
denote the magnitude and the real part of a complex num-
ber, respectively. CN (µ, σ 2) represents a complex Gaussian
distribution with mean µ and variance σ 2. Vector and matrix
quantities are denoted using lowercase and uppercase bold-
face letters, respectively, as in a and A. I denotes the identity
matrix of variable size. ‖a‖ denotes the Euclidean norm of a
vector; tr(A), AT and AH denote the trace, transpose and the
Hermitian transpose of A, respectively. Finally, exp(·) is the
exponential function, sgn(·) represents the signum function,
log(·) is the logarithmic function and Q(·) is the Q-function.

The rest of the paper is organized as follows. Section II
describes the system model and assumptions. Section III
presents the signal model of the system in terms of mathemat-
ical equations. Section IV presents the proposed scheme and
the associated optimization problems. Section V solves the
optimization problem. Section VI presents and discusses the
numerical results. Finally, Section VII concludes the paper.

II. SYSTEM MODEL
We consider a system in which an IRS with N passive reflect-
ing elements is deployed to assist a BD to communicate to
a RX by backscattering ambient signals from an ambient
source (AS). We model the system in a three dimensional
setup as shown in Fig. 1. The location coordinates of the IRS,
AS, BD and the RX are (0, 0, lIz), (l

A
x , l

A
y , l

A
z ), (l

B
x , l

B
y , 0) and

(lRx , l
R
y , 0) respectively. The distance among the system com-

ponents is represented by di−j and the corresponding pathloss
as βi−j, where i and j represent the respective components
of the system. Note that for the links through the IRS, the
pathloss of the two links (to and from IRS) is lumped into a
single constant, e.g., βA-I-R is the pathloss associated with the
AS to IRS to RX link [18].

The BD is a single-antenna device whereas the RX has M
antennas. The IRS is equipped with its own power supply
and a smart controller, which is connected with the RX via
a separate reliable wireless link and is responsible for coordi-
nating their operation as well as exchanging information such
as reflection coefficients and channel state information (CSI).
We assume perfect CSI knowledge [28] as CSI acquisition
is beyond the scope of this work and should be addressed
separately.1 As the BD performs diffuse reflection, we ignore
the signals reflected two or more times at the BD due to
severe power loss [35]. However, for the paths in which
IRS is involved, we also consider the signals that undergo
two reflections at the IRS, i.e., the signal going through the
AS-IRS-BD-IRS-RX link, that undergoes reflection at IRS
before as well as after getting backscattered by the BD, which
is a unique feature of this system. The IRS can increase
overall signal strength at the RX by adjusting its phase
shifts to balance the signal strengths between the AS-BD and
BD-RX direct and via IRS links [26].

We assume all the channels to be quasi-static, fre-
quency non-selective and constant in each fading block. The
small-scale fading for all links is modelled as independent
and identically distributed (i.i.d.) Nakagami-m fading due to
its mathematical tractability [36] and because it can be used
to model Rayleigh as well as Rician distributions as special
cases for m = 1 and m ≥ 1 [37]. This channel model allows
a flexible evaluation and is commonly adopted in research
works on ambient backscatter as well as on IRS [38]–[40].

1In practice, CSI can be estimated at the RX by adapting the channel
estimation methods for the IRS systems or by using deep learning [34].
In particular for our system model, channel estimation can be carried out
by turning only two nodes in our system model ON at a time and estimating
the relevant channels. Thus, CSI is acquired by going pair-wise among all
the nodes in the system till all of the available channels are obtained.
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FIGURE 1. Illustration of the system model.

Let the channels from the AS, BD and RX to the IRS be
represented by hA-I ∈ CN×1, hB-I ∈ CN×1 andHR-I ∈ CN×M

respectively. Similarly, the channels from the AS to the BD
and the RX are represented by hA-B ∈ C1×1 and hA-R ∈
CM×1 respectively, while the channel from the BD to the RX
is represented by hB-R ∈ CM×1.

III. SIGNAL MODEL
The ambient signal is independent and identically distributed
at different time instants, and follows the CSCG distribu-
tion. Let sn be the nth ambient symbol that is backscattered,
i.e., sn ∼ CN (0,Ps) where Ps is the transmit power of the
AS. The signal received at the BD is a sum of the nth symbol
directly from the AS and its reflection from the IRS and is
given by

rn =
(
hA-B + hHB-I2hA-I

)
sn, (1)

where hB-I and hA-I are N × 1 vectors and 2 is the N × N
matrix of phase shift values at the IRS such that 2 =

diag(ejθ1 , · · · , ejθN ) and θn being the phase shifts of individ-
ual elements of the IRS with θn ∈ [0, 2π ), ∀n.
The BD modulates its information bits over the ambient

signals by changing its antenna impedance. We adopt on--off
keying at the BD, which means that the ambient signal is
fully reflected when bit ‘1’ is transmitted and there is no
reflection when bit ‘0’ is transmitted. Thus, if we denote the
BD’s symbol as b, we have b ∈ {0, 1}. Since the backscatter
link is typically weaker than the direct link, the BD transmits
at a much lower rate than that of the AS [11]. We assume
that the BD symbol b remains unchanged for S consecutive
ambient symbols. So S can be taken as the backscatter symbol
length. Thus, during oneBD symbol period, the backscattered
signal from the BD to the RX is given by

xn =
(√
βA-BhA-B +

√
βA-I-BhHB-I2hA-I

)
bsn, (2)

where sn is the nth ambient symbol. At the RX, the signal
backscattered from the BD arrives by two paths i.e., directly
and also after reflection from the IRS. Simultaneously, the
original ambient signal from the AS reaches the RX directly
as well as after suffering a reflection from the IRS. Assuming

negligible synchronization errors [41], for the nth ambient
symbol that is backscattered, the overall signal received at
the M antenna RX is,

yn = fAsn + fBbsn + zn, (3)

where yn is anM×1 vector, zn ∼ CN (0, σ 2IM ) is the AWGN
and σ 2 is the noise power. fA is the total effective channel
experienced by the direct signal from the AS, i.e.,

fA(2) =
√
βA-RhA-R +

√
βA-I-RHI-R2hA-I, (4)

and fB is total effective channel (from the AS to BD to RX
including the intermediate IRS reflections) experienced by
the backscattered signal, i.e.,

fB(2) =
(√
βA-BhA-B +

√
βA-I-BhHB-I2hA-I

)
×

(√
βB-RhB-R +

√
βB-I-RHI-R2hB-I

)
. (5)

Substituting (4) and (5) in (3) we get,

yn =
{√
βA-RhA-R +

√
βA-I-RHI-R2hA-I

+

(√
βA-BβB-RhA-BhB-R

+
√
βA-BβB-I-RhA-BHI-R2hB-I

+
√
βA-I-BβB-RhB-RhB−IH2hA-I

+
√
βA-I-BβB-I-RHI-R2hB-IhHB-I2hA-I

)
b
}
sn + zn.

(6)

The receiver performs receive beamforming on the received
signal yn to obtain

vn = wHyn = wH (fA(2)+ fB(2)b)sn + wHzn, (7)

where w represents the receive beamforming vector. vn then
follows CSCG distribution such that,

vn ∼

{
CN (0,C0), if b = 0
CN (0,C1), if b = 1,

(8)

where

C0 = wHR0w (9)

C1 = wHR1w (10)

are the energies received at the RX when bits 0 and 1 are
transmitted respectively by the BD. Note that R0 and R1 are
given by:

R0 = Ps fA(2)fA(2)H + σ 2IM (11)

R1 = Ps

(
fA(2)+ fB(2)

)(
fA(2)+ fB(2)

)H
+ σ 2IM .

(12)

The output vn of the receive beamformer then goes to the
energy detector that compares it against a decision threshold

VOLUME 10, 2022 65003



S. Idrees et al.: Design of Intelligent Reflecting Surface (IRS)-Boosted Ambient Backscatter Systems

T to detect whether b sent by the BD was a 0 or 1:

V =
ε

S

S∑
n=1

∣∣∣wHvn
∣∣∣2 ≷b=1

b=0 T , (13)

where ε = sgn(C1 − C0) and T = εC1C0
C1−C0

ln C1
C0

[11].
To evaluate the BER of the system, we define the generalized
relative channel difference (GRCD) [11], [29] as the energy
ratio between the symbol with the higher energy and the
symbol with the lower energy, i.e.,

1C , max
{C1

C0
,
C0

C1

}
= max

{wHR1w
wHR0w

,
wHR0w
wHR1w

}
(14)

For a reasonably large S, using the central limit theorem, the
BER is given by [11], [29] as2

Pe =
1
2

[
Q
(√

S
(1C log1C

1C − 1
− 1

))
+Q

(√
S
(
1−

log1C

1C − 1

))]
(15)

Since 1c ≥ 1,
(
1C log1C
1C−1

− 1
)

and
(
1− log1C

1C−1

)
are

both monotonically increasing functions of 1c in this range.
Therefore, due to the monotonicity of the Q-function, the
GRCD directly measures the BER.

IV. PROPOSED BEAMFORMING SCHEME
A. PROBLEM FORMULATION
We study the BER minimization problem in an IRS-aided
AmBC system. To minimize the BER we use the GRCD
defined in (14). The GRCD measures the ratio of the mag-
nitudes of the energies of the two symbols received at the RX
and directly determines the BER of the energy detector based
AmBC system [11], [29]. To minimize the BER, we find the
phase shift matrix 2 and the receive beamforming vector w
to maximize the GRCD

(P1) : max
2,w

1C (16a)

s.t. |ejθn | = 1, ∀n ∈ {1, 2, . . . ,N } (16b)

(P1) is not a convex optimization problem as the objective
function is non-convex with respect tow and2, although the
constraints are convex. In general, there is no standardmethod
for solving such non-convex problems optimally [33].

B. PROPOSED SCHEME
Instead of searching for the optimal values of2 and w in the
entire solution space defined by constraint (16b), we note that
the AmBC system has a unique characteristic of detecting a
weak backscatter signal from the BD in the presence of very
strong DLI. Leveraging this unique inherent characteristic of
such systems, significant BER improvement can be brought
about by strengthening the backscatter signal and by increas-
ing the contrast in the received energies corresponding to bit

2The BER expression given here is for the case C1 ≥ C0. The case of
C0 > C1 is analogous.

‘0’ and bit ‘1’ being sent by the BD. So instead of solving
(P1), which takes into account the joint optimization of2 and
w to maximize GRCD, we propose a two-step sub-optimal
strategy and show that its performance is comparable to the
optimal solution of (P1) obtained by exhaustive search.

We propose to use an IRS for the specific purpose of
enhancing the quality of the backscatter signal arriving at
the RX by balancing the signal strengths of the direct and
reflected paths. In particular, we first find the IRS phase shifts
that maximize the backscatter signal strength arriving at the
RX. Afterwards, we employ optimal beamforming at the RX,
which maximizes the GRCD, that depends on the ratio of
received energies corresponding to bits ‘0’ and ‘1’. Finally,
we perform energy detection on the backscatter signal. It is
noteworthy that owing to the non-convexity of the problems
and the number of variables involved, alternating optimiza-
tion is generally the go-to technique for problems involving
optimization over multiple variables in IRS-based systems.
In contrast, our proposed scheme consists of just two steps
performed sequentially and is therefore computationally less
intensive.

Our proposed scheme can be broken down into the follow-
ing two steps:
• In the first step, as the BD sends a known signal, we find
the phase shifts at the IRS to maximize the strength of
the backscatter signal arriving at the RX. To this end we
can write the following optimization problem:

(P2) : max
2

||fB(2)||2 (17a)

s.t. |ejθn | = 1, ∀n ∈ {1, 2, . . . ,N } (17b)

• In the second step, the IRS sets its phase shifts according
to 2∗ obtained in step 1, to strengthen the backscatter
signal. The RX performs optimal beamforming based on
SINR maximization principle. As mentioned before, for
an energy detector based RX, the optimal receive beam-
forming vector is the one that maximizes the difference
of the two energies corresponding to bits ‘0’ and ‘1’. The
difference of the two energies is measured by the GRCD
defined in (14). Mathematically, we have the following
optimization problem,

(P3) : max
w

1C (18)

Since the IRS fixes its phase shifts according to 2∗

in this step, (P3) is just an optimization over candidate
beamforming vectors w.

V. PROBLEM SOLUTION
A. SOLUTION TO (P2)
In this subsection, we solve (P2). To obtain a solution for2,
we simplify the objective function in (16a) by splitting it into
the product of a scalar term and a squared norm:

‖fB(2)‖2 = |fB1(2)|2 ‖fB2(2)‖2 . (19)
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|fB1(2)|2 is given by,

|fB1(2)|2 =
∣∣∣√βA-BhA-B +√βA-I-BhHB-I2hA-I

∣∣∣2
= βA-I-BvH8A-I-B8

H
A-I-Bv

+
√
βA-BβA-I-BvH8A-I-BhHA-B

+
√
βA-BβA-I-BhA-B8H

A-I-Bv+ βA-B|hA-B|
2,

(20)

where 8A-I-B , diag(hHA-I)hB-I and v =
[
ejθ1 , . . . , ejθN

]H
such that |vn| = 1, ∀n ∈ {1, . . . ,N }.

Let

S1=

[
βA-I-B8A-I-B8

H
A-I-B

√
βA-BβA-I-B8A-I-BhA-B

√
βA-BβA-I-Bh∗A-B8

H
A-I-B 0

]
, v̄=

[
v

1

]
.

(21)

Then (20) can be re-written in matrix form as

|fB1(2)|2 = v̄HS1v̄+ βA-B|hA-B|2. (22)

Similarly, ‖fB2(2)‖2 is given by,

‖fB2(2)‖2 =
∥∥∥√βB-RhB-R +√βB-I-RHI-R2hB-I

∥∥∥2
= βB-I-RvH8B-I-R8

H
B-I-Rv

+
√
βB-RβB-I-RvH8B-I-RhB-R

+
√
βB-RβB-I-RhHB-R8

H
B-I-Rv+ βB-R|hB-R|

2,

(23)

with 8B-I-R , diag(hHB-I)H
H
I-R and v as defined above.

Again, let

S2=

[
βB-I-R8B-I-R8

H
B-I-R

√
βB-RβB-I-R8B-I-RhB-R

√
βB-RβB-I-RhHB-R8

H
B-I-R 0

]
.v̄=

[
v

1

]
.

(24)

Then (23) can also be re-written in matrix form as follows:

|fB2(2)|2 = v̄HS2v̄+ βB-R|hB-R|2, (25)

Substituting (22) and (25) in (19). we get,

Go(v̄) = v̄HS2v̄v̄HS1v̄+ k1v̄HS2v̄+ k2v̄HS1v̄+ k1k2,

(26)

with k1 = |hA−B|2 and k2 = ‖hB−R‖2.
Using (26), (P2) can be written as

3(P4) : max
v̄

Go(v̄) (27a)

s.t. |v̄n| = 1,∀n ∈ {1, 2, . . . ,N } (27b)

In the equivalent problem (P4), the objective function (27a)
is a quartic polynomial in v̄. We let V = v̄v̄H so that
the objective function can be expressed as a function of
V in terms of trace (i.e., tr(SV)), which is rank-one.
However, since S1 and S2 are not positive semi-definite
in general, one of the resulting trace terms in (27a),
i.e., tr(S2VS1V), turns out to be generally non-convex.
Moreover, optimizing multivariate polynomials of higher

degrees is an NP-hard problem [42]. Therefore, a closed-
form, optimal solution is generally not available. To solve
this issue, we employ the MM algorithm [26]. The MM algo-
rithm attempts to solve this difficult problem by construct-
ing a series of more tractable approximate sub-problems,
using a convex approximation to the original objective
function.

The MM algorithm leverages a surrogate function that
serves as a minorizer to an objective function f (x) : CN

→ R
with bounded curvature by taking the second-order Taylor
expansion [43, Lemma 12]:

f (x) ≥ f (x0)+ Re
{
∇f (x0)H (x− x0)

}
−
`

2
‖x− x0‖2 ,

(28)

where x0 ∈ CN is the point where the original and the
surrogate functions intersect, ∇ is the gradient operator and
` is the maximum curvature of f (x). According to (28),
we find the minorizer Gm1 (v̄) to the objective function
Go(v̄) i.e.,

Go(v̄) ≥ Gm(v̄), (29)

such that

Gm1 (v̄) = Go(v̄0)+ v̄H0 U(v̄− v̄0)+ (v̄− v̄0)HUv̄0

−
`

2
‖v̄− v̄0‖2 , (30)

with U = S1v̄0v̄H0 S2 + S2v̄0v̄H0 S1 + k2S1 + k1S2 being
a Hermitian matrix obtained from the derivative of Go(v̄0).
Expanding (30) we get,

Gm1 (v̄) = −
`

2

(̄
vH Iv̄+ v̄H

(
−
2
`
Uv̄0 − Iv̄0

)
+

(
−
2
`
Uv̄0 − Iv̄0

)H
v̄
)
+ k, (31)

where k denotes the cumulative sum of all constant
terms. (31) is of quadratic form, and can be rewritten as:

Gm1 ( ¯̄v) = ¯̄v
HQ ¯̄v+ k (32)

where

Q = −

 I −
2
`
Uv̄0 − Iv̄0

(−
2
`
Uv̄0 − Iv̄0)H 0

 , ¯̄v = [v̄1
]
.

(33)

Letting ¯̄V = ¯̄v ¯̄vH , a transformed version of Problem (P4)
is given by

(P5) : max
¯̄V

tr(Q ¯̄V)+ k, (34a)

s.t. ¯̄Vn,n = 1, ∀n ∈ {1, . . . ,N + 2}, (34b)
¯̄V � 0, (34c)

rank( ¯̄V) = 1. (34d)
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One potential strategy to tackle this situation is to drop
the rank-one constraint, such that Problem (P5) becomes a
convex semidefinite program (SDP), which is solvable using
CVX [44]. The solution obtained by CVX may or may not
be rank one. Therefore, Gaussian randomization [45] can
be used, yielding a candidate vector, whose last element is
dropped and then the resulting N × 1 vector is substituted
in (31) during the next MM iteration to obtain a new approx-
imation to Go(v̄). This process needs to be repeated till the
MM algorithm converges.

The above stated process incurs a formidable complexity
of the order of O(I (N + 2)4.5), where I is the number MM
iterations, and the (N + 2)4.5 is the SDP complexity [46].
An alternative, less costly approach is to further take a
minorizer Gm2 to Gm1 , similar to the procedure in [47] such
that,

Go(v̄) ≥ Gm1 ( ¯̄v) ≥ Gm2 ( ¯̄v). (35)

where

Gm2 ( ¯̄v) = ¯̄v
HT ¯̄v+ 2Re{ ¯̄vH (Q− T) ¯̄v0} + ¯̄v0

H
(Q− T) ¯̄v0

(36)

Note that T = λ−I, where λ− is the minimum eigenvalue of
Q and ¯̄v0 is as before.Gm2 can serve as the objective function
in each MM iteration instead of Gm1 . Ignoring the constant
terms, the sub-problem to be solved in each iteration of the
MM algorithm reduces to:

(P6) : max
¯̄v

2Re{ ¯̄vH (Q− T) ¯̄v0}, (37a)

s.t. | ¯̄vn,n| = 1, ∀n ∈ {1, . . . ,N + 2}, (37b)
¯̄vj,j = 1, j = {N + 1,N + 2}, (37c)

The closed form solution to (P6) is given by ¯̄v∗ =
ej arg((Q−T) ¯̄v0).
It is noteworthy that the objective function Go in the

original problem (P4) is bounded from above, as S1 and
S2 are constant matrices and ‖v̄‖2 = N is a finite constant.
Moreover, Gm1 and Gm2 can each serve as a minorizer to Go
and can also can be shown to satisfy the conditions for the
convergence of MM algorithm, as stated in [43], [47]. We run
the MM algorithm with Gm2 as the surrogate function, such
that a closed form optimal solution in terms of ¯̄v is returned
in each iteration. Therefore, the solution obtained in each
subsequent iteration of the MM algorithm will result in a
monotonic increase in Go and will ultimately converge to a
local optimum. This approach, summarized in Algorithm 1,
will incur a complexity of the order of O(IN ).

B. SOLUTION TO (P3)
Similarly to [11], (P3) is solved as follows: Substituting the
definition of GRCD from (14) into (18) we get:

(P3): max
w

(
max

(
wHR0w
wHR1w

,
wHR1w
wHR0w

))
. (38)

Algorithm 1MM Algorithm for Solving (P4)
1: Initialize: Random IRS phase shifts θ ; set iteration

number i = 1.
2: Obtain v̄ from θ and set v̄(i)0 = v̄.
3: while the rate of change in objective function (26) is

above a threshold ε > 0 do
do

4: Construct Q from v̄(i)0 and U.
5: Set v̄(i+1)← ¯̄v∗ = ej arg((Q−T) ¯̄v0) for next iteration.
6: Update iteration number i← i+ 1.
7: end while
8: Return:Optimized phase shift vector v∗ by dropping the

last element of v̄0 at convergence.

To solve (P3), without loss of generality we consider f (w) =
wHR1w
wHR0w

. Then to find the maximum of (P3), we differentiate
f (w) with respect to w and set it equal to zero, i.e.,

d
dw

f (w) =
2R1w

(
wHR0w

)
− 2R0w

(
wHR1w

)(
wHR0w

)2 = 0. (39)

Rearringing (39) we obtain R1w = f (w)R0w, which can
be recognized as a generalized eigenvalue problem with λ =
f (w) being the eigenvalue andw the corresponding eigenvec-
tor. Let λmax and λmin be the maximum and minimum gener-
alized eigenvalues, and wmax and wmin be the corresponding
eigenvectors, respectively. Then, the optimal beamforming
vector is by wmax if λmax ≥

1
λmin

and it is wmin otherwise.

VI. RESULTS
In this section, we provide simulation results to evaluate
our proposed scheme. We consider an ambient backscatter
scenario, with an ambient signal of frequency 915 MHz. The
AS, BD, IRS and RX are located at [−50, 2, 5], [10, 2, 0],
[0, 0, 2] and [15, 2, 0] respectively, with all the coordinates in
meters. The values of rest of system parameters are: α = 2.5,
Gs = 1.5 dB, Gr = 1.5 dB, Ps = 30 dBm, σ 2

= −80 dBm.
The Nakagami-m parameter is set to 5 for all the links among
IRS, BD and RX, while it is set to 1 for the links from IRS,
BD and RX to the AS [38]–[40]. We set the backscatter frame
consisting of 100 backscatter symbols and average our results
over 1.5× 106 Monte-Carlo runs.

For the purpose of comparison with our proposed scheme
for the IRS-aided system, the alternating optimization based
successive refinement of IRS phase shifts presented in [33]
can be adapted as a benchmark. However, this adaptation is
not straightforward as it does not yield a meaningful bound,
unless some form of strengthening the backscatter signal
or DLI cancellation is included. So we resort to exhaustive
search to solve (P1) and establish a benchmark for IRS-aided
AmBC system. In addition we also present the following
benchmarks for comparison:
• IRS-less systemwith zero-forcing beamforming (ZFBF)
at the RX.
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FIGURE 2. BER versus N with Ps = 30 dBm, S = 60, M = 4 with IRS
located at (12,2,5).

• IRS-less system with eigenvector beamforming (EBF)
at the RX.

• IRS-aided system with ZFBF at the RX and IRS phase
shifts set to random values.

• IRS-aided system with EBF at the RX and IRS phase
shifts set to random values.

• IRS-aided system with ZFBF at the RX and IRS phase
shifts calculated by solving (P2) given in (17).

Fig. 2 illustrates the BER performance of the proposed
scheme with respect to the number of elements N of the IRS
for Ps = 30 dBm and S = 60. The plot for exhaustive
search results has only three data points highlighted by 1
for N ∈ {4, 6, 8}. Further data points could not be obtained
because the exhaustive search method demands excessive
computational resources. The plots of other five benchmarks
enumerated above have also been included.

We can see that the gap between the plots for our pro-
posed scheme and for the exhaustive search reduces as N
increases. This highlights the usefulness of our scheme, as it
is computationally less intensive and performs fairly closely
(as N increases) to the results obtained by solving (P1) by
exhaustive search.

Comparing the results of the proposed scheme with the
benchmarks we can see that the performance of the system
without the IRS is worst, regardless of the beamforming used
at the RX. For the systems including an IRS with random
phase shifts, we see a marginal improvement over the base-
line schemes. However, with an optimized IRS, there is a
marked improvement in the performance of both eigenvector
and zero-forcing beamforming based energy detection. In all
scenarios, EBF at the RX performs better than its zero-forcing
counterpart, because the ZFBF removes the direct-link inter-
ference altogether and reduces overall signal strength at the
RX, leading to performance loss. On the other hand, EBF at
the RX achieves the perfect balance by maximizing the con-
trast between the two received energies and when employed

FIGURE 3. BER versus Ps with S = 60, N = 16, M = 4 with IRS located at
(12,2,5).

with an optimized IRS for maximizing backscatter signal
strength, best performance is achieved.

It is also clear from Fig. 2 that the BER significantly
decreases with the increase of the IRS size. Even with an IRS
of modest size N = 4, the BER is 8.9× 10−2. For an IRS of
size N = 16 the BER drops to as low as 4.94×10−5. We can
see that with increase in its size, the IRS is more effective
in balancing the signal strengths to increase the strength of
received backscatter signal at the RX and thus reducing the
BER further. Thus, an IRS of reasonable size can effectively
boost the backscatter signal and thereby assist the RX in
reducing the BER of energy detection.

Fig. 3 illustrates the BER performance with varying Ps,
i.e., transmit power of the AS, for N = 16 and S = 60.
It is seen that the BER of our proposed detector significantly
decreases with the increase of Ps. This is in contrast to
conventional AmBC using simple energy detection at the
RX [48], wherein, the BER did not decrease much with
the increase of ambient signal power, but levels off in the
high SNR region. This is due to the fact that the backscat-
ter signal is inherently very weak. So when Ps increases,
the subsequent increase in the DLI is orders of magnitude
stronger than in the backscatter signal. Consequently, the
BER does not decrease much. To solve this issue, in bench-
marks 1 and 2 originally proposed in [11], use ZFBF to
remove DLI and EBF to maximize energy difference between
the two backscatter symbols respectively, prior to energy
detection at the RX. However, with practical system values,
the backscatter signal is still very weak. Consequently, the
relative energy difference between the signals corresponding
to bit ‘1’ and bit ‘0’ received at the ED is very low,which leads
to poor energy detection and the BER is still high. However,
with the introduction of IRS, even with random phase shifts
(benchmarks 3 and 4), the BER performance is somewhat
improved. Finally, with an IRS optimized for maximizing
backscatter signal strength, the BER performance drastically
improves with increase in Ps as indicated by the steepness of
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FIGURE 4. R versus S with Ps = 30 dBm, N = 16, M = 4 with IRS located
at (12,2,5).

the curve for our proposed scheme as well as for the ZFBF
based solution.

Fig. 4 illustrates the BER of our scheme for different values
of S, i.e., the number of ambient symbols for which the
backscatter symbol transmitted remains the same. For this
plot, Ps = 30 dBm and N = 16. It is clear from the figure,
that the performance in terms of BER of our proposed scheme
as well as all benchmarks improves with an increase in S,
at the cost of a lower transmission rate. Even with a low
value of S = 20 (corresponding to a higher transmission
rate at the BD) the BER is 1.1 × 10−3. It is also observed
that as S increases, the slope of the BER curve somewhat
tapers off. This is an encouraging outcome meaning that
there is no significant advantage in extending the backscatter
symbol lengths beyond a certain value as the IRS guarantees
some performance improvement regardless of the backscatter
transmission parameters.

Fig. 5 illustrates the performance of our scheme for values
of number of receive antennasM with N = 16, Ps = 30 dBm
and S = 60. It can be seen that the performance improves for
all bechmarks with the increase of M , due to the increased
capability of beamforming at the RX. However, it is notewor-
thy, that for our proposed scheme, i.e., optimized IRS with
EBF at the RX and the benchmark scheme with optimized
IRS and ZFBF at the RX, the descent of the BER curves
is significantly steeper than in the other benchmarks. This
shows that with an optimized IRS assisting the backscatter
signal, the EBF at the RX can more efficiently separate
the powers corresponding to the two backscatter symbols,
resulting in much improved BER.

A plot of BER for three different placements of the IRS
is shown in Fig. 6. We maintain the y and z coordinates of
the IRS and move it parallel to the x-axis. Considering that
we have kept the AS, BD and RX in a straight line in the
x− y plane, the three values of BER are obtained as we move
the IRS from (8, 2, 5) (between AS and BD) to (12, 2, 5)
(between BD and RX) to (18, 2, 5) (on the other side of RX,

FIGURE 5. BER versus M with Ps = 30 dBm, S = 60, N = 16 with IRS
located at (12,2,5).

FIGURE 6. BER versus IRS position with Ps = 30 dBm, S = 60, N = 16 and
M = 4.

away from AS and BD). We can see that as the IRS is moved
to the other side of the RX i.e., to (18, 2, 5), the BER goes up
for all the schemes, as the increased distance of the IRS from
the BD and the AS results in weakening the backscatter signal
arriving at the RX. However, it is interesting to note that as
the IRSmoves from (8, 2, 5) to (12, 2, 5), the BER goes down
for the ZFBF with optimized IRS benchmark, whereas it
increases for our proposed scheme EBF with optimized IRS.
This is due to the fact that the ZFBF at the RX completely
eliminates the direct-link signal from the AS. Therefore, the
IRS located at (12, 2, 5) enjoys shorter distances to the BD
and the RX and yields a smaller BER. On the other hand, our
proposed scheme optimizes the received signal strength over
the IRS reflection pattern and receive beamforming at the RX
by maximizing the GRCD defined in (14). Therefore, when
the IRS is at (8, 2, 5), it is closer to the AS as well as the BD,
while the distance from the RX is greater, but still reasonable.
Therefore, the IRS is more effective is enhancing the signal
strength and hence the GRCD, resulting in a lower BER at

65008 VOLUME 10, 2022



S. Idrees et al.: Design of Intelligent Reflecting Surface (IRS)-Boosted Ambient Backscatter Systems

(8, 2, 5). The BER increases as we move further away from
the AS. Thus, we can conclude that for our proposed scheme,
the IRS needs to be positioned such that it is as close to the
AS as possible, while maintaining a short distance from the
BD and the RX.

VII. CONCLUSION
In this work, an IRS aided AmBC system was studied and
a new scheme was devised to im42‘xprove its performance
in terms of BER. The non-convex problem of optimizing
the phase shifts at the IRS for maximizing the backscatter
signal strength arriving at the RX was addressed using SDR
within MM algorithm. Our findings showed that with an
IRS of moderate size enhancing the AmBC system, the BER
performance is significantly improved. The reduced BER can
be instrumental in increasing the rate and range of AmBC
systems. The scheme proposed in this paper can be extended
to multiple backscatter devices, where the role of IRS in aid-
ing in collision avoidance can be studied as well. Moreover,
future work can include the CSI estimation problem of an IRS
assisted ambient backscatter system.
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